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ABSTRACT
Multimedia services like Skype, WhatsApp, and Google Hangouts
have strict Service Level Agreements (SLAs). These services at-
tempt to address the root causes of SLA violations through tech-
niques such as detecting anomalies in the inputs of the services.
The key problem with current anomaly detection and handling
techniques is that they can’t adapt to service changes in real-time.
In current techniques, historic data from prior runs of the service
are used to identify anomalies in the service inputs like number
of concurrent users, and system states like CPU utilization. These
techniques do not evaluate the current impact of anomalies on the
service. Thus, they may raise alerts and take corrective measures
even if the detected anomalies do not cause SLA violations. Alerts
are expensive to handle from a system and engineering support
perspectives, and should be raised only if necessary. We propose
a dynamic approach for handling service input and system state
anomalies in multimedia services in real-time, by evaluating the
impact of anomalies, independently and associatively, on the ser-
vice outputs. Our proposed approach alerts and takes corrective
measures like capacity allocations if the detected anomalies result
in SLA violations. We implement our approach in a large-scale op-
erational multimedia service, and show that it increases anomaly
detection accuracy by 31%, reduces anomaly alerting false posi-
tives by 71%, false negatives by 69%, and enhances media sharing
quality by 14%.

CCS CONCEPTS
• Information systems→Multimedia information systems;

KEYWORDS
Multimedia communication services, Multimedia service anomaly
detection, Multimedia service reliability

ACM Reference Format:
Mohammed Shatnawi andMohamed Hefeeda. 2018. Dynamic Input Anom-
aly Detection in Interactive Multimedia Services. In MMSys’18: 9th ACM
Multimedia Systems Conference, June 12–15, 2018, Amsterdam, Netherlands.
ACM,NewYork, NY, USA, 10 pages. https://doi.org/10.1145/3204949.3204954

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MMSys’18, June 12–15, 2018, Amsterdam, Netherlands
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5192-8/18/06. . . $15.00
https://doi.org/10.1145/3204949.3204954

1 INTRODUCTION
Interactive multimedia services such as Skype and Google Hang-
outs have strict Service Level Agreements (SLAs) governing vari-
ous aspects of their service like multimedia quality and response
time. For example, the quality of multimedia sessions, measured
by Mean Opinion Score (MOS), may have an SLA of MOS 4 or 5,
good/excellent quality. Multimedia sessions with MOS 1 through
3, poor quality, are violating the SLA with customers. The cost of
such violations is high including loss of customers to competitors
[20], so these violations should be reduced as much as possible.

In a typical use case of a multimedia service, a user calls another
using a client application. The application initiates a session and
invokes online services in the cloud. The services are deployed in
data centers around the world. Each service may in turn call other
sub-services or components for encoding, rendering, dejitter, and
ad serving. A user perceived quality of the multimedia session is
directly impacted by the performance of these components. If we
understand the anomalies in the service input, working conditions,
and system states of these components, and their impact on the ser-
vice outputs, we can manage the anomalies, improve the reliabil-
ity and performance of multimedia services, and reduce SLA vio-
lations. Working conditions refer to the activities running on the
service like number of active processes and number of open sock-
ets. System states refer to the service internal states like CPU and
memory utilization. An anomaly in this context refers to values
of the service inputs, component working conditions, and system
states that deviate from the expected values [1]. For example, a dis-
play ad in a video call is expected to last a few seconds before it is
registered as a billable impression. If ad impressions are swapping
at rates of more than one ad per second, for example, then that’s an
anomaly that indicates ad fraud, and warrants alerting and taking
corrective measures like blocking the ad source. On the other hand,
customers generally share a single video in a multimedia session.
Sharing two videos in a session is an anomaly, but can potentially
happen if the customers want to compare two videos side by side.
So this type of anomalies may not warrant an alert, unless it is not
supported and cause failures.

State of the art anomaly detectors follow a data-driven andmath-
ematical models to define an anomaly [1, 5]. They analyze large
amounts of historic data that represent the service inputs and its
working conditions, such as number of users and their active video
sessions, and the number of active processes and their CPU uti-
lization. Using mathematical modeling, current anomaly detectors
find the expected values for these properties as well as the outliers
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or anomalies [1, 12]. In the current approaches for handling anom-
alies, service implementers generally raise alerts and request cor-
rectivemeasureswhen anomalies are encountered, without consid-
ering the actual impact of anomalies on the service [19, 20]. Alerts
are expensive from a system and engineering support perspectives,
and should be raised only if necessary [24].

There are multiple key problems with this common theme in
anomaly detection and handling approaches, especially for interac-
tivemultimedia services. First, the use of historic data to determine
the impact of anomalies on the service, raise alerts, and request
corrective measures. In the case of multimedia services, the data
comes from logs of prior runs of the service [11]. That data may
no longer reflect the current conditions of the service accurately, as
new services are continuously added to data centers, and storage
and compute provisions are updated through collaboration with
other data centers. For example, if a multimedia service expects
no more than 100 participants in an online meeting, then having
110 participants is considered an anomaly that raises alerts, even
if the service has enough current capacity to handle the extra par-
ticipants; so why raise alerts and take the cost hit if that is not
needed.

Another problem with state of the art anomaly detection and
handling techniques is that they are generally designed to moni-
tor and alert on specific metrics of the system independently; for
example, number of processes or CPU utilization [20]. However, it
is rarely the case that a single metric can be correlated to multime-
dia SLA violations. Usually, the output of the multimedia service,
like multimedia quality, reduces below an acceptable value under
a few conditions together, like number of customers, number of
concurrent video sessions, and CPU utilization. So it is important
to consider the association of metrics that cause SLA violations.

Lastly, the cost of pre-processing previous logs to prepare them
for anomaly detection and impact analysis is substantial. The ma-
jority of multimedia transactions in production service logs have
the expected service inputs and working conditions, and succeed
without causing SLA violations [4, 22, 25]. Thus, the SLA violation
rate is low, and so is the recall in the data. Recall in this context
refers to the percentage of data that is relevant and usable in the
analysis of anomalies. Having relevant and current data with high
recall is more important to the success of anomaly detection than
advanced and deep algorithms [5]. Because of that, hundreds of
gigabytes of log data over months are needed to find enough rel-
evant data for anomaly detection and analysis for multimedia ser-
vices [22]. Using historic data in generating analytical systems like
data mining and predictive modeling works well in environments
that do not change often; such as transportation systems like air-
planes and ships. On the other hand, multimedia services lack such
stability over time at many levels including service hardware pro-
visions. The ever-changing landscape of multimedia services, cou-
pled with requirements such as continuous up-times, make the use
of historic data about the service challenging and ineffective [20].

We propose a dynamic approach to the analysis of multimedia
service anomalies. We use synthetic transactions, explained in Sec-
tion 3, to generate fresh and small, yet highly relevant data about
the current state of the service in near real-time. We employ ma-
chine learning techniques to correlate the ranges of anomalous

service inputs and its working conditions with the service SLA vi-
olations. The anomalies themselves are found using current state
of the art techniques. Our proposed approach identifies the impact
of these anomalies, independently and associatively, on the service
and its ability to adhere to SLAs, and recommends whether to raise
alerts and invoke corrective measures. We consider service inputs
and working conditions anomalies worth alerting on if and only
if they impact the output of the service negatively and result in SLA
violations.

We implemented the proposed approach in one of Microsoft’s
Skype data services in the application and services group, which
handles millions of multimedia sessions per second. We show that
the proposed approach is able to reduce the number of false pos-
itives in anomaly alerts by about 71%, reduce false negatives by
about 69%, enhance the accuracy of anomaly detection by about
31%, and enhance the media sharing quality by about 14%. The re-
call in the data generated by the synthetic transactions is 100%. In
contrast, the recall in the production logs is less than 2%. In addi-
tion, we show that we can update the anomaly detector in near
real-time in about 7 minutes. On the other hand, building a detec-
tormodel using current anomaly detection techniques for the same
service by using production logs requires about 7 weeks of produc-
tion log data that takes several hours of pre-processing before the
data is usable.

The contributions of this work are (1) new approach for dy-
namic anomaly detection in multimedia services in real-time, (2)
machine learning method to correlate the multimedia service in-
puts, working conditions, and system states with its outputs and
their SLAs, and (3) actual implementation and evaluation of the
proposed approach in a real multimedia communication service.

The rest of this paper is organized as follows. Section 2 discusses
related work. Section 3 presents the proposed approach. Section 4
describes our implementation and evaluation. Section 5 concludes
the paper.

2 RELATEDWORK
Multimedia services are subject to conditions that impact their
SLAs like data center faults and anomalies in the service inputs
and working conditions. The complexity and number of compo-
nents the service depends on exacerbate the impact of anomalies
in any component. Current approaches to anomaly detection range
from mathematical and data driven machine learning approaches
to system-based methodologies. Chandola et al. [1] present a sur-
vey of the available anomaly detection techniques and their appli-
cations.

Anomaly detection based on machine learning techniques use
either historic data about the system at hand, or rule-based ap-
proaches. The output of the current anomaly detection techniques
used in online multimedia services is in the form of a set of static
boundary conditions on the service inputs and its system states
[19]. Outliers in such models are considered anomalies even if they
do not result in any SLA violations or failures like dropped ses-
sions. The key issue with almost all machine learning approaches
is their dependence on large amounts of data to create, train, and
test new models [1, 5]. The data preparation time is too high for
real-time changes and updates [20]. In addition, these approaches
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rely on service production logs to find the ranges of service inputs
and system working conditions to identify the outlier boundaries
and their impact on the service. Production Logs are complex and
hard to mine [11, 25]. Data in logs may not be sufficient for min-
ing, analysis, and anomaly detectionmodels [8, 22]. Pre-processing
the logs to prepare them for anomaly detection models is hard and
expensive [26]. Leners et al. [7] use service informers to improve
the availability of distributed services; these are built using system
messages found in production logs from prior runs of the service,
not from the current service in real-time. The resulting anomaly
detection models created using logs from prior runs of services
may not accurately represent the current service [16, 18].

Evenwith online system-monitoring-based approaches, likeHys-
trix of Netflix [2], the monitoring is still reactive, as the anomalies,
faults, and failures need to happen and customers endure them
before they are controlled. Anomaly can manifest in many forms,
including in the process of synchronization of audio and video ses-
sions. To study the impact of geographical distribution of multi-
media services and distributed peers, Rainer and Timmerer [13]
suggest a self-organized distributed synchronization method for
multimedia content. They adapt IDMS MPEG-DASH to synchro-
nize multimedia playback among the geographically distributed
peers. They introduce session management to MPEG-DASH and
propose a new distributed control scheme that negotiates a refer-
ence for the playback time-stamp among participating peers in the
multimedia session. The goal is to avoid synchronization and la-
tency anomalies, enhance quality, and reduce jittering. Trajkovska
et al. [24] propose an algorithm to join P2P and cloud computing
to enhance the Quality of Service (QoS) of multimedia streaming
systems. They investigate cloud APIs with built-in functions that
allow the automatic computation of QoS. This enables negotiating
QoS parameters such as bandwidth, jitter and latency, and avoid
wrong characterization of state anomalies.

Many efforts attempted to study the impact of anomalies in video
rendering in real-time. Li et al. [9] propose a new rendering tech-
nique, LiveRender, that addresses the problems of bandwidth op-
timization techniques like inter-frame compression and caching.
They address problems of latency and quality by introducing com-
pression in graphics streaming. Shi et al. [21] propose a video en-
coder to select a set of key frames in the video sequence. It uses
a 3D image warping algorithm to interpolate non-key frames that
otherwise can increase anomalies detected in the frames without
true impact on the video session. This approach takes advantage
of the run-time graphics rendering contexts to enhance the perfor-
mance of video encoding. Tasaka et al. [23] study the feasibility of
switching between error concealment and frame skipping to en-
hance the Quality of Experiences (QoE). This approach utilizes a
tradeoff between the spatial and temporal quality that is caused by
error concealment and frame skipping. The algorithm they suggest
switches between error concealment and frame skipping depend-
ing on the nature of errors encountered in the video output; this
technique also avoids characterizing unimportant frames as anom-
alies.

Shatnawi andHefeeda studied system-based approaches for real-
time service failure prediction [20], and service capacity estimation
[19]. They address the problem of getting real-time data represent-
ing the current service by using synthetic transactions. They build

predictive models in real-time to predict multimedia session fail-
ures like dropping a call. Their approach does not identify anom-
alies in service inputs and working conditions that may result in
SLA violations.

Our approach is different inmultiple aspects.We focus on anom-
alies in service inputs and system states that result in SLA viola-
tions.We find SLA violations as they happen under synthetic trans-
actions, not through failure predictionwhich can be inaccurate and
result in over and/or under-stating the anomalies in the system.
We use machine learning combined with multidimensional anal-
ysis to correlate the service anomalous inputs and working con-
ditions with the service outputs and SLA violations, and find the
individual and associative impacts of these parameters on the out-
put of the service. We change the reaction to anomalies based on
their current impact on the service, not their historic impact. We
monitor the accuracy of the anomaly analysis model and regener-
ate it in near real-time if it drops below acceptable accuracy.

3 DYNAMIC ANOMALY ANALYSIS
3.1 Overview
Multimedia services have complex inter-dependencies between their
systems, like call managers, encoders, de-jitters, renderers, decoders,
and storage systems [9, 13]. The range of issues that impact the
quality of a multimedia session include computation capacity, net-
work bandwidth, as well as the varying customer load on the sys-
tem. So it is almost impossible to correlate an anomaly of one as-
pect of the system like CPU utilization, memory consumption, or
user count with degradation of the multimedia service, like poor
media quality measured by MOS [21, 23]. Also, the anomalies’ im-
pact on the service is not consistent throughout the day and the
lifecycle of the service; for example, an anomaly of higher number
of videos shared per session may result in SLA violations during
peak hours, but may have no impact at all during slow traffic. So
it is not optimal to have the same reaction to anomalies like rais-
ing alerts all the time, as done in the current anomaly detectors,
because alerts are expensive, and their impact is not constant.

We propose a novel approach, called Dynamic Anomaly Analy-
sis (DAA), to analyze, in real-time, the anomaly impact of the ser-
vice input and working conditions that are found in the trailing
30 days, on the multimedia service. We study the anomalies inde-
pendently and associatively, and classify their impact into three
categories (1) Impactful, (2) Borderline, and (3) Non-impactful. Im-
pactful anomalies result in SLA violations. These warrant alerting
and managing as we describe later. Borderline are anomalies that
do not result in SLA violations, but impact the measure of interest
in the service. DAA monitors borderline anomalies closely with-
out raising alerts, until they start to cause SLA violations. Non-
impactful anomalies do not have any negative impact on the mea-
sures of interest. For example, if the expected shared videos in
a multimedia session is one video per session, then sharing two
videos side by side is an anomaly. However, if sharing two videos
side by side doesn’t impact any measure of interest like media ses-
sion quality, then this anomaly is considered non-impactful, and
DAA takes no actions on these anomalies.

As shown in Figure 1, DAA is a Testing in Production (TiP) ser-
vice to improve the reliability of multimedia services. If DAA or
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Figure 1: High-level architecture ofmultimedia communica-
tion services.

TiP goes down, the service continues to function properly. TiP is
common practice in modern online services, especially in interac-
tive multimedia services [19], as without it the service is flying
blind. DAA consists of three main components: Data Generator,
AnomalyDetectionModel Generator, andAnomalyHandler.
The Data Generator creates synthetic transactions that replay ac-
tual customer transactions that had anomalies in their inputs from
the past 30 days, rolling window, of the service deployment. The
anomalous values, i.e., the outlier values of service inputs like num-
ber of users and number of video sessions, are the values that are
found from the trailing 30 day window as encountered by the ser-
vice. These values are used in the synthetic transactions made by
the data generator. By running these synthetic transactions with
anomalous inputs and loads, the Data Generator collects the cur-
rent reaction of the service under the current working conditions
like CPU utilization, memory consumption, and number of pro-
cesses, as well as the service outputs like number of active multi-
media connections and their quality measured in MOS.

TheAnomalyDetectionModel Generator uses themeasurements
from theDataGenerator to establish correlations between the anoma-
lous service inputs, service working conditions, and system states
with the service output. The service output is represented by amet-
ric of interest like MOS for shared media quality, service response
time, or communication lag time. The correlations are built using
current data from the system. We leverage concepts from the Asso-
ciation Rule Machine Learning algorithm that are able to determine
the level of independence of each input and working condition and
their individual impact on the output of the service, as well as the
associative impact of multiple inputs and working conditions. The
Anomaly Handler uses themodel and correlations generated by the
Model Generator to identify the groups of anomalous inputs and
working conditions that cause SLA violations, classify the anom-
alies based on their impact, and raise alerts on Impactful anomalies
that result in SLA violations.

The following sub-sections detail the functionality of the Data
Generator, AnomalyDetectionModel Generator, andAnomalyHan-
dler.

3.2 Data Generator
The Data Generator is comprised of two components. The Syn-
thetic Transaction Provider (STP) and the service Item and Feature
Evaluator (IFE). The STP makes Testing in Production (TiP) API
calls to each component of the service, and uses the anomalous
service input values that were found in the service in the trailing
30 days. The service is assumed to have basic anomaly detection,
as described in [1], and logs these anomalous values in a database
that is accessible by the STP. The STP uses these anomalous service
input values in the synthetic loads it generates; for example the
number of users, number of sessions created every minute, and the
number of videos shared. The STP generates service calls to each
component, like the encoder, decoder, dejitter, renderer, and stor-
age components, and passes them the anomalous test loads, and
collects their outputs into the Detector Database, shown in Figure
1. The service output represents the current service reaction to the
anomalies in the service inputs. The data in the Detector Database
is real time data, that is generated currently from the system; the
lifecycle of this data is in the order of minutes to help monitor the
service components. All components of DAA have access to the
Detector Database.

In addition to the component synthetic transactions, the STP
makes scenario calls that represent a true customer e2e transac-
tion. For example, the STP emulates a video call of certain length
between two test nodes representing two customers, and shares an
actual video between them. Such a scenario call exercises the mul-
timedia service components in a way that mimics real user behav-
ior, using anomalous inputs. The STP collects the results and out-
puts of these tests into the Detector Database. Test loads to mimic
user behavior are generally acceptable to replicate the characteris-
tics and metadata of user transactions. However, if the service at
hand requires an exact replica of the user behavior and loads, then
parts of previous production logs representing that behavior can
be replayed as described in [14, 17]. The STP also makes operating
system calls to collect system information such as CPU utilization,
memory consumption, and process counts. The STP runs the com-
ponent and scenario tests with progressively larger loads to gener-
ate actual SLA violations in the tested service and its components.
The combination of regular and anomalous inputs, working condi-
tions, and service outputs under low, medium, and high loads are
collected into the Detector Database.

Before we describe the Item and Feature Evaluator (IFE) com-
ponent, we present a few concepts in real-time Dimensional Mod-
eling [6] and Associative Rule based machine learning techniques
[10] as they relate to multimedia services:

• Feature: is an individual measurable property of a phenom-
enon or transaction. For example,MOS representing the qual-
ity of a multimedia session, is a Feature. Users of DAA pro-
vide the Features of interest, like MOS, as a configuration
value of DAA.

• Item: is a property representing a transaction attribute; for
example number of users, number of processes, CPU utiliza-
tion, and memory utilization are all transaction Items. Items
map to dimensions in Dimensional Modeling. Itemset is the
group of Items in a transaction, and maps to Groups in Di-
mensionalModeling. This allows the study of the root-cause
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analysis between the Items/dimensions and Features/measures,
i.e., which Item values caused which Feature values, as en-
abled by Dimensional Modeling [6].

• Transaction: is the activity of interest, like a multimedia
session.

• Support: is the frequency an Item is seen in the multimedia
session under study. Example: if an Item is shown 8 times
in 10 transactions, the Support of that Item is 80%.

• Confidence: is the frequency that a deduction is found to
be true in the multimedia sessions of study. Example: if a
deduction like MOS is below 4 every time CPU utilization
is above 77% is found to be true in 900 out of 10,000 transac-
tions, the Confidence in such a deduction is 90%. This data
is found in the Detector Database, and Confidence compu-
tation is a matter of counting the transactions and their con-
tent. Users of DAA provide their required Confidence level
as a configuration value of DAA.

• Lift: is the ratio between the Support of two Items in the
set to the Support of both Items in the set if they were in-
dependent. Users of DAA provide their required Lift as a
configuration value of DAA. The Lift for Item X and Item
Y is given by: (Support of Union of X and Y ) / (Support(X ) *
Support(Y ))

• Conviction: is the ratio of the expected frequency that Item
X (e.g., CPU Utilization) happens without ItemY (e.g., Mem-
ory Utilization) and causes the multimedia session Feature
of interest to happen (e.g., MOS = 5). It is given by: conv(X ,
Y ) = ((1 - Support(Y )) / (1 - Confidence(X , Y )))

After the data is generated by the STP, the IFE finds the Fea-
ture(s) in each multimedia session in the database. The IFE then
finds the Items; these are the remaining multimedia session at-
tributes excluding the Feature(s). It then computes the Support,
Confidence, and Lift of each Item in the Itemset of eachmultimedia
session. If the computed values meet the configuration values for
Confidence and Lift, data generation is complete. If the computed
Confidence and Lift for any Item are lower than the configured
values, the IFE requests more tests from the STP to provide more
correlation data that can achieve the required Confidence and Lift.
The new STP tests use service input load values that were not used
in the previous tests, i.e., it extends the range of used inputs and
their load values to ensure that the newly generated data can gen-
erate new correlations. The previous inputs and loads are stored in
the Detector Database, and are updated after each test. The DAA
Data Generation algorithm is summarized in Procedure 1.

3.3 Anomaly Detection Model Generator
The multimedia session Features and Items and their correlations
as computed by the metrics of Support, Confidence, and Lift are
determined by the DAA Data Generator, as described in the pre-
vious subsection. The DAA Anomaly Detection Model Generator
evaluates each Item in the multimedia session Itemset and their
impact on the Features, and computes the Conviction associated
with each Item like number of users and their dependent Items like
CPU Utilization and Memory Utilization. The Conviction value be-
tween two items determines how independent they are from each
other. For example, a Conviction between two Items like number

Procedure 1 Data Generation Algorithm
ANOMALY DETECTION DATA GENERATION

1: function GenerateAnomalyDetectionData
2: while (Confidence < ConfidenceConfiguration and Lift < LiftCon-

figuration do
3: STPGenerateData();
4: for each Multimedia Session; do
5: for each Items do
6: Compute Support, Confidence, and Lift;
7: end for
8: end for
9: end while
10: Collect Items, Features, Support, Confidence, Lift;
11: Populate CollectorDatabase with Anomaly Detection Data;
12: end function

SYNTHETIC TEST PROVIDER
1: function STPGenerateData
2: for each Low Service Loads to SLA-Violation-Causing Loads do
3: Run component level tests;
4: Run scenario level tests;
5: Run system level tests;
6: Capture test inputs, system states, component outputs and

Store in DetectorDatabase;
7: end for
8: end function

of users and CPU utilization of 1.15 means that the correlation be-
tween them and the quality of multimedia session is 85% more ac-
curate than the correlation between each of them alone with the
quality of service. In other words, building an anomaly detector
that would fire alerts based on values of one of these Items alone
without association with the other has an 85% chance of raising
a false positive alert. Users of DAA may configure it to consider
items independently if the convection between them is above 1.85
for example.

The Model Generator produces a set of tables of associate Items
and their ranges that correlate to a given Feature value like media
qualityMOS = 1, 2, 3, 4, and 5. Table 1 contains a sample correlation
between the upper bound of number of users and CPU utilization,
given a Conviction configuration of 1.85 that results in MOS Fea-
ture values of 3, 4, and 5. Table 1 in practice is a high cardinality
table, and can be Normalized into multiple tables; each represent-
ing one Feature, or even one Feature value. Anomalous inputs that
cause SLA violations, like MOS 3 or less, are considered impactful
and worth raising alerts. Anomalous inputs that result in accept-
able measurements of interest, like MOS 4, are considered border-
line anomalies that require monitoring but not alerting. Anoma-
lous inputs that do not impact the measurement of interest, like
MOS 5, are ignored. The Anomaly Detection Model Generator al-
gorithm is summarized in Procedure 2.

3.4 Anomaly Handler
State of the art anomaly detectors are configured to raise alerts
when anomalies are encountered [1]. This may result in high num-
ber of alerts, with high cost, as we show in the evaluation sec-
tion later. In DAA, the Anomaly Handler module identifies the
anomalies that warrant alerts, and fire alerts when anomalies in
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Table 1: Anomaly detection model for the multimedia service.

User-CPU Conviction User Upper Bound CPU Upper Bound Feature: Video Quality (MOS)
1.85 110 73% 3
1.85 123 61% 4
1.85 128 57% 5

Procedure 2 Model Generation Algorithm
ANOMALY DETECTION MODEL GENERATION

1: function GenerateAnomalyDetectionModel
2: for each Feature in DetectorDatabase do
3: Group Transactions by Feature Value;
4: end for
5: for each Feature in DetectorDatabase do
6: for each Transaction per Feature Value do
7: Group each Transaction Item into Transaction Itemset;
8: end for
9: for each Item in Transaction Itemset do
10: Compute Conviction;
11: end for
12: end for
13: Generate Anomaly Detection Model (Table 1);
14: Publish Model to DetectorDatabase;
15: Publish Conviction of each Item in Transaction Itemset;
16: end function

ANOMALY HANDLER ALGORITHM
1: function RaiseAlerts
2: Define Anomaly-Based Alert Levels (1 to N );
3: Create a Mapping between Feature measurement and Alert Level;
4: for each Real-Transaction Anomalies that cause SLA violations do
5: Find the Alert Level Mapping to the Feature measurement
6: Raise the appropriate Alert Level
7: end for
8: end function

the real service inputs and working conditions, i.e., in the Item-
set, result in undesired Feature state like MOS 3 or below. DAA
users configure the Features to define the measurements of inter-
est and the measurement thresholds at which to fire alerts. Users
of DAA also configure Lift and Confidence of DAA to define the
associative dependence between the service inputs and working
conditions, and when to treat them practically independently, and
the required level of confidence in the data before firing alerts. By
configuring DAA’s Features, Lift, and Confidence, users of DAA de-
cide which measurements they want to consider for firing alerts,
and the thresholds they consider to be harmful. Anomalies that do
not result in harm, like SLA violations, are ignored. This is summa-
rized in the Anomaly Handler algorithm in Procedure 2.

Users of DAA may consider a multi-level alerting system based
on the Feature values they are monitoring. For example, if MOS
is the Feature of interest, users of DAA may define 3 levels of
alerts like Critical for MOS value 1, High Severity for MOS value
2, Medium Severity for MOS value 3. Such sub-classification of the
Impactful anomalies is left to the users of DAA to design and im-
plement as they deem fit, which can reduce the cost of handling
alerts considerably.

3.5 Remarks and Practical Considerations
As explained in the Data Generator section, the computation of the
ARL concepts of Confidence, Lift, and Conviction use the value of
Support. The computation of Support is quite expensive, and many
algorithms like Apriori, Eclat, and FP-growth have been designed
to make its computation efficient [1, 5]. State of the art anomaly de-
tection models read massive amounts of data from logs with very
low recall, less than 2%, generate connected data graphs, and lever-
age those algorithms to perform either breadth first search (Apri-
ori), depth first search (Eclat), multi-pass search algorithms (FP-
growth) to count the Support for a given feature. These are good
optimizations that can make the Support computation tractable. In
our proposed approach, we do not need to use any of those search
algorithms, because we generate a small amount of data, in the or-
der of mega bytes, as opposed to peta bytes in the logs. The recall
in the proposed approach is 100%. The resulting data from the pro-
posed approach is hosted in a dimensional model that lends itself
naturally to counting and grouping. This is an important practical
advantage of our proposed approach, that drops the machine learn-
ing data preparation time from the order of hours or days to a few
minutes as shown in the evaluation section. We believe this work
is novel because it is the first to combine: (1) synthetic transactions
to generate data with high recall in short time, order of seconds, (2)
dimensionalmodeling to identify features and dimensional schema
impacting those features, and (3) association rule learning to cre-
ate an accurate and dynamic anomaly detector, which can be up-
dated in the order of minutes, as opposed to weeks for existing
algorithms.

DAA combines machine learning techniques from the Associa-
tive Rules Learning (ARL) algorithm and Dimensional Modeling
concepts like Features and Groups. The choice of ARL over other
algorithms is made to leverage its ability to compute the inter-
dependence of parameters contributing to a transaction. Other al-
gorithms are able to find correlations equally well, but lack the
ability to find the association between the parameters in the trans-
action [5, 10].We combine these techniques with near real-time Di-
mensional Modeling by defining the transaction output as a moni-
tored Feature, and the Items and Itemsets as Dimensions. This ap-
proach and the resulting model are novel and of practical value,
when used to correlate the ranges of service inputs and working
conditions, with themonitored value of themultimedia service out-
put like video session quality.

Synthetic transactions in TiP do utilize the service resources,
and this impacts the service. Service designers account for such
an impact due to the importance of TiP [3, 15]. We utilize TiP
principles and infrastructures as the platform for DAA. No pro-
duction code is instrumented to generate the data. Data is gener-
ated through TiP synthetic transactions. The Data Generator is
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executed regularly as part of the TiP system. It collects compo-
nent, scenario, and system information that are used for generic
TiP purposes. The Anomaly Detection Model Generation, on the
other hand, is the functionality that takes place on demand, when
the anomaly detection accuracy drops below the acceptable value.

4 EVALUATION
We present the results of running DAA for one month, and exer-
cising more than 400 million multimedia sessions.

4.1 Implementation and Setup
We implement synthetic transactions for four multimedia compo-
nents: Call Manager, Media Encoder, Media Renderer, and Media
Storage, as shown in Figure 1. The considered geo-distributed mul-
timedia communication service processes over 3 million requests
per second at peak time. It is deployed in 8 data centers in 3 conti-
nents. We use a test cluster of 10 servers in the data center, which
gets about 1% of the data center traffic to run our experiments. Each
server is a quad-core Intel Xeon server with 12 GB RAM. The STP
makes component, scenario, and system calls, and we capture the
service components inputs and their outputs. Similarly, we record
the outputs of sharing a video scenario. The TiP test cluster we
used received about 400million transactions over the fourweeks of
the experiment, with about 3,000 transactions per second at peak.
We find the results of the proposedDAA approach from the TiP sys-
tem, as we capture the test inputs, system states, and the scenario
outputs. We find the results of the current anomaly detector of
the production service from the system logs, that show the inputs
that were considered an anomaly and the resulting output based
on that. The production service implements a detector based on
Neural Network machine learning. The 1% traffic in the test clus-
ter is split equally between the servers implementing the proposed
and current approaches. The traffic split is done by user to ensure
continuity of activities received by each system; so 50% of the user
base is sent to each system. The results are found for each group
and compared.

The STP makes the calls to each of the service components and
controls the various aspects of the multimedia request like media
type and media size. Wemeasure the quality of the multimedia ses-
sion using an automatedMOSmeasurement algorithm. Automated
MOSmeasurement algorithms built using actual prior customer as-
signments that can detect white noise, echo, and other problems
are common in test environments that require real-time assess-
ment of media quality [19]. System calls to get system states are im-
plemented in an infinite loop that reads CPU utilization, memory
utilization, and number of processes from the performance mon-
itoring APIs of the operating system of each server every 30 sec-
onds. The STP makes simultaneous calls with different user agent
information, and controls the load in two ways: (1) number of me-
dia sessions made by each client in a given time, and (2) number
of simultaneous media sessions representing multiple client calls.
The data is collected and stored in the Detector Database with a
schema similar to Table 1.

DAA can be used as a standalone anomaly detection system.
It finds the anomalies and logs them into the Detector Database.
However, if the service at hand prefers to find its own anomalies

and leverage DAA for analyzing the impact of these anomalies, the
service needs to log the anomalies it finds into the Detector Data-
base, so that DAA can use these anomalous values in its synthetic
transactions. In the case of our experiments, we used the anomaly
values found by the production service, and pulled them into the
Detector Database.

4.2 Performance Metrics
We study the quality of media sharing during the multimedia ses-
sion and the number of shared video and audio streams. We com-
pare against the state of the art anomaly detection implemented
in the online service using Neural Network machine learning al-
gorithm. The Current anomaly detection used in the service is a
Replicator Neural Network detector. It has the classic three phases
of: (1) input layer, (2) 5 hidden/internal staircase-like activation lay-
ers, and (3) linear output layer. Having 5 internal layers technically
classifies it as a deep learning algorithm. The training cycle of the
anomaly detector is implemented with backpropagation (i.e. back-
ward pass) for error reconstruction. Here, the error between the
actual outputs and the presumed/target outputs is computed, and
back-propagated to the hidden layers to update the weights matrix
of the neural network neurons. As expected, the training process
is lengthy and requires high recall in the training data, which is
only guaranteed by large volumes of data from previous runs of the
service. The Current anomaly detector also implements a prepro-
cessing step, before the replicator neural network, which utilizes
a Holt-Winters algorithm for smoothing the time series data rep-
resenting the service inputs. This step favors fresh data and caters
for the seasonality in the data. The following are the metrics we
use to assess the performance of DAA:

• False Positives (FP): the number of sessions that are con-
sidered to have anomaly in their inputs and working condi-
tions, yet did not result in SLA violations.

• False Negatives (FN): the number of sessions that are not
considered to have anomaly in their inputs and working
conditions, yet resulted in SLA violations.

• True Positives (TP): the number of sessions that are con-
sidered to have anomaly in their inputs and working condi-
tions, and actually resulted in SLA violations.

• True Negatives (TN): the number of sessions that are not
considered to have anomaly in their inputs and working
conditions, and did not result in SLA violations.

• Accuracy: the ratio of (true positives + true negatives) to
the sum of (false positives, false negatives, true positives,
and true negatives).

• Recall: in the context of data retrieval from the source, re-
call refers to the percentage of data that is usable in anom-
aly detection analysis. In the context of detection analysis,
recall is the ratio of (true positives) to the sum of (true posi-
tives and false negatives). This the true positive rate, or sen-
sitivity of the model.

• Precision: in the context of anomaly detection analysis, Pre-
cision is the ratio of (true positives) to the sum of (true posi-
tives and false positives). This is the Positive Predictive Value
(PPV ) of the model.
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• Time toDetectModelChanges: the time it took theAnom-
aly Detection Analysis module to detect that themodel is no
longer accurately representing the current system.

• Time to Update Anomaly Detection Model: the time it
takes to create a new Dynamic Anomaly Analysis (DAA)
model after changes in the system.

• Number of Failures: the number of sessions that failed to
meet the MOS quality SLA due to inaccurate anomaly han-
dling.

• Media Quality: the quality of media, audio and video, that
is shared between clients; it is measured in MOS.

• Overhead: the CPU utilization of the production service
with and without the TiP system.

4.3 Results
We measure each of the performance metrics described above for
the state of the art approach in anomaly detection implemented
in the service, we refer to it as Current, and for DAA, and com-
pare the results. First, we summarize the findings of the false pos-
itives/negatives, true positives/negatives, recall, precision, and ac-
curacy for the four weeks of the experiment in Table 2. The current
system and its static way of reacting to anomalies result in huge
waste, in the form or false positives and negatives, and the accu-
racy suffers accordingly. On the other hand, DAA finds the impact
of the anomalies in near real-time through synthetic transactions
and only alerts if the anomalies result in SLA violations. This re-
duces false positives and negatives, and enhances the accuracy.

The following figures have only one week of the results, with
hourly aggregations of data, to make them clearer. We observed
a cyclical pattern daily and weekly, so there are no lost insights
by the omission of the remaining three weeks of experiment data
from the graphs. We show the detailed graphs for CPU utilization
and number of users in the system and analyze the impact of DAA
on the performance metrics defined earlier. The proposed DAA ap-
proach outperforms the current anomaly detector in all metrics.

Accuracy: In addition to Table 2, we detail the accuracy of DAA
versus the current detector for users service input and CPU system
state, as they are the most impactful on the output of the service.
Figures 2 and 3 summarize the enhancements to CPU and user
anomaly detection accuracy. We show the details of accuracy as
it provides insights into all the remaining metrics; FP, FN, TP, and
TN. Using a static boundary for CPU utilization of 50%, which is
what the production service had, results in hundreds of CPU vio-
lations per hour that end up being raised as false positive alerts.
Using DAA, the accuracy of anomaly detection based on real-time
monitoring went up from about 59% to 89%. Using DAA, the CPU
boundary of safe functionality varied between 40% CPU utilization
to 73% before anomalies result in SLA violations. So to assume
that we can raise or lower the static boundary, or even use a de-
terministic cyclical model like sinusoidal to enhance the accuracy,
or false positives/negatives, is not true. It needs to be based on
data from the current system. Likewise, we see that the accuracy
of user anomaly detection using DAA went up from 63% on av-
erage to about 90%. The memory consumption anomaly detection
accuracy went up from 58% to about 91%, and the number of ses-
sions anomaly detection accuracy went up from 57% to about 89%.

Figure 2: Anomaly detection accuracy for CPU.

Figure 3: Anomaly detection accuracy for user.

Recall: We compare the findings of data generation time, pre-
processing time, and data recall for DAA and the Current detec-
tor in Table 3. There is significant time saving in the generation
of the detector analysis model. Finding and capturing anomalies
is an ongoing process throughout the lifecycle of the service. The
savings are in the analysis done on the system and its reaction
to anomalies. Using current approaches, data about the system
needs to be logged for real transactions and then processed and
analyzed. Whereas using DAA, we generate small, highly relevant,
near real-time data about the current system, not previous deploy-
ments of the service. The recall in the original production data, be-
fore preparing it for detector model generation was about 2%. This
is due to the fact that production logs have a multitude of data
describing all aspects of the service like user sign-in/sign-out, au-
thentication, payments, application usage, and other data. It took
22 hours of processing and preparation for the log data to be us-
able in anomaly detection. DAA has a recall of 100% due to us-
ing synthetic transactions that test the required components for
the media quality, and the data is usable directly without any pre-
processing. Recall: We compare the findings of data generation
time, pre-processing time, and data recall for DAA and the Current
detector in Table 3. There is significant time saving in the genera-
tion of the detector analysis model. Finding and capturing anom-
alies is an ongoing process throughout the lifecycle of the service.
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Table 2: Summary of the results over the entire 4-week period.

Anomaly Detector FP Rate FN Rate TP Rate TN Rate Recall Precision Accuracy
DAA 10.8 11.5 91.0 93.5 88.8 89.4 89.2

Current 35.2 36.6 50.6 53.4 58.1 58.9 59.2

The savings are in the analysis done on the system and its reac-
tion to anomalies. Using current approaches, data about the sys-
tem needs to be logged for real transactions and then processed
and analyzed. Whereas using DAA, we generate small, highly rel-
evant, near real-time data about the current system, not previous
deployments of the service. The recall in the original production
data, before preparing it for detector model generation was about
2%. This is due to the fact that production logs have a multitude
of data describing all aspects of the service like user sign-in/sign-
out, authentication, payments, application usage, and other data.
It took 22 hours of processing and preparation for the log data to
be usable in anomaly detection. DAA has a recall of 100% due to
using synthetic transactions that test the required components for
the media quality, and the data is usable directly without any pre-
processing.

Time to Detect Model Changes: After system changes, like
adding new compute resources, it takes DAA at most one minute
to detect that the anomaly analysis is no longer accurate for the
current system. DAA’s Anomaly Detector issues calls to the STP
to run more tests in such cases to verify its findings, before it at-
tempts to create new analysis models.We chose three different sets
of component, system, and scenario tests to verify. Each run for 5
seconds every 30 seconds. If the model is no longer accurate, we
generate a new model.

Time to Update Model: It takes about 7-10 seconds to ana-
lyze the results of component inputs, system states, and scenario
outputs. If the results are close (variance less than 5% in accuracy)
from the three tests described earlier, we use the model built from
the last set of tests. If the results are not close, DAA assumes the
system is still not stable, DAA continues testing the system until
it reaches a steady state. On average, it takes about 5-7 minutes
to update the model. Updating the model usually happens around
business day boundaries, and if resources from other data centers
are added. During the time of changes, DAA short-circuits itself
and lets the production service use its default production anom-
aly detection service, to avoid introducing TiP-based failures into
the production service. When DAA is updated, it requests activa-
tion from the production service to perform its anomaly analysis
functionality.

Number of Failures: Figure 4 shows the number of session
failures, quality below MOS 4, caused by inaccurate anomaly reac-
tion with and without DAA. On average, the failures without DAA
where about 0.082%. This translates to tens of media sessions fail-
ing every hour (about 63 in 1% of the service traffic); that is thou-
sands of sessions dropping fromMOS 4 or 5, good/excellent quality,
to below MOS 4, poor quality, in the data center every hour. Using
DAA, SLA violations dropped to about 0.051%. Thus, using DAA
results in thousands of customers every hour improving their MOS
from poor to good/excellent quality.

Figure 4: Session failures.

Figure 5: Media quality.

Media Quality: Figure 5 shows the impact of DAA on media
quality enhancement of successful sessions. About 14% of media
sessions have seen an increase from quality of MOS 4, good quality,
to MOS 5, excellent quality. DAA reduced the false negative rate
from 36.6% to 11.5%. These are inputs that were not supposed to
cause SLA violations in the service outputs, but ended up reducing
media quality. DAA detected and marked these inputs as anom-
alies, overriding the Current detector, so the highest safe range
of user count per server in a given time window was changed in
real-time. This resulted in different routing scheme of new users
to other servers. Otherwise, these users would have been added to
thewrong server, overloading it, and resulting in compute resource
contention and so media quality drop.

Overhead: The overhead of the TiP system is measured by the
online multimedia service, continuously. The service measured the
hourly average production service CPU utilization with and with-
out thewhole TiP sytem, which includes DAA. The average service
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Table 3: Data generation and processing times.

Anomaly Detector Generation Time Processing Time Data Recall
DAA 5-7 Mins 2-4 Mins 100%

Current 7 Weeks 22 Hrs 2%

CPU impact caused by the whole TiP system is around 2.8%. The
improved multimedia quality, reduced SLA violations, and reduc-
tion in false positives and negatives using DAA make the overall
investment in the TiP system well justified.

5 CONCLUSIONS
Current approaches for anomaly detection, analysis, and handling
are static and cannot keep up with the frequent changes that hap-
pen during the lifecycle of online services. Our experimental re-
sults collected from a large-scale multimedia system show the cur-
rent approaches result in large waste in the system resources due
to the high percentages of false positives and negatives. Current ap-
proaches generate many unwarranted alerts that have high main-
tenance and support cost. This results in poor confidence in the
anomaly detection and the alerts they generate. To overcome these
problems, we introduced a new approach that generates current
data about the service in real-time, and uses that data to analyze the
impact of anomalies on the service. If the inputs and system states
do not result in SLA violations, they are not considered anomalies
worth alerting on. Through implementation in a production sys-
tem and running experiments for 4 weeks, we showed that using
the proposed approach reduces the amount of false positives in
anomaly detection alerts by about 71%, reduces false negatives by
about 69%, enhances the accuracy of anomaly detection by about
31%, and enhances the media sharing quality by about 14%.
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