
Adaptive Streaming of Interactive Free Viewpoint Videos to
Heterogeneous Clients

Ahmed Hamza
School of Computing Science

Simon Fraser University
Burnaby, BC, Canada

Mohamed Hefeeda
Qatar Computing Research Institute

Hamad Bin Khalifa University
Doha, Qatar

ABSTRACT

Recent advances in video capturing and rendering technologies
have paved the way for new video streaming applications. Free-
viewpoint video (FVV) streaming is one such application where
users are able to interact with the scene by navigating to differ-
ent viewpoints. Free-viewpoint videos are composed of multiple
streams representing the captured scene and its geometry from dif-
ferent vantage points. Rendering non-captured views at the client
requires transmitting multiple views with associated depth map
streams, thereby increasing the network traffic requirements for
such systems. Adding to the complexity of these systems is the
fact that different component streams contribute differently to the
quality of the final rendered view. In this paper, we present a free-
viewpoint video streaming system based on HTTP adaptive stream-
ing and the multi-view-plus-depth (MVD) representation. We pro-
pose a novel quality-aware rate adaptation method for FVV stream-
ing based on a virtual view distortion model. This view distortion
model represents the relation between the distortion of the texture
and depth components of reference views and a target virtual view
and enables the streaming client to find the best set of representa-
tions to request from the server. We have implemented the pro-
posed rate adaptation method in a prototype FVV DASH-based
streaming system and performed objective and subjective evalu-
ation experiments. Our experimental results show that the pro-
posed FVV streaming rate adaptation method improves the user’s
quality-of-experience and increases the visual quality of rendered
virtual views by up to 4 dB for some video sequences. Moreover,
users have rated the quality of videos streamed using our proposed
method higher than videos streamed using other rate adaptation
methods in the literature.

CCS Concepts

•Information systems→Multimedia streaming;

Keywords

Free-viewpoint video; video streaming; rate adaptation; DASH; 3D
video

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MMSys’16, May 10–13, 2016, Klagenfurt, Austria.

c© 2016 ACM. ISBN 978-1-4503-4297-1/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2910017.2910610

1. INTRODUCTION
There has been a great interest recently in visual experiences be-

yond what is offered by traditional 2D video systems. 2D video
streaming transmits a single view of the 3D world to viewers, de-
livering a limited experience. With recent advances in scene cap-
turing technologies and virtual reality hardware, e.g., Oculus Rift
and Microsoft HoloLens, interactive 360-degree videos and free-
viewpoint videos (FVV) are increasingly gaining popularity. More-
over, recent 3D and multi-view displays offer more realistic, visu-
ally appealing viewing experience. For example, stereoscopic 3D
displays present a different view to each eye to allow viewers per-
ceive depth, and multi-view displays show a large number of views
to viewers at different spatial locations for motion parallax.

Supporting interactive free viewpoint video streaming over the
best-effort Internet to heterogeneous clients is challenging because
of the high system complexity. For example, when viewers nav-
igate across viewpoints in a free viewpoint system, some of the
viewpoints may not have been captured by cameras. In that case,
the non-captured view, referred to as a virtual view, needs to be syn-
thesized using some of the captured views, referred to as reference

views, by applying techniques like Depth-Image-Based Render-

ing (DIBR) [9]. DIBR generates the virtual view using two refer-
ence views, where each reference view consists of image and depth
streams. As illustrated in Figure 1, the virtual view synthesis can be
done on the server or the client. The server-based approach imposes
computation, memory, and energy overheads on cloud servers, but
suffers from additional network delay when viewers switch their
viewpoints, leading to long response time. The client-based ap-
proach results in short response time, but requires the server to
transmit at least four video streams (two image and two depth
streams), which increases the volume of transmitted traffic. One
possible way to reduce the traffic amount is to exploit the inherent
redundancy between the captured views by using multi-view video
coding [7] to encode all views. However, the interactive nature of
free viewpoint videos renders a single multi-view stream less ap-
pealing, as only a small subset of reference views are required at
any moment and the complex dependency in the prediction struc-
ture would hinder this. Therefore, server-based synthesis is more
suitable to thin clients, such as mobile devices, and client-based
synthesis is more suitable to powerful clients.

In 2D video streaming, a single video stream is transmitted from
the server to the client. The quality of the decoded video is directly
related to the compression-induced distortion of that single stream,
which in turn is inversely proportional to the bitrate of the stream.
Unlike 2D video streaming, in a FVV video streaming system, mul-
tiple video streams corresponding to the 3D components of differ-
ent views are sent to the client and the rendered video frames are
the result of a view synthesis process from the received compo-

Storage

Server-sideCamera

Array

Depth

Estimation

View

Synthesis

Captureing

&

Correction

Coding Decoding

Transmission
Client-side

3D

Renderer

(a)

Client-side

Captureing

&

Correction

Depth

Estimation

View

Synthesis

Server-side

Storage

Camera

Array

3D

Renderer

(b)

Figure 1: Free-viewpoint video streaming systems where view

synthesis is performed at: (a) server and (b) client.

nents. This makes the problem of rate adaptation in these systems
more complex because the quality of the rendered video stream is
dependent on the qualities of the component streams used as refer-
ences in the view synthesis process. Moreover, changes in the bit
rates of those components do not equally contribute to the quality
of the resulting video.

In this paper, we study the problem of optimizing adaptive
streaming of interactive free-viewpoint videos to heterogeneous
clients. More specifically, we address the problems of: (i) reducing
the view-switching latency; and (ii) selecting the optimal versions
for the components of reference views that maximize the quality
of rendered virtual views. To this end, we present a two-step rate
adaptation approach for FVV streaming systems. In the first step
of the proposed approach, a number of reference views are sched-
uled for transmission based on the user’s view navigation pattern.
In the second stage, the streaming client determines the optimal bit
rate allocation for the chosen component streams in order to deliver
the best possible quality for rendered virtual views given the avail-
able network bandwidth. We implement the proposed approach in
a real DASH-based free-viewpoint video streaming testbed. DASH
(Dynamic Adaptive Streaming over HTTP) [14] is a flexible and
popular standard for implementing adaptive streaming systems.

The rest of this paper is organized as follows. Section 2 summa-
rizes the related works in the literature. Section 3 presents our pro-
posed rate adaptation approach for FVV streaming systems. Sec-
tion 4 briefly describes the design of a complete DASH-based FVV
streaming system including a our prototype implementation of an
FVV streaming client. Section 5 presents the experimental evalua-
tion of the proposed rate adaptation approach using our prototype
system in different network environments. Section 6 concludes the
paper.

2. RELATED WORK
A number of research works in the literature attempted to address

the problem of interactive multi-view and FVV streaming. These
works can be classified into two classes: server-based non-adaptive
approaches and client-based adaptive streaming approaches.

2.1 Server-based Approaches
An interactive multi-view video system based on the idea of

transmitting residual information to aid the client in generating vir-
tual views is presented in [19]. In the proposed system, the encoder-
side performs view synthesis and computes the necessary residual
information which is then stored and transmitted to the user when
needed. This increases the storage and bandwidth requirements of

the server and it may affect the scalability of the system because
the server needs to prepare and transmit user-specific information
for each incoming request. Kurutepe et al. propose a selective
streaming system based on multi-view video coding and user head
tracking [17]. In this system, the client sends the current viewpoint
to the server over a feedback channel. The server then encodes and
streams a multi-view video sequence containing a stereo pair cor-
responding to the user’s viewpoint and two lower resolution side
views to reduce the view-switching latency. An enhancement layer
is simulcast coded for the stereo pair to improve the quality of the
selected views. Such a system requires performing the complex
and time consuming multi-view coding process on-the-fly for each
client. This increases the server’s processing load and does not
scale well with a large number of clients requesting different views.
Moreover, because the system does not perform view synthesis, the
users are restricted by the viewpoints available at the server and a
smooth view-switching experience can only be achieved when a
large number of captured views are available at the server, thereby
increasing the storage overhead.

2.2 Client-based Approaches
Xiao et al. [27] present two approaches to streaming multi-

view videos over DASH. The focus of [27] is providing timely
view switching without playback interruptions. Unlike our pro-
posed system, their work only considers multi-view videos with no
depth information. The main idea of these two approaches is to
utilize multi-view encoders performing inter-view prediction to re-
duce the view switching latency. In their system, different versions
of both simulcast coded and inter-view coded views are stored on
the server. Moreover, in the first approach, all possible version
combinations for inter-view coded streams are generated. This im-
poses a large storage overhead on the content server and signifi-
cantly increases the cost on the content provider. In [10], Gao et
al. present a multi-modal 3D video streaming system based on the
DASH standard which allows users to view arbitrary sides of a cap-
tured object. Although their work is somewhat similar to ours, the
authors mainly focus on supporting multi-modal data and do not
provide details on how rate adaptation across the different modali-
ties is performed.

The two works that are closely related to ours are [24] and [12].
Su et al. [24] present an HEVC multi-view streaming system using
DASH. Similar to our proposed system, the streamed video is rep-
resented using a number of views and associated depth maps. Un-
like our proposed system, however, the client adapts the bit rate of
the video by leveraging view-scalability where the number of trans-
mitted reference views (and possibly the distances between them)
is varied based on the available network bandwidth. Because the
views and their depth streams are jointly coded, the video data for
all components are encoded into a single stream. This dictates a
fixed distribution of the total segment bit rate between the different
components. In [24] all segment components for a given represen-
tation have an equal bit rate. Therefore the system does not provide
much flexibility in terms of rate adaptation and does not consider
how each component stream contributes differently to the qualities
of the synthesized views.

In our previous work [12], we presented a FVV streaming sys-
tem that is based on empirical rate-distortion (R-D) models which
relate bit rates of the reference views and the quality of synthesized
views. Creating such empirical model requires generating a syn-
thesized view for each combination of representations for the pairs
of reference views and measuring the average distortion in each
iteration. Assuming an MVD video with M captured views, this
requires (M − 1)KL4 decode-synthesize iterations. In addition,

these empirical models need to be communicated to the client at
the beginning of the streaming session. Adding L4 values for each
segment index in the MVD video’s MPD file incurs additional over-
head and delays the start-up of playback. This is especially the case
for long duration videos with a large number of segments. In Sec-
tion 5, we compare our proposed system against the approaches in
[24] and [12] and show that it results in near optimal quality without
the large overhead associated with generating and communicating
empirical models.

3. PROPOSED FVV ADAPTIVE STREAM-

ING SYSTEM
In this section, we start by defining the rate adaptation problem

in DASH-based FVV streaming systems addressed in this paper.
Then, we present our two-step approach to solving it.

3.1 Problem Definition
A content server stores a number of free-viewpoint videos in

which scenes are captured from multiple views. Each captured
view has a corresponding depth map stream representing the depth
value of each pixel in the captured frames. The texture and depth
streams for each view are simulcast coded with the same encod-
ing configuration to obtain a multi-view-plus-depth (MVD) repre-
sentation of the scene. Each component stream is encoded at L
different quality levels (representations). The resulting streams are
each divided into a set of segments with equal playback duration
τ . A single manifest file describing the component streams as well
as metadata information related to the captured reference views is
stored at the server.

Let V be a set of evenly spaced captured views, where |V| = N .
We assume that an equal number of evenly spaced virtual views,
say K, are available for view navigation between each two adjacent
captured views i and i + 1. In this paper, we refer to the set of
virtual views between two adjacent captured views as the virtual

view range. The set of views that a user can navigate to is denoted
V

′, where |V′| = N +K(N − 1), and the views are separated by
a distance of d = 1/(K +1). We can express a viewpoint position
as a multiple of the inter-view distance, i.e., a view with index j is
at position k = j · d.

The problem of virtual view quality-aware rate adaptation that
we attempt to address in this paper can therefore be stated as fol-
lows:

PROBLEM 1. Consider a free-viewpoint video where a num-

ber of reference views composed of texture and depth component

streams encoded at L different representations are stored on the

server. Given the current viewpoint position and the available net-

work bandwidth between the server and client, determine which

reference views should be requested and which representations for

each texture and depth component should be downloaded such that

the quality of the rendered virtual views at the client side is maxi-

mized.

To solve this problem, we propose a two-step approach. In the
first step, the client determines the set of reference views it needs
to request from the server in order to render the current viewpoint
as well as any potential viewpoints that the user may navigate to
in the future. In the second step, the client’s rate adaptation logic
should decide on the representations for each of the segments of
the scheduled views’ components. In the following subsections,
we discuss the two steps of the proposed approach in more detail.

3.2 Reference View Scheduling
In a FVV streaming client, the user expects to be able to navi-

gate freely to any desired viewpoint. The view navigation pattern
depends on the nature of the video and the interests of the user. It
may happen that the rate at which the user is changing views causes
the viewpoint to change to a position that lies outside the virtual
view range of the buffered reference views before the current seg-
ment duration ends. When the user navigates to a viewpoint outside
the virtual view range of the reference views currently in the buffer,
the client needs to replace one of the reference views by download-
ing another segment for a view that bounds the new virtual view
range in which the requested virtual view lies. During the down-
load time of the new reference view, the client can either perform
view synthesis using only one of the available references, resulting
in sudden quality degradation, or wait for a segment from the new
reference view to be available, which results in high view switch-
ing latency. A FVV streaming client therefore requires a reference
view scheduling component that determines which reference views
should be downloaded based on the viewer’s view-switching be-
haviour.

To reduce the reference view switching latency, our FVV stream-
ing client conditionally pre-fetches an additional reference view
based on the current and previous viewpoint positions of the user.
This is achieved by periodically recording the viewpoint position of
the user and using a navigation path prediction technique to extrap-
olate the viewpoint position of the user based on historical measure-
ments. We propose using a simple location estimation technique
known as dead reckoning [23, Ch.5]. Dead reckoning calculates an
object’s current position by using a previously determined position,
or fix, and advancing that position based on known or estimated ve-
locities over a duration of elapsed time and course. By tracking the
user’s viewpoint positions, dead reckoning can enable the client to
predict the future path by assuming that the user maintains the cur-
rent view-switching velocity. We divide the time into discrete in-
stants with interval ∆, where τ = ζ∆ and ζ is fixed value. Let x(t)
be the view position at time instant t. We can therefore calculate
the instantaneous view-switching velocity v(t) using

v(t) = (x(t)− x(t−∆))/∆. (1)

Knowing the view-switching velocity also enables the client to
determine whether pre-fetching an additional reference view is nec-
essary for the next segment duration, depending on how fast the
view-switching is. Based on the calculated view-switching veloc-
ity, the client can predict the view position at the beginning of the
next segment as

x(t+ τ) = x(t) + v(t) · τ. (2)

If the estimated position is not within the current virtual view range,
the view scheduler will schedule an additional reference view that,
along with one of the current reference views, bounds the estimated
viewpoint position. To obtain a more accurate prediction of the
viewpoint position, we apply a smoothing filter, such as the ex-
ponentially weighted moving average (EWMA), to either the pre-
dicted position or the view-switching velocity. The smoothed out
view-switching velocity v′(t) can be calculated as

v′(t) = θ · v(t) + (1− θ) · v′(t− τ), (3)

where θ ∈ [0, 1] is the smoothing factor.
Figure 2 shows an example of a set of viewpoint positions over

time, the estimated view navigation path, and the corresponding
view scheduling window. The reference view scheduling method
can be summarized as follows:

L

R

P

0

1

2

1

2

1

2

3

0

1

Scheduling

Window

Time

Views

1 2 3 4 5 6 7

1

2

3

4

5

6

7

0

Max

view switching

velocity

Estimated

view switching

velocity

Figure 2: Segment scheduling window. Deciding on left (L)

reference view, right (R) reference view, and pre-fetched (P)

view.

• The streaming client maintains a view scheduling window
that stores decisions about which views are requested for
each segment index within the window. The length of the
window is kept relatively small, e.g., three segments, to re-
duce the bandwidth overhead in the case of inaccurate pre-
dictions in the viewpoint position.

• During one segment duration, the view scheduler records
viewpoint position changes and updates the direction and ve-
locity of view-switching based on Eq. (1) and Eq. (3). The
estimated viewpoint position for the next segment index to
be downloaded is then calculated based on Eq. (2). We note
that the system may enforce a maximum view-switching ve-
locity to ensure that at least one of the buffered views would
be an immediate reference at the time of rendering.

• After the download of all component segments of the cur-
rent segment index has completed, a view scheduling deci-
sion is made based on the estimated viewpoint position and
the view scheduler slides the window by one segment dura-
tion. A scheduling decision includes the index of the left (L)
and right (R) reference views and, if necessary, an additional
view to be pre-fetched (P).

Because the view scheduler schedules views for a number of seg-
ment indices in the future, it is possible that some scheduling de-
cisions may not be valid after the scheduling window slides due to
some unpredictable behaviour of the user. In such cases, the client
will keep any previous decisions for component segments of that
segment index for which no download has been initiated. When
playback reaches that particular segment index, the streaming client
attempts to utilize the available views to perform view synthesis.

3.3 Virtual View Quality-Aware Rate Adapta-
tion

We propose a new rate adaptation algorithm for DASH-based
FVV streaming systems. The algorithm creates a virtual view

quality-distortion model to estimate the quality of the synthesized
view based on the qualities of the reference views’ components.
Using a virtual view distortion model, the adaptation module can
quickly calculate the expected distortion of each supported virtual
view given a certain operating point for the immediate reference
views. An operating point is a combination of representations for
the components of the scheduled reference views. The rate adapta-
tion module then chooses the representations corresponding to the
operating point which minimizes the expected distortion over a set
of virtual views and satisfies the available network bandwidth.

In the following, we derive a relation for the virtual view distor-
tion based on the qualities of the reference views’ components. We
note that our system can also support other virtual view distortion
models provided that the model gets signalled within the MPD file.
For example, models such as [8] and [26] can be adapted and used
in our system.

Let Sv be the virtual image synthesized by original (uncom-
pressed) texture images and original depth maps, S̄v is the virtual
image synthesized by the original texture images and compressed
depth maps, and Ŝv is the virtual image synthesized by the com-
pressed texture images and the compressed depth maps. The distor-
tion of a synthesized virtual view, in terms of mean squared error

(MSE), can be expressed as

Dv = E[(Sv − Ŝv)
2

]

= E[{(Sv − S̄v) + (S̄v − Ŝv)}
2]

= E[(Sv − S̄v)
2
] + E[(S̄v − Ŝv)

2

]

+ 2E[(Sv − S̄v)(S̄v − Ŝv)]

≈ E[(Sv − S̄v)
2
] + E[(S̄v − Ŝv)

2

],

(4)

where E(·) represents the expectation taken over all pixels in one
image.

In Eq. (4), E[(Sv − S̄v)
2
] represents the view synthesis dis-

tortion induced by depth map compression and original texture

video, and E[(S̄v − Ŝv)
2

] represents the view synthesis distortion
induced by texture video compression and decoded depth maps.
Note that the term 2E[(Sv− S̄v)(S̄v− Ŝv)] can be neglected since
the distortions induced by texture video and depth map compres-
sion are not correlated [29].

DIBR view synthesis algorithms are based on the concept of 3D
image warping [20]. 3D image warping maps pixels from the orig-
inal view to the correct positions in the desired view based on their
corresponding depth values. To minimize the quality degradation
resulting from unoccluded regions appearing in the virtual view, 3D
warping based DIBR algorithms generally use two reference views,
the left and right adjacent camera views, to synthesize the virtual
image. This process in known as double-warping. The virtual view
synthesis is expressed as

IV (xV , yV) = ωLIL(xL, yL) + ωRIR(xR, yR), (5)

where IV (xV , yV), IL(xL, yL), and IR(xR, yR) are the pixel val-
ues of matching points in the virtual view, left reference view, and
right reference view, respectively, and ωL and ωR are distance-
dependent blending weights satisfying ωL + ωR = 1. Hence, the
virtual view distortion can be expressed as [28]

Dv = ω2

LD
L
v + ω2

RD
R
v , (6)

where DL
v and DR

v are the virtual view distortions induced by the
left and right reference views, respectively, and each can be mod-
eled using Eq. (4).

Using power spectral density (PSD) and Gaussian modeling of

the depth map [21], the term E[(S̄v − Ŝv)
2

] in Eq. (4) can be mod-
eled by

E[(S̄v − Ŝv)
2

] = ̺ · E[∆P 2

L], (7)

where ̺ is a linear parameter associated with the texture image
contents of the reference view and represents the motion sensitivity
factor [18], and ∆P is the warping position error of the reference
view. The warping position error at point (x, y) can be formulated
as

∆P (x, y) = fδ

255

(

1

Znear
− 1

Zfar

)

e(x, y), (8)

where f is the focal length of the cameras, δ represents the hori-
zontal distance between the virtual viewpoint and the left reference
view and right reference view, e(x, y) corresponds to the error be-
tween the original and the compressed depth map at point (x, y).
Znear and Zfar are the values for the nearest and farthest depth in
the scene, respectively. Hence, from Eq. (7) and Eq. (8), the depth
compression induced distortion can be represented by

E[(S̄v − Ŝv)
2

] = Φδ2E[(e(x, y))2]̺

= Φδ2Dd̺,
(9)

where Dd is the compression distortion for the depth component of
the reference view, and Φ is a constant expressed as

Φ =

[

f

255

(

1

Znear

−
1

Zfar

)]

2

. (10)

The term E[(S̄v − Ŝv)
2

] in Eq. (4) can be considered as the
compression distortion for the texture component of the reference
view. Therefore, Eq. (6) can be re-written as

Dv = ω2

L(D
L
t +Φδ2LD

L
d ̺L) + ω2

R(D
R
t +Φδ2RD

R
d ̺R)

= λDL
t + µDL

d + νDR
t + ξDR

d + c.
(11)

It is therefore sufficient to find the values of the coefficients λ,
µ, ν, ξ, and the constant c in Eq. (11) for each supported virtual
viewpoint and communicate them to the client. In order to obtain
the values of those coefficients, we use the multiple linear least
squares regression function in Matlab [3] and a small set of sam-
ple of R-D points to solve the system of linear equations given in
Eq. (12). The values of these coefficient are then added to the MPD
file in a VVRDModel element, as shown in the example in Listing 1
for one segment and one virtual view range with three virtual view
positions.

DL
t 1 DR

t 1 DL
d 1

DR
d 1

1

DL
t 2 DR

t 2 DL
d 2

DR
d 2

1

...
...

...
...

...

DL
t n DR

t n DL
d n DR

d n 1

a0

a1

a2

a3

a4

=

Dv1

Dv2

...

Dvn

(12)

The rate adaptation logic therefore proceeds as given in Algo-
rithm 1, where R(p) is the total bit rate for operating point p, and
D(p, α) is the corresponding distortion at virtual view position α.
After deciding on a reference view schedule (Section 3.2), the client
invokes the rate adaptation logic to determine how the available
bandwidth will be distributed amongst the video components of
the scheduled views. In the case of stationary viewing where the
user does not navigate much around a certain viewpoint, the client
will only schedule two reference views and the rate adaptation al-
gorithm evaluates for each operating operating the corresponding

average estimated distortion of the virtual views between the two
reference views. The representations corresponding to the operat-
ing point which results in minimal distortion are then chosen by the
algorithm.

For segment durations where an additional view will be pre-
fetched, a few minor modifications to the algorithm are required.
In the case of a scheduled pre-fetch view, an operating point p will
involve six components instead of four: four components for the
left and right reference views, and two for the pre-fetch view. The
rate adaptation logic will first calculate the average distortion for
the virtual views in the current view range (Dc

avg) and the average
distortion for the expected view range separately (De

avg). Hence,
lines 4 to 7 in Algorithm 1 will be repeated for the expected view
range. Since the viewer will navigate between two virtual view
ranges, the value assigned to Davg in line 8 will be replaced with
the weighted sum (1 − β)Dc

avg + βDe
avg, where β determines the

likelihood of the user navigating to the expected view range. When
β equals 0.5, the weighted sum becomes the average distortion over
all virtual views of the two ranges.

Listing 1: Model parameters in the MPD file (attributes a0, a1,

a2, a3, and a4 represent model coefficients λ, µ, ν, ξ, and c,

respectively).
<VVRDModel metric="psnr">

<SegmentVVRDModel segId="11">

<VVRange id="1" l="3" r="5">

<VVParam alpha="0.25" a0="0.24" a1="0.27"

a2="0.08" a3="0.03" a4="11.99" />

<VVParam alpha="0.50" a0="0.23" a1="0.22"

a2="0.05" a3="0.05" a4="14.07" />

<VVParam alpha="0.75" a0="0.24" a1="0.19"

a2="0.02" a3="0.07" a4="14.06" />

</VVRange>

</SegmentVVRDModel>

</VVRDModel>

Algorithm 1: FINDBESTOPERATINGPOINT

Input: Set P of operating points for left and right reference
views qualities

Input: Bandwidth constraint Rc

Input: Set A of α values corresponding to K virtual view
positions

Output: Operating point p∗ which minimizes the average
distortion over all virtual views

1 p∗ ← φ, Dmin ←∞
2 foreach p ∈ P do

3 if R(p) ≤ Rc then

4 Dsum ← 0
5 for i← 0 to K do

6 α← A(i)
7 Dsum ← Dsum +D(p, α)

8 Davg(p)← Dsum/K
9 if (i == 0) OR(Davg(p) < Dmin) then

10 Dmin ← Davg(p)
11 p∗ ← p
12 continue

13 if p∗ == φ then

14 p∗ ← lowest quality representations

15 return p∗

4. FVV STREAMING SYSTEM DESIGN
The architecture of our DASH-based free-viewpoint video

streaming system is shown in Figure 3. In this section, we de-
scribe a complete system that implements the proposed virtual view
quality-aware rate adaptation algorithm. Our system contains two
main entities: content server, and FVV streaming client, which are
described in the following.

4.1 Content Server
The free-viewpoint videos are captured using a camera array

which capture the scene from multiple viewpoints. To generate the
depth information, an additional depth camera may be provided for
each viewpoint of the camera array. Alternatively, depth maps can
be generated at a later time using one of the known depth estimation
methods [22]. The content server stores the videos in the MVD rep-
resentation format, where each captured view is composed of two
separate streams: a texture stream, and an associated depth stream.
We refer to these streams as the components of the view. The server
also runs a standard HTTP Web server process that handles requests
from DASH clients.

Similar to 2D-based DASH streaming systems, each component
is encoded at different bit rates (quality levels) using standard 2D
video codecs, such as H.264/AVC and HEVC [25]. To synchronize
the different component videos, the same frame rate and group-
of-pictures (GOP) size are used for all components. The result-
ing streams constitute different representations of the component
at different qualities. The representations are then segmented ac-
cording to the DASH standard [14] to generate segments of equal
duration. To support the view synthesis process and rate adaptation
logic on the client-side, a media presentation descriptor (MPD) file
describes the different views and components of the MVD content.
This file contains information information about the different rep-
resentations of each component as well as the camera parameters
and quality models for supported virtual views. We now describe
the proposed MPD structure utilized by our FVV streaming system.

MPD Structure. In DASH, the MPD file provides the client
with a description of all available components of the media content
as well as per-segment and per-representation information which
enable the client to make adaptation decisions at each segment
download time. In our FVV streaming system, each Period el-
ement in the MPD file is divided into three sections: component
adaptation sets, camera parameters, and virtual view quality mod-
els. We note here that each Period element represents a scene
within the MVD content and that each scene may be captured by
a different camera arrangement and, therefore, may contain a dif-
ferent number of captured views. Without loss of generality, we
assume in the following an MVD video with a single Period

element for simplicity. Unlike traditional single view 2D content
which contains only a single video stream, MVD content contains
multiple video streams (one for each component of each view).
Therefore, in our proposed system, each texture or depth compo-
nent of a captured view will have its own AdaptationSet ele-
ment within the Period elements of the MPD file. To uniquely
identify each view, we use a Viewpoint descriptor element
within the AdaptationSet elements of each of the view’s com-
ponents. To identify the type of the component, we use the Role
descriptor element with @value="t" for texture streams and
@value="d" for depth streams.

The MPD file needs additional information about the MVD
video sequence to support client-side view synthesis. This informa-
tion includes the intrinsic and extrinsic parameters of the cameras
capturing the scene, as well as the values of the closest and fur-
thest depth values. We use a CameraParameters element, as

Listing 2: Camera parameters element in MPD.
<CameraParameters>

<View id="0">

<IntrinsicParam fx="2241.26" fy="2241.26"

cx="701.5" cy="514.5" />

<ExtrinsicParam rotation="1,0,0,0,1,0,0,0,1"

translation="5,0,0" />

<ZRange zNear="448.2512" zFar="11206.2803" />

</View>

</CameraParamters>

Listing 3: Texture component with two representations.
<AdaptationSet mimeType="video/mp4"

codecs="avc1.640828">

<Viewpoint schemeIdUri="urn:mpeg:dash:mvv:2014"

value="0"/>

<Role schemeIdUri="urn:mpeg:dash:v+d:2014"

value="t"/>

<Representation bandwidth="128000"

avgPSNR="34.1" avgSSIM="0.959">

<SegmentList duration="1">

<Initialization

sourceURL="oblivion_128_t0_init.mp4"/>

<SegmentURL

media="oblivion_128_t0_seg1.m4s"/>

</SegmentList>

</Representation>

</AdaptationSet>

shown in Listing 2, to signal the camera parameters for each cap-
tured view. Each captured is given a sequential identifier based on
a left-to-right order of the views and is represented using a View
child element.

Since our rate adaptation module utilizes a distortion model to
estimate the quality of virtual views, it is necessary that the stream-
ing client gains access to quality information for the component
streams. A number of MPEG proposals, e.g., [15], were recently
presented for signalling quality information in DASH. Quality in-
formation can be signalled either at the MPD level or the media
container level. In the former case, the MPD would contain ad-
ditional metadata sets with metadata representations having asso-
ciations to corresponding media representations in the adaptation
sets. Therefore each metadata segment is always associated with a
media segment and both are time aligned. The association between
the different metadata elements and their corresponding media ele-
ments within the MPD can be achieved by sharing the same id val-
ues, for example. Alternatively, communicating quality informa-
tion to the client can be achieved using metadata tracks within the
media container file format itself. This, however, requires modifi-
cations to the demuxers used by the decoder to support the syntax of
the additional quality metadata tracks. We use a simpler approach
in which the average quality of a component stream is provided us-
ing additional attributes in the corresponding Representation
element. For example, each video Representation element in
the MPD file may have avgPSNR and avgSSIM attributes holding
the average values of the PSNR and SSIM quality metrics, respec-
tively. Listing 3 provides an example of an adaptation set for the
texture component of one of the captured views with one sample
representation.

4.2 FVV Streaming Client
The FVV streaming client is composed of a number of mod-

ules: MVD-DASH Manager, Segment Downloader, Segment De-

Viewpoint

Switching

Content Server

View-1
Texture

View-N

Extended MPD

for MVD Videos

(Camera Info. &

Quality Models)

eNodeB

Evolved

Packet Core

(EPC)

MVD

Segments

Content

Server

Mobile Network

...

Rep. 1

Rep. 2

Rep. M

Rep. 1

Rep. 2

Rep. M

Rep. 1

Rep. 2

Rep. M

Rep. 1

Rep. 2

Rep. M

...

FVV

DASH Client

Rate Adaptation

FVV

DASH Client

Rate Adaptation

Figure 3: Overview of the proposed adaptive free-viewpoint video streaming system.

Frame Buffers

Segment

Decoder

Decoding Actors

View

Scheduler

Segment

Downloader

Downloading Actors

Renderer

Frame Buffers

MVD

Rate Adaptator

FVV Segment Unit

Buffer

Bandwidth

Estimator

User Interface

FVV Streaming Client

Frames

MPD file

Requested

View

Requested

View

Figure 4: The components of our FVV streaming client.

Figure 5: The user interface of our FVV client prototype.

coder, View Scheduler, MVD Rate Adaptor and Renderer, as il-
lustrated in Figure 4. Our streaming client maintains a buffer of
multi-component segments. A multi-component segment is a logi-
cal container for the segments of the components of the reference
views, possibly including a pre-fetched view. All segments within a
multi-component segment have the same duration and correspond
to the same segment index and time duration in the presentation
timeline. The client is implemented using the actor-based concur-
rent programming model which relies on message passing between
the different actors. Because actors do not share state and messages
are sent asynchronously, the different modules will not compete for
locks which significantly increases the performance of the stream-
ing client. Figure 5 shows the user interface of a prototype imple-

mentation of our client. In the following, we discuss the roles of
the various modules.

Renderer. The renderer generates the final frames that will be
displayed to the user. Based on the user’s current viewpoint, this
may require performing view synthesis to generate a virtual view
if the requested viewpoint is not at a captured view position. The
renderer contains six frame buffers: two for the components of the
left reference view, two for the components of the right reference
view, and two for the components of the pre-fetched view. For
uninterrupted playback, the levels of the frame buffers are main-
tained above a certain threshold. Whenever the level of one of the
frame buffers drops below the threshold, the renderer requests a
batch of frames from the controller to avoid having buffer under-
flows. If the user’s viewpoint falls at a virtual view position, the
renderer performs depth-based view synthesis to generate the tar-
get view using available reference views frames. It is important
that the chosen view synthesis algorithm can run in real-time in
order to keep up with the frame rate of the 3D video. We devel-
oped a DIBR implementation which exploits graphics processing
units (GPUs) to speed up the view synthesis process for 1-D par-
allel camera arrangements, where cameras are aligned in a straight
line perpendicularly to their optical axes. The rendering module
uses the OpenGL graphics API [5] to perform the different stages of
the view synthesis process. The frames are uploaded to the GPU’s
memory and shader programs perform the warping, blending, and
hole-filling steps. Our implementation achieved a 30 fps frame rate
for full high definition (HD) resolution on an NVIDIA GeForce 560
Ti GPU.

Segment Downloader. The segment downloader holds refer-
ences to a number of download actors. When a segment download
request is received, the request is forwarded to one of the available
actors and that actor is responsible for fetching the contents of the
segment from the content server. Each download actor maintains
a persistent HTTP connection with the server to reduce delays and
overhead associated with establishing a new TCP connection for
each segment request. The segment downloader is also respon-
sible for keeping track of the download start and finish times for
each component segment and reports this information back to the
MVD-DASH manager to estimate the available channel bandwidth.

Segment Decoder. Similar to the segment downloader, this
module maintains a number of actors which are responsible for de-
coding individual component segments. It receives decode mes-
sages containing a downloaded DASH segment for a texture or
depth component of one of the views and forwards it to one of the
decoding actors. Decoding actors launch decoding threads for each
of the segments and decoded frames are returned to the controller
for buffering.

View Scheduler. The view scheduler maintains a scheduling
window which determines the reference views to be downloaded
within a time window. View scheduling decisions are based on
predictions of future viewpoints, taking into consideration the cur-
rent viewpoint of the user as well as historical view navigation po-
sitions. The module implements the dead reckoning-based view
scheduling method described in Section 3.2.

MVD Rate Adaptor. This module is responsible for responding
to variations in network conditions by allocating the available band-
width between the component segments of the views scheduled for
download. The rate adaptor takes advantage of virtual view distor-
tion models and implements the proposed rate adaptation algorithm
described earlier in Section 3.3.

MVD-DASH Manager. This module is the controller which or-
chestrates the interaction between the different components of the
player. When a multi-component segment is to be downloaded,
the manager invokes the MVD rate adaptor to decide on the set of
component representations that will be requested from the server.
Based on the decision returned from the adaptation module, the
MVD-DASH manager sends a segment download message with
the chosen representations to the segment downloader. The down-
loaded DASH segments for scheduled reference views belonging
to the same segment index are aggregated into multi-component
segments which are then placed into the segment buffer. Each
multi-component segment fetched from the segment buffer is sent
to the segment decoder module for decoding. Similar to the render-
ing module, the controller also maintains six frame buffers to hold
decoded segment frames. In the case where only two reference
views are being requested, i.e., without a pre-fetch view, the de-
coders for the pre-fetch view components generate dummy frames
for those components to synchronize the number of frames across
the buffers.

5. EMPIRICAL EVALUATION

5.1 Experimental Setup
The proposed FVV streaming client is implemented using C++

and libdash [2], an open-source library which implements the
MPEG-DASH standard as defined by ISO/IEC 23009-1 [14]. The
implementation includes the proposed virtual view quality-aware
R-D-based rate adaptation algorithm and reference view schedul-
ing method.

To evaluate the proposed FVV client and R-D-based rate adap-
tation, we used three MVD sequences from the MPEG 3DV ad-
hoc group data sets [13] [4]: Kendo, Balloons, and Café, which
have different characteristics. The resolution for the Kendo and
Balloons sequences is 1024×768 and the resolution of the Café se-
quence is 1920×1080. The Kendo and Balloons sequences have
moving cameras while the cameras in Café are fixed. We extended
the length of the video sequences from 10 to 30 seconds by re-
peating the frame sequence. For each MVD video, we chose three
cameras from the set of captured views and we allow three virtual
views within each virtual view range, for a total of 6 supported vir-
tual view positions. The video streams for the texture and depth
components of each camera were then encoded using two configu-
rations. In the first configuration, we use the variable bit rate (VBR)
setting of the H.264/AVC encoder with quantization parameter val-
ues ranging from 24 to 44 with a step of 4. In the second configura-
tion, constant bit rate (CBR) encoding was used with bit rate values
ranging from 250 Kbps to 1.5 Mbps with a step of 250 Kbps. We
used the GPAC framework [1] to generate one second segments for
the different representations of each component.

For each segment index, we generate virtual view quality models

Table 1: Coefficient of determination and average absolute fit-

ting error for virtual view quality models generated from 100
operating points at view position 2 of the Kendo and Balloons

sequences (encoded using VBR).

Seg. Index
Kendo Balloons

R2 Avg. Error R2 Avg. Error

11 0.9780 0.1787 0.9721 0.1643

12 0.9765 0.1863 0.9770 0.1474

13 0.9796 0.1707 0.9736 0.1598

14 0.9756 0.1738 0.9789 0.1537

15 0.9722 0.1722 0.9798 0.1530

eth0 eth1

KauNet VM Content

Server VM

eth0

FVV Streaming

Client

B
a
n
d
w

id
th

Figure 6: Evaluation testbed.

for all supported virtual view positions as described in Section 3.3.
We generate two quality models for each virtual view position: one
based on 100 operating point samples, and one based on 40 sam-
ples. To validate the generated quality models, we calculate the
coefficient of determination (R2) and average absolute fitting error.
Table 1 shows the results for the virtual view at position 2 for 5
segments of the Kendo and Balloons video sequences. The results
indicate that the derived virtual view quality models are good fits
for the empirical quality values obtained for all operating points of
the encoded video sequences. Similar results were obtained for the
Café video sequence and for other virtual view positions and seg-
ment indices. We also developed Python scripts to parse the MPDs
of the component streams and virtual view model parameters files
and generate a single MPD file for the MVD video based on the
structure described in Section 4.1. In the evaluation experiments,
the client’s multi-component segment buffer capacity was set to 3
segments and the rendering module’s frame buffer capacity to 300
frames.

Our testbed setup is shown in Figure 6. The server storing
and streaming the content is a virtual machine (VM) running the
Apache2 Web server. The second VM running FreeBSD 7.3 and
KauNet network emulator [11] is placed between the server and
the client and is configured with two network interfaces. The two
VMs run on the same physical machine where the streaming client
is running. Two virtual networks are set up to connect the two in-
terfaces to the server and the client, respectively. The KauNet VM
is responsible for controlling the available bandwidth between the
client and the server based on input bandwidth change patterns. A
trigger pattern is configured to send a periodic signal to the client
to synchronize the start of the streaming session with beginning of
the bandwidth change pattern.

We perform two sets of experiments to evaluate the performance
of our proposed rate adaptation method. In the first set of exper-
iments, we compare the quality of our approach against the rate
adaptation strategy used in [24] and the optimal rate allocation ob-
tained using [12] using objective video quality metrics. To obtain a
fair comparison, the bandwidth estimates resulting from a playback
run using the equal allocation strategy [24] are recorded and used as
input to the rate adaptation logic in subsequent runs. We first eval-
uate the client’s behaviour at a fixed network bandwidth and fixed

viewing point (the center virtual view position of the first virtual
view range). We then assess the behaviour of our streaming client
when the viewpoint is fixed while the bandwidth is varied. This
enables us to assess the response of the virtual view rate-distortion
allocation algorithm in isolation from the view switching predic-
tion logic. In the second set of experiments, we conduct a subjec-
tive quality assessment study of the results. In these experiments,
subjects were asked to compare the qualities of virtual view videos
generated using our proposed approach and the approach presented
in [24].

5.2 Objective Quality Results

5.2.1 Fixed Bandwidth

For the fixed bandwidth experiments, we set the value of the
available network bandwidth to certain value and repeat the stream-
ing session using a different rate adaptation method in each run.
The bandwidth values used are 1, 2, 4, 5, and 6 Mbps. We fix
the view angle at the middle viewpoint between the first two cap-
tured camera views (view 2 for Balloons and Kendo, and 2.5 for
Café). Figures 7 and 8 demonstrate the the resulting average vir-
tual view quality, in terms of peak signal-to-noise ratio (PSNR),
for segments 11 to 20 of the Balloons and Café videos, respec-
tively, using CBR-encoding. The quality of the rendered virtual
view is measured against the virtual view synthesized at the same
position using the original uncompressed reference streams. In the
figures, Opt. refers to the optimal quality using [12], Equal refers
to the equal rate allocation strategy used in [24], and VVRD 40 and
VVRD 100 refer to our proposed approach where the numbers indi-
cate the number of samples used to generate the virtual view quality
model. It can be seen that even at low bandwidth conditions, our
rate adaptation approach is able to achieve significant quality gains
(up to 4 dB for Balloons and 2.8 dB for Café). We notice that the
improvement achieved by our algorithm is more significant when
the bandwidth is not too large (around 2 Mbps), which is the com-
mon case. For larger bandwidth values (e.g., more than 6 Mbps),
there is little room for optimization and most adaptation algorithms
would yield similar or very close qualities. By comparing the re-
sults for VVRD 100 and VVRD 40, we can see that the quality
improvements can be achieved even when a small number of oper-
ating points are used to obtain the model coefficients, which means
that our algorithm does not impose significant computational over-
heads on the servers. The model coefficients are computed only
once for each video (not with every streaming session of the same
video) and stored in metafiles. Similar improvement gains were
achieved using the Kendo sequence.

Our proposed virtual view quality-aware rate adaptation method
also results in quality improvements when the reference views are
encoded using VBR. Firgure 9 shows the average virtual view qual-
ity for the Balloons sequence when the reference views are en-
coded using VBR. Our method improves the quality of the rendered
stream with gains of up to 2.23 dB for some segments (with an av-
erage gain of 2.03 dB) in the case of 2 Mbps network bandwidth,
and up to 2.26 dB (with an average gain of 1.76 dB) in the case
of 4 Mbps network bandwidth. We note that even though the refer-
ence views representations were encoded for constant quality using
VBR, the combination of representations that results in the optimal
virtual view quality differs from one segment to another, as can be
seen in the figures.

In addition to calculating the quality gains in terms of PSNR,
we also evaluated the quality gains using the structural similarity
(SSIM) index quality metric for CBR and VBR encoded videos.
We note that our proposed method also outperformed [24] in terms

Table 2: Bandwidth change patterns.

Kendo
Time (sec.) 0 3 10 20 25 30
Mbps 1.5 2.5 3 2 1 2.5

Café
Time (sec.) 0 5 10 15 25 30
Mbps 1.5 2.5 4.5 3 2.5 3.5

of SSIM but omit the results due to space limitations.

5.2.2 Variable Bandwidth

We now evaluate the streaming client’s behaviour when the
viewpoint is fixed while the bandwidth is varied. Because the video
sequences used in the evaluation have different resolutions, and
therefore different bandwidth requirements, we generate two dif-
ferent bandwidth change patterns, as shown in Table 2. These pat-
terns are used by the KauNet VM to change the channel bandwidth
between the client and server during the streaming session of the
corresponding video sequence. We note that the results presented
in this section are for VBR encoded videos. Similar results were
obtained for the CBR encoding configuration. Figure 10 shows
the results for segments 11 to 30 for the Kendo sequence. In Fig-
ure 10(a), the client’s estimated channel bandwidth before down-
loading each segment is compared to the total bit rate for the oper-
ating point chosen by our rate adaptation method and that chosen
based on [24]. As shown in the figure, because the approach pre-
sented in [24] is not flexible enough in terms of distributing the
bit rates of the component segments due to the tight coupling be-
tween them at content generation time, it is unable to efficiently
utilize all of the available bandwidth. Our virtual view quality-
aware approach on the hand is able to take full potential of all the
available bandwidth and improve the quality of the rendered vir-
tual view. Using our rate adaptation algorithm, the client is able to
achieve PSNR gains up to 2.13 dB, Figure 10(b), and SSIM gains
up to 0.014, Figure 10(c), for view 2. Similar results were ob-
tained for the Café sequence using the bandwidth change pattern in
Table 2, where our proposed rate adaptation approach resulted in
PSNR gains up to 1.09 dB and SSIM gains up to 0.022, as shown
in Figure 11(b) and Figure 11(c), respectively, for view 2.5.

5.3 Subjective Evaluation
We have followed the recommendations given by ITU-R

BT.500-13 [16] to perform subjective quality assessment ex-
periments using the double-stimulus continuous quality-scale

(DSCQS) method. In our subjective tests the quality of two im-
paired video sequences are considered in relation to each other. We
evaluated a total of 12 test conditions (3 video content × 2 encod-
ing configurations × 2 bandwidth capacities). Similar to the ob-
jective quality evaluation presented in Section 5.2, the virtual view
at camera position 2 was used in the case of the Kendo and Bal-
loons sequences, and the virtual view at camera position 2.5 was
used for the Café sequence. For each test condition, the subjects
where presented with two stimuli corresponding to two versions
of the synthesized virtual view: one based on our proposed virtual
view quality-aware rate adaptation algorithm, and one using the al-
gorithm presented in [24]. The virtual views were generated from
the reference segments chosen at 10 segment indices to obtain test
stimuli with a duration of 10 seconds, following the BT.500-13 rec-
ommendations.

A total of 17 subjects participated in our experiments. The sub-
jects were graduate computer science students (12 males and 5 fe-
males) at the university whose age ranged from 23 to 33 years old.
All subjects were screened and given written instructions before
the test session, and these instructions were also explained verbally
to make sure they fully understood the experimental procedure. A

11 12 13 14 15 16 17 18 19 20
Segment Index

32

33

34

35

36

37

38

39

40

41

42

P
S

N
R

 (
d

B
)

Opt.
VVRD 40
VVRD 100
Equal

(a) 2 Mbps

11 12 13 14 15 16 17 18 19 20
Segment Index

34

35

36

37

38

39

40

41

42

43

44

P
S

N
R

 (
d

B
)

Opt.
VVRD 40
VVRD 100
Equal

(b) 3 Mbps

11 12 13 14 15 16 17 18 19 20
Segment Index

36

37

38

39

40

41

42

43

44

45

46

P
S

N
R

 (
d

B
)

Opt.
VVRD 40
VVRD 100
Equal

(c) 4 Mbps

Figure 7: Average quality for the Balloons video sequence with CBR encoding and fixed network bandwidth.

11 12 13 14 15 16 17 18 19 20
Segment Index

32

33

34

35

36

37

38

39

40

41

42

P
S

N
R

 (
d

B
)

Opt.
VVRD 40
VVRD 100
Equal

(a) 2 Mbps

11 12 13 14 15 16 17 18 19 20
Segment Index

34

35

36

37

38

39

40

41

42

43

44

P
S

N
R

 (
d

B
)

Opt.
VVRD 40
VVRD 100
Equal

(b) 3 Mbps

11 12 13 14 15 16 17 18 19 20
Segment Index

36

37

38

39

40

41

42

43

44

45

46

P
S

N
R

 (
d

B
)

Opt.
VVRD 40
VVRD 100
Equal

(c) 4 Mbps

Figure 8: Average quality for the Café video sequence with CBR encoding and fixed network bandwidth.

11 12 13 14 15 16 17 18 19 20
Segment Index

32

33

34

35

36

37

38

39

40

41

42

P
S

N
R

 (
d

B
)

Opt.
VVRD 40
VVRD 100
Equal

(a) 2 Mbps

11 12 13 14 15 16 17 18 19 20
Segment Index

34

35

36

37

38

39

40

41

42

43

44

P
S

N
R

 (
d

B
)

Opt.
VVRD 40
VVRD 100
Equal

(b) 3 Mbps

11 12 13 14 15 16 17 18 19 20
Segment Index

36

37

38

39

40

41

42

43

44

45

46

P
S

N
R

 (
d

B
)

Opt.
VVRD 40
VVRD 100
Equal

(c) 4 Mbps

Figure 9: Average quality for the Balloons video sequence with VBR encoding and fixed network bandwidth.

comfortable seating arrangement was made for the subjects at a
distance of three to four times the height of the display size. The
test video sequences were shown on a 60” LG 4K Ultra HD 240Hz
display (model 60UF8500). The 12 test conditions were shown to
the subjects in random order. The order of the two stimuli was also
randomized in each test session. For each test condition, one of the
stimuli was shown for 10 seconds preceded by 3 seconds of mid-
grey field indicating the coded name of the stimulus. Another mid-
grey field with the coded name of the other stimuli is then shown for
3 seconds followed by the other 10 second stimulus. This presenta-
tion sequence is repeated a second time and followed by 10 seconds
of mid-grey field in between different test conditions. The subjects
were asked to rate the overall quality of both stimuli and mark their
scores on a continuous grading scale. The marks were then mapped

to integer values in the range 0 − 100 and the difference opin-

ion score (= score for stimulus based on our proposed approach−
score for stimulus based on [24]) was calculated. Finally, we cal-
culate the mean of the difference opinion score (DMOS) for each
test condition. The results were then screened for outliers, where
the voting scores of a test subject deviate above twice the standard
deviation in more than half of the test videos. Only one test sub-
ject was determined to be an outlier and their voting scores were
removed from the final results.

Figure 12 shows the DMOS values for the Kendo, Balloons, and
Café video sequences at different available network bandwidth con-
ditions. We evaluate two encoding configuration where the cap-
tured reference views are encoded using VBR and CBR. The re-
sults indicate that in almost all test conditions, the subjects rated

12 14 16 18 20 22 24 26 28 30
Segment Index

0

0.5

1

1.5

2

2.5

3

T
h

ro
u

g
h

p
u

t
(b

p
s
)

×10
6

Est. Throughput
VVRD 40
VVRD 100
Equal

(a) Total segment bitrate

12 14 16 18 20 22 24 26 28 30
Segment Index

34

35

36

37

38

39

40

41

42

43

44

P
S

N
R

 (
d

B
)

Opt.
VVRD 40
VVRD 100
Equal

(b) PSNR

12 14 16 18 20 22 24 26 28 30
Segment Index

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

S
S

IM

Opt.
VVRD 40
VVRD 100
Equal

(c) SSIM

Figure 10: Results for the Kendo video sequence with variable network bandwidth.

11 12 13 14 15 16 17 18 19 20
Segment Index

0

0.5

1

1.5

2

2.5

3

T
h

ro
u

g
h

p
u

t
(b

p
s
)

×10
6

Est. Throughput
VVRD 40
VVRD 100
Equal

(a) Total segment bitrate

11 12 13 14 15 16 17 18 19 20
Segment Index

34

35

36

37

38

39

40

41

42

43

44
P

S
N

R
 (

d
B

)

Opt.
VVRD 40
VVRD 100
Equal

(b) PSNR

11 12 13 14 15 16 17 18 19 20
Segment Index

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

S
S

IM

Opt.
VVRD 40
VVRD 100
Equal

(c) SSIM

Figure 11: Results for the Café video sequence with variable network bandwidth.

the virtual views synthesized from reference views representations
chosen by our proposed rate allocation approach higher than those
generated from reference views representations based on an equal
bitrate allocation. This is indicated by positive DMOS values in
the figure. Moreover, the quality improvement due to the proposed
approach was higher in the case of CBR encoded reference views,
which is the widely used encoding configuration for DASH content
by most content providers. For example, for the Balloons video
sequence, the subjects have rated the results of our rate adaptation
method higher than those based on the method presented in [24] by
25 points on average and reported seeing a much clearer image.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we presented a complete architecture for HTTP

adaptive streaming of free-viewpoint videos. We proposed a novel
two-step rate adaptation method that takes into consideration the
user’s interaction with the scene as well as the special character-
istics of multi-view-plus-depth videos and the quality of rendered
virtual views. Our rate adaptation method schedules the reference
views that will be requested from the server based on the estimated
viewpoint position of the user. The representations of the sched-
uled views are then determined based on virtual view quality mod-
els which are generated offline by the content provider from a small
number of operating points. We introduced a number of extensions
to the MPD file structure to include metadata necessary for sup-
porting rate adaptation for FVV, such as camera parameters and
virtual view quality models. A complete design of an FVV stream-
ing client based on the proposed rate adaptation method was pre-
sented and a real client using implementing this design was devel-

oped using the MPEG-DASH standard and open source libraries
and frameworks. Experimental results indicate that our proposed
virtual view quality-aware rate adaptation method results in signifi-
cant quality gains over other rate adaptation approaches (up to 4 dB
for CBR streams and up to 2.26 dB for VBR streams), especially
at low bandwidth conditions.

For future work, we plan to conduct more studies on user view
navigation patterns and further enhance reference view scheduling.
We also plan to take advantage of the recently finalized HTTP/2
protocol [6] by having all segment requests for a particular multi-
component segment multiplexed over a single full-duplex persis-
tent connection. Finally, we will consider hybrid rate adaptation ap-
proaches which incorporate both the estimated throughput as well
as the client’s segment buffer levels.

Acknowledgements

This work is partially supported by the Natural Sciences and Engi-
neering Research Council (NSERC) of Canada.

7. REFERENCES
[1] GPAC multimedia framework.

http://gpac.wp.mines-telecom.fr/.

[2] libdash C++ library. https://github.com/bitmovin/libdash.

[3] MATLAB and Curve Fitting Toolbox Release 2015b.
http://www.mathworks.com/.

[4] Nagoya University FTV test sequences. http://www.fujii.
nuee.nagoya-u.ac.jp/multiview-data/mpeg/mpeg_ftv.html.

[5] OpenGL 2D/3D graphics API.
https://www.khronos.org/opengl/.

K
en

do (2
M

bps)

K
en

do (3
M

bps)

B
al

lo
ons

(2
M

bps)

B
al

lo
ons

(3
M

bps)

C
af

e
(2

M
bps)

C
af

e
(4

M
bps)

-10

-5

0

5

10

15

20

25

30

35
D

M
O

S
VBR
CBR

Figure 12: Difference mean opinion score (DMOS) between

proposed virtual view quality-aware rate allocation and [24] for

VBR and CBR encoded MVD videos at different available net-

work bandwidth values (given between parentheses). Positive

DMOS indicates that our approach is preferred over [24].

[6] M. Belshe, R. Peon, and M. Thomson. Hypertext Transfer
Protocol Version 2 (HTTP/2). RFC 7540, RFC Editor, May
2015. http://www.rfc-editor.org/rfc/rfc7540.txt.

[7] Y. Chen, Y.-K. Wang, K. Ugur, M. Hannuksela, J. Lainema,
and M. Gabbouj. The emerging MVC standard for 3D video
services. EURASIP Journal on Advances in Signal

Processing, 2009(1):786015, 2009.

[8] T.-Y. Chung, J.-Y. Sim, and C.-S. Kim. Bit allocation
algorithm with novel view synthesis distortion model for
multiview video plus depth coding. IEEE Transactions on

Image Processing, 23(8):3254–3267, August 2014.

[9] C. Fehn. Depth-image-based rendering (DIBR),
compression, and transmission for a new approach on
3D-TV. In Proc. of SPIE Stereoscopic Displays and Virtual

Reality Systems XI, pages 93–104, 2004.

[10] Z. Gao, S. Chen, and K. Nahrstedt. OmniViewer: Enabling
multi-modal 3D DASH. In Proc. of the ACM International

Conference on Multimedia, pages 801–802, October 2015.

[11] J. Garcia, E. Conchon, T. Pérennou, and A. Brunstrom.
KauNet: Improving reproducibility for wireless and mobile
research. In Proc. of the International Workshop on System

Evaluation for Mobile Platforms, pages 21–26, 2007.

[12] A. Hamza and M. Hefeeda. A DASH-based free-viewpoint
video streaming system. In Proc. of the ACM Workshop on

Network and Operating Systems Support for Digital Audio

and Video, pages 55–60, March 2014.

[13] ISO/IEC. Description of Exploration Experiments in 3D
Video Coding. Doc. N11095, ISO/IEC JTC1/SC29/WG11
(MPEG), January 2010.

[14] ISO/IEC. Information technology – Dynamic adaptive
streaming over HTTP (DASH) – Part 1: Media presentation
description and segment formats. ISO 23009-1:2012, 2012.

[15] ISO/IEC. Metadata Representation Carrying Quality
Information Signalling for DASH. Doc. M32198, ISO/IEC
JTC1/SC29/WG11 (MPEG), January 2014.

[16] ITU-R. Methodology for subjective assessment of the quality
of television pictures. Recommendation ITU-R BT.500-13,

2012.

[17] E. Kurutepe, M. Civanlar, and A. Tekalp. Client-driven
selective streaming of multiview video for interactive 3DTV.
IEEE Transactions on Circuits and Systems for Video

Technology, 17(11):1558–1565, 2007.

[18] Y. Liu, Q. Huang, S. Ma, D. Zhao, and W. Gao. Joint
video/depth rate allocation for 3D video coding based on
view synthesis distortion model. Signal Processing: Image

Communication, 24(8):666–681, 2009.

[19] T. Maugey and P. Frossard. Interactive multiview video
system with low complexity 2D look around at decoder.
IEEE Transactions on Multimedia, 15(5):1070–1082, 2013.

[20] L. McMillan. An Image-Based Approach to

Three-Dimensional Computer Graphics. PhD thesis,
University of North Carolina at Chapel Hill, 1997.

[21] P. Ramanathan and B. Girod. Rate-distortion analysis for
light field coding and streaming. Signal Processing: Image

Communication, 21(6):462 – 475, 2006.

[22] D. Scharstein and R. Szeliski. A taxonomy and evaluation of
dense two-frame stereo correspondence algorithms.
International Journal of Computer Vision, 47(1-3):7–42,
2002.

[23] S. Singhal and M. Zyda. Networked Virtual Environments:

Design and Implementation. Addison-Wesley Professional,
1st edition, 1999.

[24] T. Su, A. Sobhani, A. Yassine, S. Shirmohammadi, and
A. Javadtalab. A DASH-based HEVC multi-view video
streaming system. Journal of Real-Time Image Processing,
pages 1–14, 2015.

[25] G. Sullivan, J. Ohm, W.-J. Han, and T. Wiegand. Overview
of the high efficiency video coding (HEVC) standard. IEEE

Transactions on Circuits and Systems for Video Technology,
22(12):1649–1668, 2012.

[26] V. Velisavljević, G. Cheung, and J. Chakareski. Bit allocation
for multiview image compression using cubic synthesized
view distortion model. In Proc. of the IEEE International

Conference on Multimedia and Expo, pages 1–6, July 2011.

[27] J. Xiao, M. M. Hannuksela, T. Tillo, and M. Gabbouj. A
paradigm for dynamic adaptive streaming over HTTP for
multi-view video. In Y.-S. Ho, J. Sang, Y. M. Ro, J. Kim, and
F. Wu, editors, Advances in Multimedia Information

Processing, volume 9315 of Lecture Notes in Computer

Science, pages 410–418. Springer International Publishing,
2015.

[28] H. Yuan, Y. Chang, J. Huo, F. Yang, and Z. Lu. Model-based
joint bit allocation between texture videos and depth maps
for 3-D video coding. IEEE Transactions on Circuits and

Systems for Video Technology, 21(4):485–497, April 2011.

[29] H. Yuan, J. Liu, H. Xu, Z. Li, and W. Liu. Coding distortion
elimination of virtual view synthesis for 3D video system:
Theoretical analyses and implementation. IEEE Transactions

on Broadcasting, 58(4):558–568, December 2012.

