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ABSTRACT
We present a novel system to detect copies of 3D videos.
The system creates signatures from the depth signals of 3D
videos. It also extracts visual features from video frames
and creates compact spatial signatures for videos. The sys-
tem then uses the depth and spatial signatures to com-
pare a given query video versus a reference video database.
The system returns a score indicating whether the query
video matches any video in the reference video database,
and in case of matching, which portion of the reference video
matches the query video. The system is computationally ef-
ficient and can be implemented in distributed manner. The
system can be used, for example, by video content own-
ers, video hosting sites, and third-party companies to find
illegally copied 3D videos. To the best of our knowledge,
this is the first complete 3D video copy detection system in
the literature. We implemented the proposed system and
conducted a rigorous evaluation study using 3D videos with
diverse properties. Our experimental results show that the
proposed system can achieve high accuracy in terms of preci-
sion and recall even if the 3D videos are subjected to several
transformations at the same time. For example, the pro-
posed system yields 100% precision and recall when copied
videos are parts of original videos, and more than 90% preci-
sion and recall when copied videos are subjected to different
individual transformations.
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1. INTRODUCTION
Many experts are anticipating that the future of video is

three dimensional (3D). This is backed up by the phenom-
enal success of 3D videos such as Avatar. Other notable
examples include broadcasting of the vastly popular 2010
FIFA World Cup in 3D. 3D videos provide more realistic
perception of displayed objects on the screen, and thus they
increase viewers’ enjoyment. YouTube is currently hosting
3D videos; there are more than 14000 videos labeled with
3D tag at the time of writing this paper. With rapid ad-
vances in 3D cameras and displays, numerous 3D videos are
expected to be created and consumed in the near future.
Since creation of 3D contents is expensive, content owners
would be interested in protecting their contents from illegal
copying and distribution, especially posting on online sites.
One of these protection schemes is to detect illegally created
copies of 3D videos, which is the focus of this paper.

Detecting copies of traditional 2D video is a complex task.
First, videos are composed of many frames (usually 25 or 30
frames per second), and comparing numerous frames from
potential video copies against reference videos is very com-
putationally intensive. Detection of 2D video copies is also
complicated by the fact that many edit effects occur on the
copied videos. These edits, usually called video transforma-
tions, can be done intentionally to avoid detection or unin-
tentionally because of the copying process. For example, a
copied 2D video may be scaled, rotated, cropped, transcoded
to a lower bit rate, or embedded into another video. The
contrast, brightness, or colors of video can also be changed
during copying.

Detecting copies of 3D videos is even more challenging.
This is because 3D videos have many more transformations
than 2D videos. First, each 3D video has at least two views,
where each view is a 2D video. 2D traditional transfor-
mations can be applied on one, all, or subset of the views,
resulting many more possibilities for transformations. Sec-
ond, 3D videos can be encoded using different formats, in-
cluding stereo, multiview, video plus depth, and multiview
plus depth. Changing from one format to another compli-
cates the detection process. For 3D formats that have depth
signal, several transformations can be applied on the depth
as well, such as depth blurring. Furthermore, a copied 3D
video can contain a subset of the views in the original video.
Finally, new views can be created (synthesized) using tech-
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niques such as [21]. Synthesized views display the scene from
different angles, and thus reveal different information than
in the original views. For example, an object occluded in
one view could appear in another.
In this paper, we present a novel system to detect 3D

video copies. To the best of our knowledge, this is the first,
content-based, complete 3D video copy detection system in
the literature. The proposed system creates signatures from
the depth and texture signals of 3D videos. These signatures
are compact and robust to many 3D video transformations,
including the ones described above. We implemented the
proposed system and conducted a rigorous evaluation study
using many 3D videos that have diverse characteristics and
are encoded in different formats. Our experimental results
show that the proposed system can achieve high accuracy
in terms of precision and recall even if the 3D videos are
subjected to several transformations at the same time. For
example, the proposed system yields 100% precision and re-
call when copied videos are parts of original videos, and
more than 90% precision and recall when copied videos are
subjected to different individual transformations.
The rest of this paper is organized as follows. In Sec-

tion 2, we summarize the related works in the literature. In
Section 3, we present the details of the proposed 3D video
copy detection system. We present our extensive experi-
mental evaluation in Section 4, and we conclude the paper
in Section 5.

2. RELATEDWORK
There are different methods for video copy detection. One

method called watermarking [9] is to embed information
which is both distinctive and invisible to the user into the
content. Then, copy detection becomes a matter of search-
ing the video content for this hidden information. Another
method is to use content itself. This is known as Content-
Based Copy Detection (CBCD). The underlying premise of
content-based copy detection is that the content itself is the
watermark. In other words, there is enough information in
the content to create a unique fingerprint of the video. These
kind of methods involve extracting the fingerprint from the
content and performing a distance measure to determining
the similarity between the fingerprints of the query video
and the original videos.
3D watermarking approaches in the literature can be clas-

sified into three groups [23]: (i) 3D/3D: Watermark is em-
bedded in the 3D model, and it is detected in the 3D model;
(ii) 3D/2D: Watermark is embedded in the 3D model, and it
is detected in the 2D rendering; and (iii) 2D/2D: Watermark
is embedded in the 2D rendering, and it is detected in the
2D rendering. The first two groups try to protect the tradi-
tional representation of a 3D scene, which are geometry and
texture. The third group tries to watermark the sequences
of images which are the 2D projections of the same 3D scene.
Consequently, the third group can be used for copy detec-
tion of 3D videos [23]. While the first two groups have been
studied quite widely, the third group emerged after image
based rendering techniques developed [11].
Alper et al. [11] propose a watermarking scheme for mul-

tiview 3D videos. They embed the watermark into the main
representation of a multiview 3D content and extract it af-
ter the content is transformed or a virtual view is generated.
Their research is limited to static scenes consisting of one ob-
ject or one depth layer. Also, this watermarking scheme only

considers multiview 3D format, not depth enhanced formats.
The content-based copy detection of 3D videos is fairly

new problem. The only work that we are aware of is by
Ramachandra et al. [19] where they propose a method to
protect multiview 3D videos using a fingerprint based on
scale invariant feature transform (SIFT) [15], a local feature
extractor and descriptor. They extract SIFT descriptors of
each of the views of a multiview query video, and compare
it to those of an original video. A problem with this work
is that their evaluation is performed at the frame level, and
the authors do not explain how they decide whether a video
is a copy or not, nor do they identify the location of a copied
clip in the reference video.

Although 3D copy detection methods are scarce in the
literature, there are many methods available for 2D video
copy detection. Hampapur et al. [8] use the temporal fea-
tures of the video as the fingerprint. They describe a sig-
nature based on motion of the video across frames. In a
similar way, Tasdemir et al. [25] use the motion vectors
for the signature of a frame. Some other methods [12] [28]
use fingerprints which are obtained directly from compressed
videos. Another group of methods use color histograms as
videos’ fingerprint. For instance, [8] uses YUV color space.
It quantizes Y into 32 bins and each of U and V into 16 bins
to produce a 64 bin histogram. The color histogram signa-
ture is the sequence of histograms at each frame. Matching
is done by maximizing the histogram intersections between
the test and the reference video. The color histogram signa-
ture is prone to global variations in color which are common
when recoding video. Other group of methods use interest
points of video frames as signature. Liu et al. [14] use local
features that are extracted by SIFT as the frame signature.
Roth et al. [20] take every frame of the source video and
divide it into 16 regions. They then use Speeded-Up Robust
Features (SURF) [16] to find local points of interest in the
frame.

Although all of these methods can be used for 3D video
copy detection, they are designed for 2D videos, and they
ignore the information in different views and the depth of
videos, which are important especially in the presence of
3D video transformations such as view synthesis. The im-
portance of using depth and visual information together to
increase the performance is shown in section 4.7.

3. PROPOSED 3D VIDEO COPY DETEC-
TION SYSTEM

In this section, we start by presenting an overview of the
proposed 3D video copy detection system and how it can be
used. Then, we present the details of its different compo-
nents. Then, we analyze space and time complexity of the
system.

3.1 Overview
We propose a novel system to detect 3D video copies.

Figure 1 shows a high-level illustration of the system. The
system can be used in different scenarios, including the fol-
lowing:

• Content Owners. A copyright owner can deploy the
copy detection system, which periodically crawls on-
line sites and downloads recently posted videos. These
videos are then compared against the owners’ videos
to find potential copies.
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Figure 1: High-level illustration of the video copy

detection system.
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Figure 2: Steps for processing reference videos

• Hosting Sites. A video hosting site can offer con-
tent owners a service of detecting copies of their copy-
righted materials for possible actions. Copies of certain
videos could even be prevented from being posted on
the hosting web site.

• Third-party Offering Video Copy Detection Services.
A third-party company can deploy the video copy de-
tection system on behalf of one or more content own-
ers.

The 3D video copy detection system has two main compo-
nents: Processing Reference Videos and Comparing Query
Videos. We describe each of them in the following. Note
that, we refer to original videos as reference videos. Videos
that we check against reference videos are called query videos.
If a query video matches one of the reference videos, that
query video is called a copied video.

3.2 Processing Reference Videos
The first component of the system, Processing Reference

Videos, is summarized in Figure 2. Each reference video is
processed once to create its signature, which is later used to
detect potential copies. The signature is composed of depth
information as well as visual features extracted from frames
of the video. Signatures of reference videos are stored in a
way that facilitates searching and comparison against query
videos. Description of each component is presented below.

3.2.1 Extract Depth
The depth in a 3D video is emulated by presenting two

slightly different views to the human eyes. The human brain
fuses these two views to perceive the third dimension. De-
pending on the display technology, goggles may be needed
to control the view seen by each eye and at what time. Dif-
ferent methods exist for preparing and coding 3D videos:

• Stereo Video. The video has two views. A view can
be thought of as a separate 2D video stream.

• Multi-view Video. The video has multiple views and
a subset of them is displayed to the user depending on
the angle of viewing.

• Video plus Depth. In this case, the video is encoded
in 2D and a separate depth map is created for the 2D
video. The depth map allows the creation of many
virtual (synthesized) views, which adds flexibility and
support wider viewing angles for users. Creating of
virtual views, however, is computationally expensive
and could introduce some visual artifacts.

Combinations of the above methods are possible, as de-
scribed in [10] and [17]. For example, a 3D video can be
encoded in multi-view plus depth, where a few views are
used with the depth map to create more virtual views.

For 3D videos encoded in video plus depth format (or
its variants), the depth information for each video frame is
usually represented as a gray-level image showing the depth
of each pixel in that video frame.

For 3D videos encoded in stereo or multi-view formats,
where no depth information is explicitly given, a method
for estimating the depth information is used, which is based
on the following. Human eyes are horizontally separated
by about 50-75 mm depending on each individual. Conse-
quently, each eye has a slightly different view of the world.
This difference between the points of projection in the two
eyes is called binocular disparity. Disparity between a stereo
pair of images can be used to extract the depth information,
since the amount of disparity is inversely proportional to
the distance from the observer. Generating disparity im-
ages is called stereo matching, which is the process of taking
two or more images and estimating a 3D model of the scene
by finding corresponding pixels in the images and convert-
ing their 2D positions into 3D depths. Szeliski et al. [24]
provide taxonomy of methods available in the literature for
correspondence matching. It is worth mentioning that there
are both hardware-based and software-based approaches are
available to generate depth information in real-time [27].

3.2.2 Create Depth Signature
After extracting the depth map which is a gray-level im-

age, the depth signature is computed in two steps. First,
the depth map is divided into a grid. The division can be
uniform, i.e., into equal size blocks, or non-uniform to ac-
count for different importance of the regions in the depth
map. The number of blocks in the grid is a configurable pa-
rameter which trades off the computational complexity with
the copy detection accuracy. We found out that a 20 × 20
uniform grid give us a good accuracy in an acceptable time.

In the second step of creating the depth signature, the
blocks of the depth map grid are summarized into a vector,
where each element of the vector represents one block. Vari-
ous metrics can be used to summarize the depth information
in each block. We use mean of the depth values in each block
to summarize the whole block. More complex metrics that
are composed of multiple components, e.g., the mean and
standard deviation, can also be used. The depth signature
for a video frame takes the form < d1, d2, ..., dD >, where D
is the total number of blocks in the depth map grid, and di
is the mean of depth values in block i.
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The depth signature can be created for every frame in the
video. It can also be created for only a subset of the frames in
order to reduce the computational complexity. This subset
of the frames can be chosen deterministically, e.g., each 10th
frame is chosen, or randomly. In addition, the subset of the
frames can be the keyframes of the video, where a keyframe
is a representative frame for a sequence of video frames con-
taining similar visual information, which is referred to as a
video shot. Shot boundary detection algorithms such as [13]
can be employed to identify when a shot starts and ends.
Keyframe selection algorithms such as [7] can be used to se-
lect key frames. The depth signature of a video is composed
of the depth signatures of its frames, or the chosen subset
of frames for which the depth signatures are created.

3.2.3 Index Depth Signature
Depth signatures are vectors with multiple dimensions.

These vectors will need to be compared against depth vec-
tors from other videos in order to find potential copies. We
index depth signatures in order to facilitate these compar-
isons. In particular, given a depth vector from a query
video, we are interested in finding the closest depth vec-
tors from the reference video database. Multiple methods
such as randomized kd-tree, k-means, and locality sensitive
hashing (LSH) can be used to achieve this nearest neighbour
search efficiently. Based on the requirements of the system,
like the performance or the need to be easily distributable,
a method can be chosen. We propose to use LSH for nearest
neighbor search for large-scale video copy detection system,
because it can be easily parallelized. For small-scale sys-
tems, randomized kd-tree [22] is sufficient.
We present a brief background on LSH, and then show

how it can be used in our system. The basic idea of LSH [6]
is to hash high dimensional vectors to integer hash values in
a way that when the vectors are close to each other in the
original space, their hash values are likely to be close to each
other as well.
LSH employs a family of hash functions, which is denoted

by H = {S → U}, where S is the set of input points and U
is the set of hash values. A hash function h ∈ H is called
(r1, r2, p1, p2) sensitive for a distance measure D, which can
be Euclidean distance, if for any v, q ∈ S, we have:

v ∈ B(q, r1), thenPrH [h(v) = h(q)] ≥ p1, and

v /∈ B(q, r2), then PrH [h(v) = h(q)] ≤ p2

where B(q, r) stands for a sphere of radius r centered at q.
For the hash function to be useful, we should have r1 < r2,
and p1 > p2. To amplify the gap between p1 and p2, sev-
eral functions are used and the output hashes are concate-
nated. In other words, a new family of functions are defined
as G =

{

S → Uk
}

, g(v) = (h1(v), h1(v), ..., hk(v)) where
hi ∈ H. Then, L functions from the G family are chosen
independently and uniformly at random for hashing.
In order to index depth signatures, we perform the follow-

ing steps;

• Choose L functions from the G family.

• Consider each depth signature, which corresponds to
a video frame, as one data point v.

• Apply the chosen functions on v. The result is L en-
tries in various buckets of the index. Each entry in a

bucket has the following fields: < V ideoID, FrameID,
V iewID,DepthSignature >

• To find nearest neighbours of a query depth signature,
the entries of the L buckets of its L hashed values are
searched, and points close to the query depth signature
are returned.

3.2.4 Extract Visual Features
We extract features from individual frames of videos. Vi-

sual features should be robust to, i.e., do not change because
of, various transformations such as scaling, rotation, change
in viewpoint, and change in illumination. Different types of
visual features can be used in our system, including but not
limited to SURF [16] and SIFT [15]. In our implementation,
we use SIFT features, which are proved to be robust against
transformations compared to other descriptors [18].

3.2.5 Create Visual Signature
The number of visual features extracted from each video

frame can be controlled by configuring the feature extrac-
tion algorithm. Reducing the number of extracted features
results in reduction in the computational complexity of the
copy detection system, but might introduce some errors in
the detection process. For SIFT features, we set the peak
threshold and edge threshold parameters of the SIFT fea-
ture extraction algorithm to control the number of SIFT
features. The visual signature for a video frame takes the
form < v1, v2, ..., vV >, where V is the total number of vi-
sual features in a frame, and vi is the value of visual feature
i. We note that each visual feature vi has multiple elements.
For example, a SIFT feature usually has 128 elements.

Similar to the depth signature, the visual signature can be
created for every frame in the video, or a subset of the frames
in order to reduce the computational complexity. The visual
signature of a video is composed of the visual signatures of
its frames, or the chosen subset of frames for which the visual
signatures are computed.

3.2.6 Index Visual Signature
Visual signatures are vectors with multiple dimensions.

These vectors will need to be compared against visual vec-
tors from other videos in order to find potential copies. Like
depth signatures, we index visual signatures in order to fa-
cilitate these comparisons. Again, multiple methods can be
used to achieve this nearest neighbor search efficiently, in-
cluding but not limited to locality sensitive hashing.

Similar to depth indexing, each visual signature is hashed
to L′ buckets, and an entry is stored for it in each bucket.
This entry has the following fields: < V ideoID, FrameID,
V iewID, FeatureID, V isualSignature >. Then, to find
nearest neighbors of a query visual signature, the entries of
the L′ buckets of its hashed values are searched.

3.3 Processing Query Videos
The second component of the proposed system is Com-

paring Query Videos, which is summarized in Figure 3.
The depth signature is first computed from the query video.
The methods used to extract depth information and create
depth signatures are the same as the ones used to process
reference videos. Then, the depth signature of the query
video is compared against the depth signatures in the refer-
ence video database. If there is no match, the query video is
not considered for any further processing. If a match occurs,
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the visual signature is computed from the query video and
compared against visual signatures in the reference video
database. Then, a combined score is computed based on
the depth signature and visual signature matching scores.
Finally, the combined score is used to decide whether the
query video is a copy of one of the videos in the reference
video database. This method is computationally efficient as
it eliminates many query videos by checking their depth sig-
natures first, which are more compact and faster to compare
than visual signatures. If a query video is found to be a po-
tential copy of a reference video or part of it, the location
of the copied part in the reference video is identified. More
details are provided in the following.
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Figure 3: Comparing query video against reference

video.

3.3.1 Compare Depth Signatures
Finding the potential copied videos using depth signature

takes place in two main steps: frame level comparison and
video level comparison. The goal of the first step is to find
the best matching frames in the entire database for each
query frame and compute a score between each matched
pair. The goal of the second step is to account for the tempo-
ral aspects of the video frames, and to compute a matching
score between the query video and each reference video.
In the first step, for each depth signature of the query

video, the depth signatures that are closest to it based on a
their Euclidean distance are found using the nearest neigh-
bor search method. Using LSH , the L buckets of the hashed
values of the depth signature of the query video frame are
identified. Then, the distances between the query depth
signature and all depth signatures in those buckets are com-

puted. Distances can be used as matching scores. Alterna-
tively, a threshold can be used such that scores for distances
exceeding the threshold can be set to zero and other scores
are set to 1. This will reduce the computation needed to
compare scores. It should be noticed that the frames found
in this may belong to different videos.
In addition, 3D videos can have multiple views, and a

signature from the query frame should be checked against
frames from different views. Two frames are considered a
match if at least one of their views matches. Finally, a score
is computed for each matched pair of frames using the dis-
tance of their views. At the end of this step, the number of
matched frames in each reference video is counted. Then,
reference videos with the number of matched frames exceed-
ing a threshold are considered in the next step. Other videos
are no longer considered.

In the second step of the depth signature matching, the
temporal characteristics of the videos are considered. By
temporal characteristics we mean that the timing and order
of the frames in the query and reference videos. For exam-
ple, if frame x in the query video matches frame y in the
reference video, we expect frame x + 1 in the query video
matches frame y+1 in the reference video. This is important
to account for as copied videos are typically clips with con-
tiguous frames taken from reference videos. Also, a copied
video can be embedded in other videos.

In order to consider the temporal characteristics, a match-
ing matrix is computed for each candidate reference video
and the query video. The columns of this matrix represent
reference video frames, and the rows represent the query
video frames. Entries in the matrix are the relevance scores
of the frames. Figure 4 shows an example, where dark
squares represent matched frames. Using this matrix, the
longest diagonal sequence with the largest number of match-
ing frames is considered as a potential copy.

 

Rf1 Rf2 Rf3 Rf4 … 

Qf1 
Qf2 
Qf3 

Qfn 

Qfn-1 

…
 

Rfm-1 Rfm 

Figure 4: Matching matrix for frames from query

and reference videos considering their timing.

It is worth mentioning that frame dropping and occasional
frame mismatches caused by possible transformations must
be taken into account. Thus, the diagonal sequence men-
tioned before is not a strictly linear one and gaps may exist.
To find the longest diagonal sequence with the greatest score,
instead of considering a line of frames, a band with a specific
width is considered, as shown in Figure 4. This band starts
sweeping the matrix from top left most position and moves
one block each time. At each position, the temporal score
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of the longest diagonal sequence of matched frames inside
the band is computed. After performing this process for
all positions, the position with the greatest temporal score
is considered the potential copied location, and its score is
considered the temporal score of the reference video.

3.3.2 Compare Visual Signatures
Like depth signature comparison, visual signatures com-

parison takes place in two steps, frame level, and video level.
First, for each query frame visual signature, the visual signa-
tures that are closest to it based on their Euclidean distance
are detected using nearest neighbor search method. Using
LSH, the L′ buckets of the hashed values of the visual signa-
ture vector < v1, v2, ..., vV > are searched and the founded
entries which look like this< V ideoID, FrameID, V iewID,
FeatureID, V isualSignature > are returned. These re-
turned features may belong to different frames of different
videos. To find the matched frames, the number of matched
features in each reference frame is counted, and frames with
the number of matched features exceeding a threshold are
considered a match. Then, a frame level matching is per-
formed like the one explained for the depth signature. At
the video level comparison, like the one explained for depth
video level matching, the temporal characteristics are taken
into account, and a temporal score is computed between
the query video and each potential reference video. Finally,
the best matching videos based on their temporal scores are
considered as potential copies.

3.3.3 Identify Matching Clip
Copied videos can be small clips of the reference videos.

It is useful to automatically identify the location of a copied
clip in the reference video. We use the matching matrix
shown in Figure 4 to identify the location of the copied
clip. Notice that we have two matching matrices: one from
matching depth signatures and the other from matching vi-
sual signatures. We can either use one of them or both. We
find the longest diagonal sequence with the greatest score in
each case. The start and end of the longest sequence give
the start and end location of the copied clip in the reference
video. Using both of depth and visual matching matrices
can yield more accurate locations of the copied clips. In this
case, the intersection of the two sequences returned from
comparing depth and visual signatures is used to mark the
start and end location of in the reference video.

3.4 Algorithm Analysis
We analyze the space and time complexity of the proposed

system. Space complexity refers to the storage needed to
store the signatures of reference videos. Signatures of query
videos are created online and compared against the signa-
tures of reference videos in the database. We analyze the
space complexity as a function of total number of frames in
all reference videos. We use an LSH index to store signatures
in order to facilitate nearest neighbor search. We note that
an LSH index for n data points takes a space of O(n1+ρ),
where ρ(c) < 1/c for c ∈ (1, 10] [6]. When c is 1 the prob-
lem is exact nearest neighbor, which is not necessary for our
task. To consider the worst case, for analysis, the value of
c is considered close to 1. Thus, ρ(c) = 1 In our system,
the indexed data points are the depth signatures, as well as
the visual signatures, which are computed from individual
frames of reference videos. Let the total number of frames in

all reference videos be Nr. Since we have constant number
of depth and visual signatures per frame, the space needed
to store all signatures in an LSH is O(N2

r ). This amount
of space, considering the fact that signatures of a frame are
extremely compact compared to the actual frames, makes
the system practical for real world purposes.

Next, we analyze the time complexity, which is the time
needed to process a given video of length Nq. In our anal-
ysis, we consider the worst case scenario, which happens
when the query video matches one of the reference videos.
In this case, all steps of the detection algorithm are exe-
cuted as explained in Figure 3, which includes computing
and comparing depth signatures, computing and compar-
ing visual signatures, and determining the location of the
copied clip in the reference video. Other cases take much
less time, because the algorithm can terminate before exe-
cuting all steps. We assume that the time taken to compute
the depth signature for a frame is Td, and to compute the
visual signature is Tv. Td and Tv do not depend on the num-
ber of frames in the query video Nq. Other computational
steps, namely comparing signatures and identifying location
of copied clip, do depend on Nq. For comparison of signa-
tures, we use LSH, which takes O(NrlogNr) to compare one
signature against the signature database. Thus, for compar-
ing the depth signature, the query video that has Nq frames,
we need O(NqNrlogNr) steps.

Assuming the depth matching step returned a fixed num-
ber of potential copies, say K reference videos, we perform
the visual signature comparison of those K reference videos.
We compare these K reference videos against the query
video, constructing the matching matrix, such as the one
shown in Figure 4 between the query video and the reference
video, which takes O(LKNq) steps, where L is a constant
referring to the number of frames in the longest video.

Therefore, the worst case running time to process a query
video of length Nq is O(NqNrlogNr), which means given
a reference database of fixed size, the running time of the
system grows linearly with the number of frames considered
for processing in the query video. Also, the running time
grows with O(NrlogNr) on the total number of frames of
reference videos in the database, which makes the system
scalable to large reference databases.

Using an IntelXeon W3530 2.8 GHz processor, and the
experimental setup described in section 4.2, the processing
time of a 320 × 240 query video with 905 frames, took 56
seconds in total. From these 56 seconds, depth signature
extraction, visual signature extraction, and matching took
11, 30, and 15 seconds, respectively.

4. EXPERIMENTAL EVALUATION
We have implemented the proposed 3D video copy de-

tection algorithm. We conducted extensive analysis using
real 3D videos to assess its performance. We start by de-
scribing how we prepared our video dataset in the following
section. Then, we describe our implementation and experi-
mental setup. Then, we present the results of our different
experiments to show the performance of the proposed sys-
tem.

4.1 Preparing 3D Video Dataset
We collected 17 3D videos with different characteristics

from two sources. All videos have texture and depth sig-
nals. Two of the videos, Ballet and Break Dancers, have
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eight views each, which are placed along a 1D arc spanning
about 30 degrees from one end to the other. These two
videos are in bitmap format and their camera calibration
parameters are generated and distributed by the Interactive
Visual Group at Microsoft Research [2]. Depth maps are
computed using the method described in [29]. The other
15 videos are obtained from the MOBILE3DTV project [3].
These are stereo videos, with only two views. These videos
and their depth signals are provided in YUV format, which
we converted to bitmap format using the FFmpeg package
[1].
To create our reference video database, we use one of the

eight views (view0) and its associated depth signal from each
of the Ballet and Break Dancers videos. And we use the left
view and its associated depth from each of the remaining
videos except video TU-Berlin. That is, we create 16 refer-
ence videos, which are listed in the first 16 rows in Table 1.
TU-Berlin video is used in creating queries.
We create many different query videos to capture most

realistic scenarios. Specifically, we first create three types of
queries as described below and illustrated in Table 1:

• Type 1: Query videos are segments or clips of reference
videos. These are the first 16 rows in Table 1.

• Type 2: Query videos are segments of reference videos
embedded in other videos. These are rows 17 to 22 in
Table 1.

• Type 3: Query videos contain no parts of the reference
videos. These are the last 6 rows in Table 1.

Then, we apply different video transformations on the 28
videos shown in Table 1. A video transformation means
that the video has been modified either intentionally (to
avoid detection) or unintentionally (as a result of the copy-
ing process). A transformed video is supposed to provide
acceptable perceptual quality to viewers, that is, the trans-
formation can be tolerated by viewers. Transformations of
3D videos can be applied on texture, or depth, or both. In
addition, transformations can be applied individually, i.e.,
only one transformation is applied on the video, or com-
bined, i.e., multiple transformations are applied on the video
at the same time.
We apply the following 9 transformations on each of the

28 videos in Table 1, which results in 252 query videos.

• Video Blurring: This transformation is applied to tex-
ture only. The radius of blur disk is chosen randomly
from range [0.5 7].

• Video Gamma Correction: This transformation is ap-
plied to texture only. The gamma value is chosen ran-
domly from range [0.2 4]

• Video Noise: This transformation is applied to texture
only. The noise deviation is chosen randomly from
range [0 0.06]

• Crop: This transformation is applied to texture and
depth in a way that the same number of pixels are
cropped from both texture and its depth. The number
of pixels cropped are chosen randomly from range [5
15].

Table 1: List of videos used in creating query videos.

Query Resolution nFrames InsertPoint

Alt-moabit 432×240 100 1-100
Ballet 1024×768 100 1-100

Book-arrival 512×384 100 1-100
BreakDancers 1024×768 100 1-100

Car 480×270 235 1-235
Caterpillar 480×270 101 1-101
Door-flowers 512×384 100 1-100

Flower1 480×270 152 1-152
Flower2 480×270 234 1-234
Flower3 480×270 112 1-112

Grasshopper 480×270 181 1-181
Hands 480×270 251 1-251
Horse 480×270 140 1-140

Leaving-Laptop 512×384 100 1-100
Rollerblade 320×240 905 1-905

Snail 480×270 189 1-189
Berlin-Ballet Mix 132 21-81
Berlin-Break Mix 142 31-111

Berlin-DoorFlowers Mix 92 26-86
Berlin-Flower2 Mix 122 11-111

Berlin-Grasshopper Mix 142 11-101
Berlin-Snail Mix 92 11-70
TU-Berlin1 360×288 150 -
TU-Berlin2 360×288 149 -
TU-Berlin3 360×288 149 -
TU-Berlin4 360×288 149 -
TU-Berlin5 360×288 149 -
TU-Berlin6 360×288 149 -

• Logo Insertion: This transformation is applied to tex-
ture and depth in a way that the pixels covered by the
logo in the video are set to minimum depth.

• Text Insertion: This transformation is applied to tex-
ture and depth in a way that the pixels covered by the
text in the texture are set to minimum depth.

• Flip: The texture and its depth are flipped.

• Depth Blurring: This transformation is only applied
to depth signal. Blurring the depth image smooths
sharp horizontal changes in depth images, so the fewer
holes would appear in the warped views; however, the
warped image quality reduces especially around the
not edge areas. The radius of blur disk is chosen ran-
domly from range [0.5 7].

• Depth Noise: This transformation is only applied to
depth signal, which adds noise to depth frames and
cause quality reduction in the warped images. So the
noise cannot be very high, as the quality of the warped
image may not be acceptable. The noise deviation is
chosen randomly from range [0 0.06]

In addition, we apply two types of combined transforma-
tions on videos: 3 and 5 transformations. For the 3 trans-
formations case, we choose 3 different transformations and
apply all of them on each of the 28 videos in Table 1. One
transformation is applied on the texture, another one the
depth, and the third is applied on both. Similarly, for the 5
transformations case, 5 different transformations are applied
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on each video: two on the texture, two on the depth, and
one on both. These combined transformations added 2*28
= 56 videos to our query video database.
Finally, we apply two new transformations which are spe-

cific to 3D videos: view synthesis and copying a subset of
views. In the view synthesis case, we create additional views
from given views using view synthesis tools. Synthesized
views present the visual content from different angles to
viewers, which could reveal objects that were occluded or
present objects with different depths or shades. This means
that synthesized views can contain different visual and depth
information than the original views. Synthesized views can
be created and distributed to enrich users’ experience or to
evade the detection process. In our experiments, we synthe-
sized 18 views using the VSRS reference software for depth
estimation and view synthesis tool [4] for the BreakDancers
video. This creates 18 additional query videos. For the
copying subset of the views case, we assume that original 3D
videos can have multiple views, and only a subset of them
are copied. This can be done to save storage or bandwidth
of the hosting site or the viewers. In our experiments, we
have two videos that have eight views each, which are Bal-
let and BreakDancers. For each one of them, we use view0
as the reference view, and we create 7 different queries, one
for each of the remaining 7 views. Thus, we add 2*7 = 14
entries to our query videos database.
Therefore, including all transformations, the total number

of query videos in our experiments is 284.

4.2 Implementation and Experimental Setup
We implemented all steps of the proposed 3D video copy

detection system as described in Section 3. We modified
and integrated a few open-source libraries in our system.
We provide some highlights of our implementation in the
following.
The depth signature is computed in two steps. First, the

depth frame is divided into a 20x20 equal-size grid. Then,
the average of the depth values (pixels’ intensity) in each
grid is computed and stored in order in a 400 dimensional
vector. In the second step, the depth signature is indexed to
facilitate nearest neighbor search needed in the query pro-
cessing phase. The index is created using the FLANN library
version 1.6.11 [5]. We use the kd-tree implementation of this
library in our experiments. For the visual signature, we ex-
tract SIFT features using VLFeat[26], which is implemented
in C and it has Matlab interface as well. There are two pa-
rameters that need to be set in this library: peak threshold
and edge threshold. We set both to 5. On average, this
results in about 200 SIFT features per frame. This library
returns 128 non-negative values for each SIFT feature, which
we normalize to the unit vector to reduce the effects of con-
trast and gain. After extracting the SIFT features, we index
them using the FLANN library.
We conduct the following sets of experiments, which are

described in later sections.

• No Transformations. Query videos are parts of some
reference videos and they are not subjected to any
transformations.

• Individual Transformations. Each query video is sub-
jected to one transformation, either on the texture or
depth.
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Figure 5: Precision and recall of the proposed 3D

video copy detection system when videos do not

have any transformations.
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Figure 6: Average precision and recall of the pro-

posed 3D video copy detection system when videos

are subjected to nine different transformations.

• Combined Transformations. Each query video is sub-
jected to multiple transformations, both on the texture
and depth.

• View Synthesis and Subset of Views Transformation.
A query video can contain synthesized views or a sub-
set of the original views.

• Importance of using Depth and Visual Signatures to-
gether. Study the possibility of using depth signature
only or visual signature only in the copy detection pro-
cess.

We consider two important performance metrics: preci-
sion and recall, which are defined in the following two equa-
tions.

precision =
number of correctly identified copies

total number of reported copies
. (1)

recall =
number of correctly identified copies

actual number of copies
. (2)
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(b) Texure Gamma Correction
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(c) Texture Noise
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(d) Crop
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(e) Text Insertion
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(f) Logo Insertion
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(g) Flip
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(h) Depth Blur
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(i) Depth Noise

Figure 7: Precision and recall of the proposed 3D video copy detection system when videos are subjected to

nine transformations.
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(a) 3 Transformations
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(b) 5 Transformations

Figure 8: Precision and recall of the copy detection system when videos are subjected to multiple transfor-

mations.
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(b) Subset of Views

Figure 9: Precision and recall of the copy detection system when there are view synthesis and subset of views

transformations.

4.3 No Transformations
In this experiment, we evaluate the performance of the

proposed 3D video copy detection system using query videos
that do not have any transformations. This scenario hap-
pens, for example, when a clip is directly taken from a digi-
tal video stored on a DVD or hard disk. We compare all 28
query videos in Table 1 against the reference video database.
We vary the threshold, which determines whether a video is
a copy or not based on its score, between 0.0 and 1.0 and
compute the precision and recall for each case. We plot the
results in Figure 5. The figure shows that the proposed sys-
tem can achieve 100% precision and 100% recall when the
threshold value is between 0.7 and 0.8. For a wide range of
threshold values between (between 0.3 and 0.8), the system
yields 100% recall with more than 90% precision.

4.4 Individual Transformations
In this experiment, we apply individual transformations

on query videos. This shows the robustness of the proposed
copy detection system against video modifications that oc-
cur in practice when videos are copied. We apply all nine
transformations described in Section 4.2 on all query videos.
This means that we repeat the experiment nine times, and
in each repetition, we vary the threshold between 0.0 and 1.0
and compute the precision and recall for each case. The re-
sults of these nine experiments are shown in Figure 7. In all
cases, the achieved precision and recall values are more than
90%, and these are obtained for a wide range of threshold
values, which shows that our system does not require fine
tuning of the threshold parameter. We notice that some
transformations, e.g., Gamma correction and texture blur,
have more impact on the precision and recall values than
other transformations such as logo insertion and flip.
We plot the average results across all nine transformations

in Figure 6, where we compute the average precision and
recall values across all experiments for the corresponding
values of the threshold. The figure shows that, on average,
our system can result in 92% precision and recall at the
same time (the intersection point). By using the threshold
parameter, administrators can control the performance of
3D video copy detection systems based on the requirements
of the system. For example, in some systems, 100% precision
is desired even if some copies are not detected. For such
systems, higher threshold values can be used.

In summary, the results in this section show that the pro-
posed system yields high precision and recall values in pres-
ence of various video transformations.

4.5 Multiple Transformations
We assess the performance of our system in quite chal-

lenging scenarios, where each query is subjected to multiple
transformations at the same time. We experiment with two
cases. First, when each video is subjected to 3 different
transformations, one applied on texture, one on depth, and
one on both. The 3 transformations are chosen randomly
for each query video. In the second case, we apply 5 trans-
formations, 2 on texture, 2 on depth and one on both. We
plot the average precision and recall values for these cases
in Figures 8(a) and 8(b). The results in Figure 8(a) show
that the proposed system achieves high precision and recall
values around 90%, even when query videos are subjected
to three different transformations. For extreme situations
where query videos are subjected to 5 different transforma-
tions, the precision and recall values are still more than 75%.
These experiments demonstrate the robustness of the pro-
posed system to multiple video transformations.

4.6 View Synthesis and Subset of Views
In these experiments, we apply two new transformations

that are expected to appear in 3D video copy detection sys-
tems. The first one is called view synthesis, in which a vir-
tual view is created from other views using software tools
such as [4]. This is a challenging case to detect, as the syn-
thesized views can have different viewing angles and show-
ing objects with different depths. We compare the 18 query
videos that contain synthesized views against the reference
database. We vary the threshold values between 0.0 and 1.0
and compute the average precision and recall values across
all queries. The results, shown in Figure 9(a), indicate that
our system is quite robust to the view synthesis transfor-
mation as it can produce close to 100% precision and recall
values. The second transformation we consider is the sub-
set of the views transformation, in which a copied video can
have a smaller number of views than the original video. We
compare the 14 query views that contain subset of the views
against the reference database. We plot the obtained aver-
age precision and recall values in Figures 9(b). The results
demonstrate the robustness of our system against the subset
of views transformation.
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Figure 10: Precision and recall of the copy detection system when using depth and visual signatures separately.

4.7 Importance of using Depth and Visual Sig-
natures together

In this section, we study whether we can use either the
depth signature only or the visual signature only in the 3D
video copy detection system. We repeat the experiments
in Section 4.5 where videos are subjected to multiple trans-
formations at the same time. However, we use the depth
signatures and visual signatures separately in the detection
process. We plot the results in Figure 10, which should be
compared to the results in Figures 8(a) and 8(b) where both
the depth and visual signatures are used in the detection
process. The results show that there is a significant loss in
the recall and precision values when we use either the depth
signature or visual signature. Therefore, it is important to
use both signatures to ensure good performance.

5. CONCLUSIONS
Three dimensional (3D) videos are getting quite popular,

and creating 3D videos is expensive. Thus, protecting 3D
videos against illegal copying is an important problem. We
presented the detailed design of a 3D video copy detection
system. The system has two main components: Processing
Reference Videos and Processing Query Videos. In the first
component, the system creates compact signatures of the
depth and texture of the reference videos and store them in a
database. The second component creates similar signatures
for each query video and compares them against signatures
in the database. If a match is found, the location of the
copied part in the reference video is also identified.
We implemented the proposed system and evaluated its

performance in terms of precision and recall using many 3D
videos. Some of these videos have two views, where the oth-
ers have eight different views. We created a large set of query
videos, which has a total of 284 3D videos. We carefully cus-
tomized the query videos to represent most practical scenar-
ios for copying 3D videos. Specifically, our query videos rep-
resent the following scenarios: (i) query videos are segments
of some reference videos, (ii) each query video is subjected
to nine different transformations, either on the texture or
depth, (iii) multiple combined transformations are applied
on the texture and depth of each video, (iv) new views are
synthesized from existing ones, and (v) query videos have
only a subset of views of reference videos. Our experimental
results show that the proposed system achieves high pre-
cision and recall values in all scenarios. Specifically, the
proposed system results in 100% precision and recall when
copied videos are unmodified parts of original videos, and it
produces more than 90% precision and recall when copied
videos are subjected to different individual transformations.
Even in the extreme cases where each video is subjected to
five different transformations at the same time, our system
yields precision and recall values more than 75%. Further-
more, the above results are obatained for a wide range of the
threshold parameter used in the system, which means that
our system does not need fine tuning of that parameter.
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