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ABSTRACT

We propose a general quality-power adaptation framework
that controls the perceived video quality and the length
of viewing time on battery-powered video receivers. The
framework can be used for standalone video devices (e.g.,
DVD players and notebooks) as well as mobile receivers ob-
taining video signals from wireless networks (e.g., mobile TV
and video streaming over WiMAX). Furthermore, the frame-
work supports both live streams (e.g., live TV shows) and
pre-encoded video streams (e.g., DVD movies). We present
an adaptation algorithm for each mobile device to determine
the optimal substream that can be received, decoded, and
rendered to the user at the: (i) highest quality for a given
viewing time, and (ii) longest viewing time for a given qual-
ity without exceeding the battery level constraint. We in-
stantiate this framework and work out its details for mobile
video broadcast networks. In particular, we propose a new
video broadcast scheme that enables mobile video devices to
efficiently adapt scalable video streams and achieve power
saving proportional to the bit rates of the received streams.
We implement the proposed framework in an actual mobile
video streaming testbed and we conduct experiments using
real video streams broadcast to mobile phones. These exper-
iments show the practicality of the proposed framework and
the possibility of achieving viewing time scalability. For ex-
ample, on a mobile phone receiving and decoding the same
video program, a viewing time in the range from 4 to 11
hours can be achieved by adaptively controlling the frame
rate and visual quality of the video stream.
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1. INTRODUCTION
Video streaming to mobile devices has become very popu-

lar, as modern mobile devices are powerful enough to render
video contents that were only feasible to stationary work-
stations a few years ago. In fact, we have been witnessing
a new usage pattern of mobile devices, which clearly in-
dicates that more and more users consume video contents
using their mobile devices [27]. Several studies, e.g., [22],
reveal that unlike the CPU speed, memory size, and disk
capacity, which achieved exponential growth in the past few
decades, the battery technology has been lagging and only
achieved a linear growth. Therefore, insufficient battery ca-
pacity imposes stringent energy constraints on mobile video
streaming, which requires mobile device designers to take
energy consumption as one of the main design considera-
tions.

Since most traditional multimedia equipments have no en-
ergy constraints, users typically seek the optimal viewing
experience in terms of resolution, frame rate, and picture
quality. On mobile devices, however, users must consider
the battery lifetime as a new dimension of their view experi-
ence because it determines the maximum viewing time. We
define the battery lifetime as the amount of time a user can
continuously watch mobile video streaming without charg-
ing or replacing the battery. To illustrate the importance of
battery lifetime, consider a user, Amy, who wants to watch a
30-min TV episode using her cellular phone that only has re-
maining battery capacity for watching the show for 25 min.
Most current mobile devices can not adapt to the energy con-
straint, because video streams coded by traditional, nonscal-
able, coders must be received and decoded in their entirety.
Consequently, Amy would watch the episode for 25 min, and
then miss the (most important) ending, which significantly
degrades her viewing experience and may drive her away
from the mobile video streaming service. From Amy’s point
of view, finishing this episode, but at a slightly lower video
quality is probably a much better experience. Nonetheless,
such adaptation is not possible on current mobile devices.

In this paper, we study the problem of: (i) predicting bat-
tery lifetime of mobile devices for video streaming services,
and (ii) allowing users to opt for longer battery lifetime by
watching the video at a lower picture quality. Our goal is
to design a systematic and intuitive method for users to de-
cide on the desired perceived quality and viewing time. To
achieve this, we leverage scalable video coders (SVCs) that
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encode each video content into a single video stream with
multiple layers [24]. Scalable coded streams can be trans-
mitted and decoded at various bit rates, and this is done
by simple manipulations that extract substreams of a few
layers from the original stream. Each substream can be ren-
dered at a lower perceived quality than the original (com-
plete) stream. SVC coded streams are conventionally used
to support heterogeneous devices in terms of communica-
tion bandwidth, display resolution, and CPU power. In this
paper, we highlight another important benefit of SVC: en-
abling viewing time scalability. That is, we show that SVC
can provide users with a control knob to prolong viewing
time of videos on mobile devices by reducing the perceived
video quality. We present quantitative models that map ba-
sic energy consumption and video bit rate to intuitive, and
easy-to-understand, performance metrics such as the length
of viewing time in hours and expected perceived quality in
MOS (mean opinion score). More importantly, we propose
an adaptation algorithm for each mobile device to determine
the optimal substream that can be received, decoded, and
rendered to the user at the: (i) highest quality for a given
viewing time, and (ii) longest viewing time for a given qual-
ity without exceeding the battery level constraint.
The contributions of this paper are as follows.

• We propose a general quality-power adaptation frame-
work, which can be used to systematically control the
perceived video quality and the length of viewing time
on battery-powered video receivers. The framework
is general because it can be used for standalone re-
ceivers (e.g., DVD players and notebooks) as well as
mobile receivers obtaining video signals from wireless
networks (e.g., mobile TV and video streaming over
WiMAX). Furthermore, the framework supports both
live streaming (e.g., live TV shows) and pre-encoded
streams (e.g., DVD movies).

• We propose a novel video broadcast scheme that effi-
ciently enables mobile video devices to implement the
adaptation framework. We analytically analyze this
scheme and its power consumption. This broadcast
scheme is of interest in its own right, as it allows het-
erogeneous mobile devices to receive different versions
of the video stream and achieve power saving commen-
surate to the bit rates of the received streams. The
scheme is designed to broadcast SVC video streams
that efficiently support temporal and visual quality
scalabilities at the same time.

• We propose a CPU power consumption model for de-
coding scalable video streams. Our model is an inte-
gration of previous models that were proposed in dif-
ferent contexts.

• We implement the proposed framework and models
in a real mobile TV testbed and we conduct experi-
ments using actual video streams broadcast to mobile
phones. These experiments show the practicality of
the proposed framework and the possibility of achiev-
ing viewing time scalability using scalably-coded video
streams.

The rest of this paper is organized as follows. We pro-
vide an overview of the proposed framework in Sec. 2. We
present the details of the proposed video broadcast scheme

Table 1: List of symbols used in the paper.

Symbol Description

l viewing time
q perceived quality
t frame rate
δ quantization step
y(·) consumed CPU cycles per second
p(·) system power consumption
pn(·) communication consumption
pc(·) CPU power consumption
pb(·) background power consumption
ω current battery level
v battery voltage
To overhead duration in mobile TV
γ power saving of comm. networks
R mobile TV network bandwidth
r bit rate of each coded stream
lδt layer for frame rate t and quant. step δ
rδt bit rate of layer lδt
d
δ
t dependent layers of layer lδt
S number of TV channels
b burst size of the base layer
a(·) bit rate of a substream
λ communication power consumption
ψ CPU efficiency factor
q(·) perceived video quality of a substream

in Sec. 3. We study the communication power consumption
in the same section. In Sec. 4, we describe the CPU power
consumption and perceived quality models. We give our
quality-power adaptation algorithm in Sec. 5. We present
experimental results in Sec. 6. We summarize the related
work in the literature in Sec. 7, and we conclude the paper
in Sec. 8.

2. OVERVIEW
In this section, we present an overview of the proposed

quality-power adaptation framework as well as the quality
and power models needed for the framework. For quick ref-
erence, we list all symbols used in the paper in Table 1,
where bold symbols denote sets, e.g., t denotes the set of
frame rates while t is a specific frame rate.

2.1 Quality-Power Adaptation Framework
We propose an adaptation framework, which gives users

with a control knob to prolong viewing time of videos on mo-
bile devices by reducing the video quality. The framework
uses scalable video coders to encode each video into a scal-
able stream that can be decoded at various bit rates. That
is, several substreams can be extracted from the scalable
stream, where each substream has a lower bit rate, incurs a
lower decoding complexity, and is rendered at a lower per-
ceived video quality than those of the complete (original)
stream. Hence, receiving, decoding, and rendering a sub-
stream at a lower video quality consumes less energy, and
prolongs battery lifetime and viewing time.

The goal of our framework is to take users’ desired view-
ing time (or perceived quality) as input, and systematically
compute the optimal video substream to receive and render
so that the desired viewing time (or perceived quality) is
met without violating the given energy constraint. Notice
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Figure 1: The proposed adaptation framework.

that the framework takes one desired performance metric,
either viewing time or perceived quality and computes the
expected value of the other metric. With this framework,
Amy, in the illustrative example in Sec. 1, can specify the
desired viewing time as 30 mins, and would not miss the
ending of the TV episode, which is currently not possible on
mobile devices. Fig. 1 illustrates the proposed framework.
In the core of the framework is the Quality-Power Adapta-
tion Algorithm (QPAA), which collaborates with four sys-
tem models in order to produce the desired video adaptation
strategy.
The adaptation framework takes several inputs, which we

categorize into two classes: (i) video characteristics that de-
scribe the structure of coded streams, and (ii) mobile device
characteristics that describe the conditions and efficiency of
mobile devices. Examples of the inputs in the first class
include supported frame rates t and quantization steps δ,
which can be specified at encoding time or extracted from
pre-encoded streams. Examples of mobile device charac-
teristics include current battery level ω, background power
consumption pb, communication power consumption λ, and
CPU efficiency factor ψ, which are device dependent and
can either be directly measured or inferred by some experi-
ments. The adaptation framework generates the adaptation
strategy that consists of two parts: (i) the optimal version
of substream to render specified by the chosen frame rate
t as well as the quantization step δ, which determines the
amount of consumed resources, and (ii) the output to control
the amount of supplied resources, which include CPU voltage
level v and available CPU cycles y. Applying these outputs
to proper components leads to optimal stream adaptation.

2.2 Power and Quality Models
We briefly introduce the models used in the adaptation

framework; more details are given in later sections.
The first model is the perceived quality model, which

maps a given substream to its perceived video quality. The
other three models specify the total power consumption of
a mobile device, and they are: CPU, communication, and
I/O and background models. The CPU power consumption
pc is the power consumed for decoding video streams. More
CPU cycles in general lead to higher power consumption,
and thus we write pc(y) as a function of y, which is the
average number of CPU cycles per second used by video de-
coders. The communication power consumption pn is the
energy consumed for receiving video streams over communi-

cation networks. We consider mobile devices that can put
their network interfaces into sleep for a fraction of time, and
we define the power saving γ as the fraction of the time a
network interface is in sleep mode over the total time. Since
higher power saving γ means lower communication power
consumption, we write pn(γ) as a function of γ.

The third part for the system power consumption is the
I/O and background. The I/O power model calculates the
power consumption of reading a given substream from a
DVD, CD, flash memory, or any other storage medium,
which is the case for standalone mobile video viewing sys-
tems. In this paper, we focus on mobile video streaming
over communication networks, and thus we exclude the I/O
power consumption from the discussion. The background
power consumption pb accounts for the power consumed in
functions other than receiving and decoding video streams.
For example, the power consumed for display backlights and
for monitoring the control channels in cellular networks are
part of the background power consumption. We model pb
as a constant. This is reasonable because rendering mobile
video would occupy the small displays on mobile devices,
which prevents users (and thus mobile devices) from multi-
tasking. With these notations, we write the system power
consumption as:

p(y, γ) = pc(y) + pn(γ) + pb. (1)

We give details on the functions pn(γ) and pc(y) in Secs. 3
and 4.1, respectively

Last, we map the system power consumption into viewing
time l as follows. The battery capacity is often measured
in mAh (milliampere-hour). Thus ω mAh means that the
battery can sustain z mA for ω/z hrs. More and more mo-
bile devices are equipped with built-in profiling capability
to determine ω on-the-fly. We write the viewing time l as:

l =
ωv

p(y, γ)
, (2)

where v is the battery voltage.

3. COMMUNICATION POWER MODEL
Mobile devices can receive video streams over different

types of wireless networks, including dedicated video broad-
cast networks, wireless LANs, WiMAX, and 3G cellular net-
works. Clearly, the power consumed by mobile devices to
receive videos will depend on the operation of the specific
network as well as the characteristics of the mobile devices.
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In this paper, we focus on dedicated video broadcast net-
works (also known as Mobile TV), which concurrently offer
video services to many users. We propose a new broad-
cast scheme that enables the adaptation of scalable video
streams on mobile devices. Then, we develop the commu-
nication power model based on this scheme. Our analysis
and models can easily be extended to support mobile video
streaming over different wireless networks such as WiMAX.

3.1 Mobile Video Broadcast Networks
There are several standards proposed for for mobile video

broadcast networks, such as MediaFLO (Forward Link Only
technology) [11] and DVB-H (Digital Video Broadcast Hand-
held) [18]. MediaFLO is developed by Qualcomm and the
FLO forum [10], and some details of its design are not pub-
lic. DVB-H is an open international standard [6], and DVB-
H networks have already been deployed in many countries
around the world [4].
In a mobile video broadcast network, a base station broad-

casts multiple video streams (alternately referred to as TV
channels) in bursts with bit rates much higher than the ac-
tual encoding rates of the video streams. Thus, mobile de-
vices can receive a burst of traffic and then turn off their
network interfaces until the next burst in order to conserve
energy. The next burst time is computed by the base station
and included in the header fields of the current burst. This is
called time slicing [18] and it is required in several broadcast
standards such as DVB-H. Mobile devices must turn on their
network interfaces slightly before the burst time, because it
takes some time to wake up and synchronize the circuitry
before they can start receiving data. This time is called the
overhead duration and is denoted by To. With current tech-
nology, To is in the range of 50—250 msec [7, 18], which is
nontrivial compared to burst lengths. We denote the power
saving achieved by mobile devices because of time slicing as
γ, which is the fraction of time the communication module is
turned off to the total time. The rendering of video streams
on mobile devices and the achieved power saving depend on
the video broadcast scheme, which specifies the start time
and the size of each burst of data for every video stream.
The broadcast scheme cannot have burst collisions, which
happen when two or more bursts have nonempty intersec-
tion in time. Moreover, the scheme must reserve enough
burst time for each stream, so that all video data can be
delivered on time.
The energy saving achieved by time slicing has been stud-

ied in the literature [7,13–16,30]. The authors of [30] and [7]
estimate the effectiveness of time slicing on energy saving
for any given broadcast scheme, but they do not construct
broadcast schemes. In contrast, our previous works present
algorithms for mobile TV base stations to compute optimal
broadcast schemes to save energy using time slicing [13–16].
We considered homogeneous mobile devices, and proposed
optimal/near-optimal broadcast schemes to send multiple
nonscalable video streams to them [13,15]. These broadcast
schemes are not suitable for mobile devices with heteroge-
neous resources such as screen resolution, decoder capabil-
ity, and battery level, which is the main focus of the current
paper. In [14, 16], we considered heterogeneous mobile de-
vices, and demonstrated that existing broadcast schemes do
not efficiently support scalable video streams, and can lead
to wasting the energy of mobile devices. We also proposed
broadcast schemes for scalable video streams. However, our
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Figure 2: The proposed broadcast scheme.

broadcast schemes in [14, 16] have two limitations, which
make them not suitable for the quality-power adaptation
framework in the current paper. The first limitation is that
these broadcast schemes allow video streams to only sup-
port one scalability mode: either temporal or visual quality,
but not both at the same time. This prerequisite prevents
video broadcast networks from supporting mobile devices
with multiple scalability dimensions. The second limitation
is that video streams are assumed to have simple, linear de-
pendency model among layers. This limits inter-dependency
among layers, and can result in coding inefficiency. In the
current paper, we propose a new, more general, broadcast
scheme that enables different mobile devices to adapt scal-
able streams along both the temporal and quality scalability
dimensions at the same time. The new scheme, denoted by
Flexible Mobile Video Broadcast (FMVB), also allows layers
to be encoded at different bit rates and does not assume that
layers are linearly cumulative. Thus, FMVB offers substan-
tial flexibility to base stations as well as to mobile devices
that was not possible in our previous schemes in [13–16].
More importantly, FMVB is more suitable to modern scal-
able video coders, such as H.264/SVC [24], which support
multiple scalability modes, and complex inter-layer depen-
dency for higher coding efficiency.

3.2 Flexible Mobile Video Broadcast (FMVB)
We now present the FMVB scheme. We consider a quite

general scalable stream that supports both temporal and
quality scalability modes. Let t be the set of all supported
frame rates and δ be the set of all supported quantization
steps. We use lδt to represent the layer that supports frame
rate t (t ∈ t) and quantization step δ (δ ∈ δ). We no-
tice that scalable video coders exploit the data redundancy
among layers in order to achieve higher coding efficiency, and
thus there exist inter-layer dependencies among the layers of
each scalable stream. To model this dependency, we define
d
δ
t as the set of dependent layers of lδt , which also includes
lδt itself. dδ

t consists of all layers that are needed to success-
fully decode lδt . That is, dδ

t defines a decodable substream
that can be extracted from the original (complete) stream.
We let r be the bit rate of the original scalable stream with
full quality, and R be the broadcast network bandwidth.
Therefore, the number of TV channels that can be concur-
rently broadcast is S = ⌊R/r⌋. We let rδt be the bit rate
of layer lδt , and we have r =

∑

δ∈δ

∑

t∈t
rδt . We note that
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δ, t, dδ
t , r

δ
t , and r are coding parameters that are specified

at encoding time. These parameters can also be extracted
from pre-encoded video streams, and used by the proposed
adaptation framework.
FMVB is illustrated in Fig. 2. It creates a different burst

for each layer of every TV channel. As shown in Fig. 2, all
IP packets in the left-most burst belong to the l167.5 layer of
TV channel 1, while IP packets in the third burst belong to
layer l1615 of TV channel 1. Since each burst consists of IP
packets from the same layer of the same TV channel, mo-
bile devices know which layer those IP packets are in, even
before receiving the burst. This frees mobile devices from
opening the network interfaces and inspecting IP packets for
substream extractions, and results in higher energy saving.
The FMVB works on recurring time windows, where each
window consists of a burst of each layer of every TV channel.
We let b be the burst size of the base layer, which is layer
lδmax

tmin
, where tmin is the minimal frame rate and δmax is the

maximal quantization step supported by the coded stream.
Then the burst size of layer lδt , where t ∈ t and δ ∈ δ

is given as b(rδt /r
δmin

tmax
), and the recurring window length is

br/rδmin

tmax

R
S =

brS

rδmin

tmax
R

sec. To arrange the broadcast time

of each layer lδt , where t ∈ t and δ ∈ δ, we enumerate all
layers and denote them as l̄1, l̄2, . . . , l̄E , where E = |δ| × |t|.
In addition, we use r̄e to denote the layer bit rate of layer
l̄e, where e = 1, 2, . . . , E. We mention that this enumera-
tion can be arbitrarily done, but the mapping between lδt
and l̄e should be fixed. The FMVB scheme allocates a layer
l̄e burst for each TV channel s, where s = 1, 2, . . . , S, in a
round-robin fashion.
Mathematically, the FMVB scheme allocates a burst of

size b(r̄e/r
δmin

tmax
) at time:

b
∑e−1

i=1
r̄i/r

δmin

tmax

R
S +

br̄e/r
δmin

tmax

R
(s− 1), (3)

to layer e (e = 1, 2, . . . , E) of TV channel s (s = 1, 2, . . . ,
S).
We notice that the frame rates t and quantization steps

δ specify the scalable stream structure, and are inputs to
scalable video coders. Various frame rates and quantization
steps can be used to support heterogeneous mobile devices.
In the rest of this paper, we consider several typical combi-
nations of the frame rate and the quantization step: we let
t be 3.75, 7.5, 15, and 30 fps, and δ be 16, 40, 64, and 104.
Among the considered δ and t values, we let δmin be the
smallest quantization step, and tmax be the highest frame
rate. Note that the substream with quantization step δmin

and frame rate tmax is the original video stream and should
result in the highest possible perceived quality, which is de-
noted by qmax. Similar frame rates and quantization steps
are also employed in several recent works [20,28].

3.3 Analysis and Power Model
We next study the relationship between the FMVB scheme

and communication power consumption. Our goal is to build
a model so that each mobile device knows the expected com-
munication power consumption level of every potential sub-
stream. In the next theorem, we derive the relative power
saving in terms of the fraction of time mobile devices can
turn off their network interfaces. We also show that the
FMVB scheme produces feasible, valid broadcast schemes.

Theorem 1. The FMVB scheme (specified by Eq. (3))
specifies a feasible broadcast scheme for a recurring window
of size

(

brS
)/(

rδmin

tmax
R
)

sec, where (i) no two bursts overlap
with each other, and (ii) bursts are long enough to send data
for all mobile devices to playout until the next burst. Fur-
thermore, the energy saving achieved by mobile devices that
render a substream with frame rate t and quantization step
δ is given by:

γδ
t = 1−

∑

l
j
i
∈dδ

t
rji

rS
−

∣

∣d
δ
t

∣

∣Tor
δmin

tmax
R

brS
, (4)

where t ∈ t and δ ∈ δ.

Proof. First, sending a burst of br̄e/r
δmin

tmax
kb takes time

br̄e/r
δmin

tmax

R
. Thus, based on the definition of the broadcast

scheme in Eq. (3), the scheme has no overlapping bursts.
This is because the start time of each burst is ensured to be
greater than the end time of its predecessor. Second, because

the recurring window size is
brS

rδmin

tmax
R

and S = ⌊R/r⌋ < R/r,

the required amount of data of any layer e (1 ≤ e ≤ E) for
smooth playout is:

brS

rδmin

tmax
R

× r̄e ≤
br

rδmin

tmax
R

×
R

r
× r̄e = b

r̄e

rδmin

tmax

,

where r̄e is the layer bit rate. This inequality shows that the
reserved time period is long enough to carry the video data.

For power saving, observe that mobile devices that render
a video with frame rate t and quantization step δ receive
at bit rate

∑

l
j
i
∈dδ

t
rji , which is the aggregate bit rate of all

dependent layers of layer lδt , and the video data are delivered
in

∣

∣d
δ
t

∣

∣ bursts within each recurring window of brS

r
δmin
tmax

R
sec.

Therefore, the power saving of mobile devices that render at
frame rate t and quantization step δ is given as:

γδ
t = 1−

b
∑

l
j
i
∈dδ

t

r
j
i

r
δmin
tmax

R
+

∣

∣d
δ
t

∣

∣To

brs

rδmin

tmax
R

.

In this equation, the first term of the numerator accounts
for the time to receive actual video data, the second term of
the numerator represents the total overhead durations, and
the denominator is the recurring window size. Rearranging
this equation yields Eq. (4).

This theorem gives the power saving γ in mobile video
broadcast networks. Notice that the power saving decreases
as mobile devices receive more layers, because of the sum-
mation in the second term in the right hand side of Eq. (4).
That is, our FMVB scheme allows differentiation in power
saving for heterogeneous mobile devices, which is an im-
portant property for the quality-power adaptation frame-
work. This differentiation is not possible with other broad-
cast schemes, as mentioned in Sec. 3.1.

To compute γ from Eq. (4), we need to know the layer bit
rate r̄e for all layers e = 1, 2, . . . , E. The layer bit rate can
be specified at encoding time, extracted from pre-encoded
streams, or predicted using the rate model proposed in [28],
which writes the bit rate of a substream with quantization
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step δ and frame rate t as:

a(δ, t) = r(δ/δmin)
−φ(t/tmax)

χ, (5)

where r is the bit rate of the complete stream, and φ and
χ are model parameters. The authors of [28] encode several
video sequences, and extract substreams with different δ and
t values. For each video sequence, 16 substreams are con-
sidered, and the model parameters in Eq. (5) are estimated
using curve fitting. For example, the model parameters for
the Crew sequence are φ = 1.234 and χ = 0.671. Using
these parameters in Eq. (5) enables us to predict the layer
bit rates with different quantization steps and frame rates.
This rate model allows us to compute γ using Eq. (4).

Finally, since the power saving γ is the fraction of time a
device can turn off its mobile TV chip, the communication
power consumption can be written as:

pn(γ) = λ(1− γ), (6)

where λ mW is the energy consumption of the mobile TV
chip, which is a model parameter.

4. CPU POWER AND PERCEIVED QUAL-

ITY MODELS
In this section, we first present the CPU power model,

which is followed by the perceived quality model.

4.1 CPU Power Model
We develop the CPU power consumption model for decod-

ing scalable video streams in two steps. First, we describe a
complexity model that predicts the number of CPU cycles
required to decode a given substream of a scalable video
stream. Then, we map the number of required CPU cycles
into actual CPU power consumption. We describe these two
steps in the sequel.
There are several complexity models for video encoders in

the literature, while there is not much done for video de-
coders. One reason is that traditional, nonscalable, video
decoders have little rooms for reducing computational com-
plexity: the whole video streammust be decoded for playout.
This, however, is not true for scalable coded streams, where
video decoders can render a substream of the original stream
in order to save CPU cycles. A recent work [20] proposes
several variations of a complexity model for scalable video
decoders. We adopt one variation that supports temporal
and visual quality scalabilities. The temporal scalability is
achieved by controlling the frame rate. The visual quality
scalability is typically achieved by using different quantiza-
tion steps during video compression: smaller steps produce
better quality.
The complexity model takes δ and t as inputs, and gives

the number of CPU cycles per second as:

y(δ, t) =
tmax

G
M

[

θYI + (1− θ)YP + (t/tmin − 1)YB+

t/tmin log2(δmax/δ)YQ

]

, (7)

where δmax is the largest quantization step and tmin is the
lowest frame rate, G is the GoP (group of picture) size,
M represents the number of macroblocks per picture, θ is
the fraction of I-frame among all key pictures, and YI , YP ,
and YB are the average macroblock decoding complexity of
I-, P-, and B-frames, respectively, and YQ is the average
macroblock decoding complexity at a quality enhancement

layer. We notice that this complexity model only consists of
four model parameters: YI , YP , YB , and YQ, while all other
variables are inputs.

The authors of [20] consider several video sequences and
use the Intel VTune analyzer to profile an H.264/SVC de-
coder with various combinations of δ and t. For each video
sequence, they fit Eq. (7) against the profiling data in or-
der to derive the model parameters. Based on their exper-
iments, the model parameters for the Crew sequence are
YI = 120791, YP = 274102, YB = 130787, and YQ = 102062
cycles. For concreteness of our discussion, we consider typ-
ical inputs for CIF (352x288) sequences: G = 8, M = 396,
and θ = 0.25. With these parameters and constants, the
complexity model in Eq. (7) can predict the number of CPU
cycles per second required by video decoders for any given
δ and t.

Next, we translate the number of CPU cycles per second
to the power consumption of the CPU. The energy scal-
ing function has been implemented in most recent CPUs,
which allows mobile devices to reduce the power consump-
tion by running slower [12]. The power consumption of a
CPU can be written as v2 × f × e, where v is the voltage,
f is the clock frequency, and e is the effective capacitance
of the CPU. Moreover, previous studies show that the clock
frequency f is linearly proportional to the voltage v [12].
Therefore, the power consumption of CPU is proportional to
f3. We assume that mobile devices implement the dynamic
voltage scaling (DVS) mechanism, and can adjust the clock
frequency to match the demand of CPU cycles (f = y). This
ensures the jobs are done just on-time without having the
CPU idling, and thus minimizes the CPU power consump-
tion, which is given as:

pc(y) = ψy3, (8)

where ψ represents the CPU efficiency, and is a model pa-
rameter. Combining Eqs. (7) and (8), we can compute the
CPU power consumption for any given δ and t. The model
parameter ψ is device dependent.

4.2 Perceived Quality Model
Modern scalable video coders, such as H.264/SVC [24],

are fairly flexible, and substreams in various resolutions,
frame rates, and qualities, can be extracted from a single
scalable stream. Therefore, defining video quality metrics
for these substreams is challenging because most traditional
video quality metrics, such as PSNR (peak signal-to-noise
ratio), assume that the resolution and frame rate are fixed.
In the past few years, several quality metrics for scalable
streams have been proposed. Some of these works attempt
to “patch” PSNR, while others are based on subjective user
studies. We employ the perceived quality model proposed
in [28] for two reasons. First, it is based on user studies, and
uses MOS as the quality metric. MOS is more appropriate
than pixel-difference based objective metrics like PSNR. For
example, the PSNR of a 7.5 fps video stream and that of a
30 fps video stream are not comparable. Second, this qual-
ity model has only two model parameters and yet is fairly
accurate [28]. We describe this perceived quality model in
the following.

The quality model considers two scalability modes: qual-
ity and temporal, and it writes the video quality q as a func-
tion of the quantization step δ and the frame rate t. The
video quality q in MOS ranges from 0 to 100. The quality
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Quality-Power Adaptation Algorithm

1. //Input: δ, t: possible substreams
1. //Input: l∗: desired watch time
1. //Output: δ, t: optimal substream for adaptation
1. //Output: q: expected quality

2. foreach substream δ̂ ∈ δ and t̂ ∈ t

3. compute CPU power consumption pc(δ̂, t̂)
3. using Eqs. (7) and (8)

4. compute substream bit rate a(δ̂, t̂) using Eq. (5)
5. compute communication power consumption
5. pn(δ̂, t̂) with Eqs. (4) and (6)

6. compute power consumption p(δ̂, t̂) = pc(δ̂, t̂)+

6. pn(δ̂, t̂) + pb
7. compute viewing time l(δ̂, t̂) using Eq. (2)

8. if l(δ̂, t̂) < l∗ continue // violation

9. compute q(δ̂, t̂) using Eq. (9)

10. if q(δ̂, t̂) > q // better?

11. let q = q(δ̂, t̂), δ = δ̂, t = t̂
12. end if

13. endfor

14. return δ, t, q

Figure 3: The proposed adaptation algorithm.

model gives the perceived quality as:

q(δ, t) = qmax

e
−α δ

δmin

e−α

1− e
−β t

tmax

1− e−β
, (9)

where qmax is constant and α and β are model parameters.
The authors of [28] derive the model parameters of several

video sequences. For each video sequence, four δ values and
four t values are considered, which lead to 16 substreams in
total. The subjective test is repeated for all 16 substreams of
each video sequence, which results in 16 samples for Eq. (9).
Finally, the constant qmax and the model parameters α and
β in Eq. (9) are estimated from these samples using least
square error fitting. For example, the model parameters for
the Crew sequence are qmax = 89, α = 0.17, and β = 7.34.
Using these parameters, Eq. (9) enables us to predict the
perceived video quality of each substream.

5. QPAA: THE PROPOSED ADAPTATION

ALGORITHM
We present an algorithm that integrates all models pre-

sented in Secs. 3 and 4. The algorithm provides a systematic
method for controlling the tradeoff between the perceived vi-
sual quality and energy consumed by mobile devices. Fig. 3
presents a high-level pseudo code of the proposed quality-
power adaptation algorithm (QPAA). This algorithm takes
desired watch time l∗ as input and returns a substream
with the highest quality q without violating energy con-
straint. The foreach loop between lines 3–13 considers all
supported substreams, which are indicated by the set of pos-
sible quantization steps δ and the set of possible frame rates
t. For each substream, the algorithm computes the power
consumption in lines 3–6. It then computes the expected

Figure 4: Setup of the testbed.

viewing time in line 7. Line 8 checks whether the expected
viewing time l(δ̂, t̂) satisfies the input l∗, and the algorithm

moves to the next substream if l(δ̂, t̂) < l∗. The algorithm
computes the expected quality in line 9, and it searches for
the optimal substream using the if statement in lines 10—
12. Last, the optimal substream δ, t, and expected quality q
are returned in line 14.

Notice that, as illustrated in Fig. 1, the QPAA algorithm
also works in the other way around with some straightfor-
ward modifications in the pseudo code in Fig. 3. The modi-
fied QPAA takes the desired quality q∗ as input, and returns
the optimal substream and the expected viewing time l.

6. EXPERIMENTAL EVALUATION
In this section, we use a real mobile TV network to show

the potential of viewing time scalability. More specifically,
we try to answer the following question: how much viewing
time can be prolonged by rendering a substream at a lower
quality?

6.1 Testbed Setup
We have implemented a mobile TV testbed in our lab.

This testbed provides us a realistic platform for analyzing
the performance of mobile video broadcast networks. As
illustrated in Fig. 4, the testbed has two parts: base sta-
tion and receivers. We use a commodity Linux box as the
base station, and have developed a software package on it to
broadcast video streams. Most of the software components
were developed by us and few libraries and drivers were
leveraged from open source projects. We have installed a
PCI modulator card in the base station, which supports the
physical layer of the DVB-H protocol. Our software package
implements the link layer of the DVB-H protocol and drives
the modulator card to transmit DVB-H standard compliant
signals via a power amplifier and an indoor antenna.

We use the Nokia N96 phone as the receiver, which is the
most recent Nokia phone that supports mobile TV at the
time of writing. This cellular phone allows us to assess the
visual quality of videos, and serves as the target platform
for parameter estimations detailed in Sec. 6.2. Our mobile
TV testbed also consists of a DVB-H signal analyzer, which
enables us to conduct detailed analysis on the mobile TV
network. This analyzer is attached to a PC via a USB port
and is supported by an analysis application. This analysis
application records traffic streams as well as provides various
statistics.
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Figure 5: Estimating the communication related parameters of the Nokia N96 phone.

6.2 Parameter Estimation and Results
There are several device dependent model parameters re-

quired by the QPAA algorithm. These include: (i) λ in
Eq. (6), which is the power consumption of the mobile TV
chip , (ii) To in Eq. (4), which is the overhead duration, (iii)
pb in Eq. (1), which is the background power consumption,
and (iv) ψ in Eq. (8), which represent the power efficiency
of the CPU. We explain how to derive them in the following.
Mobile TV Chip Power Consumption. We design

several broadcast schemes with different parameters in or-
der to infer the mobile TV chip power consumption λ. We
capture a 10-minute news clip from a digital cable service.
We encode the video using an H.264/AVC encoder at bit
rate 450 kbps, and the audio using an eAAC+ encoder at 32
kbps. We make the base station broadcast the coded video
stream, and we restart the stream once its end is reached.
We broadcast the video stream for 3.5 hrs. We use an N96
phone to watch this video, and we measure its power con-
sumption using a monitoring program called Juice, which
has been shown to be fairly accurate and is comparable
to external instruments [2]. After each 3.5-hr experiment,
we fully charge the battery, and repeat the experiment by
broadcasting the same video but with a different inter-burst
time period. We consider five different broadcast schemes
with inter-burst periods: 250, 500, 1000, 2000, and 3000
msec. We collect the power consumption of each broadcast
scheme throughout the experiment.
We first plot two sample curves of the N96 phone power

consumption in Fig. 5(a); curves for other schemes are sim-
ilar. This figure confirms that the broadcast schemes with
longer inter-burst time periods result in fewer power spikes,
and thus lead to lower power consumption. For example, be-
tween broadcast times 508 and 510, there is a single power
spike for 2000-msec broadcast scheme, but there are four
power spikes for the 500-msec scheme. More importantly,
the height of these spikes represents the power consumption
of the mobile TV chip used by Nokia N96. This is because
power consumed by other components is rather constant,
e.g., the CPU decodes and displays up to 30 frames every
second, which is much more often than the chosen inter-
burst time periods. To derive the mobile TV chip power
consumption, we compute the CDF (cumulative distribu-
tion function) of all power consumption measurements for
each broadcast scheme. We then plot CDF curves of three
sample broadcast schemes in Fig. 5(b). This figure shows
that the power consumption measurements form two clus-

ters at about 700 mW and 1025 mW, which represents the
mobile TV chip off and on time, respectively. Hence, this
experiment reveals that the mobile TV chip used by Nokia
N96 consumes λ = 325 mW. Note that the inferred λ value is
quite close to public white papers, e.g., a data sheet released
by a popular DVB-H chip manufacturer indicates that mod-
ern DVB-H chips have a power consumption of about 400
mW [3]

Overhead Duration. Next, we use the above exper-
imental results to derive the overhead duration To. We
draw an observation from the experiment setup: the power
consumption difference between any two of the broadcast
schemes is completely attributed to the number of overhead
durations To they impose. This is because we broadcast ex-
actly the same video stream in all schemes, and the energy
consumed for receiving, decoding, rendering, and displaying
the video are always the same. Therefore, we can derive
the To value using λ and the difference on power consump-
tions of two broadcast schemes. To illustrate, we consider
the power consumption curves of the two sample schemes
in Fig. 5(a), and we let p1 and p2 be the average power
consumption of the 500-msec and the 2000-msec scheme, re-
spectively. Clearly, the 500-msec scheme incurs three more
To than the 2000-msec scheme in every 2-sec time period.

Therefore, we can estimate the To as
2(p1 − p2)

3λ
. To sys-

tematically infer To, we pick the 250-msec scheme as the
baseline, and derive To by comparing its power consump-
tion against that of other schemes. We derive the To value
from each broadcast scheme. We plot the results in Fig. 5(c).
This figure shows that the To values inferred from different
schemes are quite consistent, and they have an average of
166 msec, with a very small variance. Thus, we set To = 166
msec in our later experiments.

Background Power Consumption. We conduct the
following experiment to infer the background power con-
sumption. We configure the N96 phone to display photos
in a slide show mode for 1.5 hrs, and we use Juice to mon-
itor the power consumption. We chose the photo applica-
tion to prevent the phone from dimming its backlight, which
is one of the main sources of background power consump-
tion. Fig. 6(a) illustrates the power consumption over the
whole experiment. Using this figure, we compute the aver-
age power consumption as 290.38 mW, which is essentially
the background power consumption pb. This is because the
slide show scheme is the same as the mobile video streaming
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Figure 6: Estimating the background and CPU related parameters of the Nokia N96 phone.
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Figure 7: The tradeoff between viewing time and perceived quality for different scalabilities.

schemes, except it does not: (i) receive video streaming from
mobile TV networks, and (ii) decode video streams.
CPU Power Efficiency Factor. We empirically com-

pute the CPU power efficiency factor ψ in two steps. We
first deduct the background and communication power con-
sumptions from the measured (total) power consumption,
which leads to CPU power consumption. We then com-
pute the number of CPU cycles required for decoding video
stream, and calculate ψ using Eq. (8). We use the decod-
ing complexity of the Crew video substream with δ = 16
and t = 30 to approximate the number of CPU cycles per
second in the experiments. We use Eq. (7) to compute
y(16, 30) = 517814819. Using this y value, we compute ψ
for individual broadcast schemes with different inter-burst
periods, and plot the ψ values in Fig. 6(b). This figure shows
that the ψ value derived from different broadcast schemes
are fairly close. We let ψ = 3.1 × 10−27, which is the aver-
age ψ value in our experiments. We mention that y(16, 30)
should be considered as a first-order approximation, as the
video decoders used in the experiments are nonscalable video
coders. We could not use real scalable video decoders in our
experiments, because they are not available on mobile de-
vices yet. Developing a scalable video decoder for mobile
devices is one of our future works.
We mention that while we use the average power con-

sumption over 3.5-hr broadcast in above derivations, a much
shorter, only a few secs, measurement period would be suf-
ficient for parameter estimations. This is because typical
inter-burst periods are in the order of secs, and Figs. 5(a)

and 6(a) show that the power consumption pattern is quite
stable over time.

6.3 Quantifying Tradeoff between Perceived
Quality and Power Consumption

We study the tradeoff between quality and viewing time
on a N96 phone, which has a battery with capacity of 950
mAh and voltage of 3.7 V. We configure the base station to
use 8 MHz bandwidth, QPSK (quadrature phase-shift key-
ing) modulation, 3/4 code ratio, 1/8 guard interval. These
configurations lead to a channel bandwidth of 8.289 Mbps
[5]. We note that our N96 phones are not equipped with
software-based SVC decoders, as they are not available at
the time of writing. However, high coding efficiency and low
decoding complexity make SVC very competitive in many
applications [24], and become a focus of many codec chip
manufactures, such as Stretch [26]. Therefore, more SVC de-
coder chips are expected to hit the market soon. Hardware-
based SVC decoders achieve better energy efficiency and are
more suitable to mobile devices. Our adaptation framework
can be extended for SVC hardware-based decoders.

We consider three mobile TV services that broadcast scal-
able video streams. Service I supports temporal scalability,
i.e., it fixes the quantization step at δ = 16 and varies the
frame rate t = 3.75, 7.5, 15, and 30 fps. Service II supports
quality scalability, i.e., it fixes the frame rate at t = 30 and
varies the quantization step δ = 16, 40, 64, and 104. Service
III supports combined scalability that allows substreams of
any combination of δ and t values. Each pair of δ and t de-
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Figure 8: The tradeoff between viewing time and perceived quality for combined scalability.

fines a substream, and we compute the viewing time l(δ, t)
of each substream using the procedure outlined in lines 3–
7 of the QPAA algorithm in Fig. 3. We also compute the
quality q(δ, t) using line 9 of the QPAA algorithm. We use
the system parameters of N96 phones and the video related
parameters from Crew sequence in the following computa-
tions.
Services I and II. We plot the video quality and the

viewing time for Service I in Fig. 7(a). This figure clearly
shows that mobile devices that receive fewer layers can pro-
long their viewing time: mobile devices that receive one layer
can watch TV for 11 hrs, while mobile devices that receive
four layers can only watch TV for 4 hrs. Furthermore, the
video quality degradation is not linearly proportional to the
number of layers. For example, reducing the frame rate from
30 to 15 fps doubles the viewing time, but only degrade the
MOS score by less than 5%. We plot a similar figure for
Service II in Fig. 7(b). Note that higher layers have smaller
quantization steps, and this figure also shows that more lay-
ers lead to higher video quality and shorter viewing time.
Fig. 7 shows that reducing frame rate is a more effective
way to prolong viewing time. For example, considering a
target MOS score of 50, Service I achieves viewing time of
11 hrs, while Service II only achieves 9 hrs.
Service III. Next, we consider more flexible broadcast

scheme that supports both temporal and quality scalabili-
ties. We first plot, the video quality and viewing time of Ser-
vice III in Fig. 8. This figure shows the tradeoff between the
perceived quality and the viewing time, e.g., the substream
with t = 3.75 fps and δ = 16 results in the longest viewing
time in Fig. 8(b), but with the lowest perceived quality in
Fig. 8(a). This experiment indicates that with the proposed
quality-power adaptation framework, we can derive the per-
ceived quality and the viewing time of every substream of
the complete scalable streams, where each substream is spec-
ified by the frame rate t and the quantization step δ. This
enables users to use t and δ as the control knobs to render
an appropriate substream that meets his/her demands.
We note that Service III has only 16 possible substreams,

which allow the proposed QPAA algorithm (presented in
Fig. 3) to exhaustively check all combinations of the frame
rate t and the quantization step δ. For scalable streams
that support wider ranges of heterogeneity, many more sub-
streams must be evaluated and the QPAA algorithm may
take longer to terminate. For these scalable streams, we can
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Figure 9: The efficient tradeoffs between viewing

time and perceived quality.

accelerate the QPAA algorithm by filtering out those sub-
streams that lead to marginal or no quality and viewing time
improvements. To illustrate, we plot the mapping between
the quality in MOS q and viewing time l of all substreams
of Service III in Fig. 9, in which each circle represents a sub-
stream. We then connect all substreams that lead to efficient
tradeoffs between q and l, and we annotate these substreams
with <δ, t> in this figure. This figure shows that only 10 out
of 16 possible substreams result in efficient tradeoffs, which
enable 40% speed up of the QPAA algorithm.

In summary, the experiments illustrate that the proposed
FMVB video broadcast scheme enables viewing time scal-
ability by quantifying the tradeoff between perceived video
quality in MOS and viewing time in hrs. Hence, mobile de-
vices can use the QPAA algorithm to dynamically select the
most suitable substream to receive and render.

7. RELATED WORK
A number of works, e.g., [23, 29], empirically derive the

battery lifetime. The authors of [29] propose a battery pre-
diction method for mobile devices based on the observation
that battery discharge curves under different workloads have
similar shapes. They propose to measure a reference dis-
charge curve offline by imposing a constant workload on a
subject mobile device with a fully-charged battery until the
battery depletes. This reference curve is then used at run-
time to compute a polynomial function that describes the
displacement of the actual discharge curve from the refer-
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ence curve, which leads to the prediction on battery life-
time. A similar approach is proposed by the authors of [23].
These two works are not suitable to mobile video stream-
ing, because they predict battery lifetime under a constant
workload and may take some time to converge. In contrast,
our framework predicts battery lifetime before rendering a
specific video substream.
Several dynamic adaptation algorithms to reduce CPU en-

ergy consumption of mobile devices have been studied, and
they can be classified into two groups [8]: (i) scaling the
resource provided by hardware, and (ii) scaling the resource
consumed by software. Solutions belong to the first group in-
clude DVS (Dynamic Voltage Scaling) and DPM (Dynamic
Power Management), which eliminate the idling resources by
reducing the clock frequency and the power voltage, and/or
putting components into sleep mode. Proposals in the sec-
ond group include DSOM (Dynamic Software Management)
which saves energy by reducing the software complexity of
applications at an expense of lower quality of service (QoS).
We describe a few representative systems in the following.
DVS algorithms can further be categorized into online

[25, 31, 32] and offline [1, 17] algorithms. Brief descriptions
of some of them follow. The authors of [31,32] observe that
most CPUs support a few discrete frequencies and power
voltages, and they design a DVS algorithm that can peri-
odically switch among these frequencies. They implement
their algorithm in a Linux scheduler to show its practical-
ity. The authors of [17] propose a DVS system for decoding
MPEG-2 video streams. They use a middle box to analyze
video streams, and insert control messages in these streams
to instruct mobile devices adjusting their CPU frequencies
to save energy. The stream analysis is done by decoding the
video stream in a simulator on the middle box, which may
be computationally expensive. The authors of [1] propose
a DVS system for transmitting nonscalable video streams
based on a decoder complexity model. This model takes
several video statistics extracted at encoding time as inputs,
and predicts the CPU requirements of decoding the coded
video stream.
DSOM algorithms have been proposed in several works

[8, 9, 19, 21]. The authors of [8] design and implement a
middle-ware on top of operating systems to support energy-
aware applications. They, however, do not address the issue
of modeling energy consumption under different QoS levels.
Chameleon [19] is another framework that enables an ap-
plication to implement its own power management scheme.
Chameleon does not specify the actual power management
algorithm. The authors of [9] propose a system that allows
applications to trade quality for battery life. They conduct
energy profiling under various levels of QoS service, and
present quality adaptation algorithms based on the empiri-
cally derived energy consumption curves. The authors of [21]
also propose a DSOM system based on energy profiling. Us-
ing an external power supply and multimeter, they profile
the system energy consumption under various operational
points. The profiling data is then used by a middle-ware for
energy-aware quality adaptation. They then design a qual-
ity adaptation algorithm on this middle-box and transcode
each video stream into a version that is suitable to the en-
ergy level of a specific mobile device. The middle-box could
become a performance bottleneck, because transcoding is
computationally complex.

8. CONCLUSIONS AND FUTURE WORK
We studied the problem of controlling the viewing time

of mobile devices for video streaming services. We proposed
a quality-power adaptation framework that allows users to
opt for longer viewing time by watching the video at a lower
perceived quality. We employed scalable video streams to
support this viewing time scalability. We presented quanti-
tative models that map basic power consumption and video
bit rate to intuitive, easy-to-understand, performance met-
rics such as the length of viewing time in hours and expected
perceived quality in MOS. We also proposed an algorithm
to aid users in finding the most appropriate version of the
video stream to render in order to optimize the user experi-
ence. The proposed framework is quite general, and can be
used for standalone video devices as well as mobile receivers
obtaining video signals from wireless networks. In addition,
both live and pre-encoded streams can be supported by the
framework.

To show its practicality, we considered the mobile TV
broadcast network as an instantiation of the proposed adap-
tation framework. We proposed a new broadcast scheme for
mobile TV networks, which efficiently enables mobile de-
vices to implement the proposed adaptation framework. We
used a real mobile TV base station and a Nokia N96 phone
as our experimentation platform, and we used real experi-
ments to derive various model parameters of our framework.
Using these real life parameters, we quantified the trade-
off between perceived quality and viewing time of mobile
devices. The experimental results show that the proposed
adaptation framework can support viewing time scalability
using scalable video streams, which are conventionally used
to support heterogeneous receivers in terms of communi-
cation bandwidth, display resolution, and CPU power. Our
experimental results indicate that mobile devices can use our
adaptation algorithm to dynamically select the most suitable
substreams to render based on user preferences and device
conditions.

The work in this paper can be extended in multiple di-
rections. For example, the proposed adaptation framework
can be applied to standalone portable video players. In this
case, power consumption models for I/O devices will need
to be developed and integrated in the framework. In ad-
dition, we plan to implement our quality-power adaptation
framework on various mobile wireless platforms, and con-
duct more experiments. The experimental results will allow
us to fine tune some of the models used in the adaptation
framework.
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