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ABSTRACT

We present optimal schemes for allocating bits of fine-grdiscalable video sequences among multiple senders strggami
to a single receiver. This allocation problem is criticabiptimizing the perceived quality in peer-to-peer and disted
multi-server streaming environments. Senders in suchr@mvients are heterogeneous in their outgoing bandwidth and
they hold different portions of the video stream. We fornteiltne allocation problem as an optimization problem, which
is nonlinear in general. We use rate-distortion modelséfoihmulation to achieve the minimum distortion in the remede
video, constrained by the outgoing bandwidth of sendeks|ahility of video data at senders, and incoming bandwidth
receiver. We show how the adopted rate-distortion modatsstorm the nonlinear problem to an integer linear program-
ming (ILP) problem. We then design a simple rounding schdraettansforms the ILP problem to a linear programming
(LP) one, which can be solved efficiently using common optation techniques such as the Simplex method. We prove
that our rounding scheme always produces a feasible sojuiad the solution is within a negligible margin from the
optimal solution. We also propose a new algorithm (FGSAsdior the allocation problem that runs @n(n log n) steps,
wheren is the number of senders. We prove that FGSAssign is optieadause of its short running time, FGSAssign can
be used in real time during the streaming session. Our expetal study validates our analytical analysis and shows th
effectiveness of our allocation algorithm in improving thdeo quality.

Keywords: Fine-grained scalable streaming, FGS, rate-distorticimoped streaming, video streaming, peer-to-peer
streaming, distributed streaming

1. INTRODUCTION

Video streaming over the Internet is increasingly gettingnpopular. In this paper, we consider video streamingesyst

in which a streaming session has multiple senders and aegiagtiver. Multiple senders may be required in peer-ta-pee
streaming environments® because of the limited capacity and unreliability of pe#sitiple senders are also desired in
distributed streaming systefrt® achieve disjoint network path streaming and hence bgttality. We consider the general
case when senders have heterogeneous outgoing bandwidtimagy store different portions of the requested stream. Our
problem is to optimally allocate to each potential sendemasmission rate and range of bits to transmit such that the
best video quality is achieved at the receiver. We illustthe importance of the bit allocation problem using the #&mp
example shown in Figure 1. There are three senders P1, PERJZrahd one receiver PO. P1, P2, and P3 have outgoing
bandwidth of 192, 128, and 192 Kbps, respectively, and POrtcasning bandwidth of 1 Mbps. Furthermore, senders are
assumed to have downloaded different portions of the stiedhe past.

Figure 1 compares various possible solutions for the diloegroblem, and the quality of the received stream in
each case. In Figure 1(a), a nonscalable allocation schenmnsidered, which assumes that the video stream is encoded
using a nonscalable encoder. In nonscalable encodingrésns has to be downloaded in its entirety, otherwise it is
not decodable. In this case, senders are considered to Heeremt versionsof the same stream. Therefore, under the
nonscalable allocation scheme, the receiver can only get28 Kbps stream version. Notice that collaboration among
senders is not possible, because the versions they havene@rdesl differently. Nonscalable encoding is actually not
uncommon in current Internet streaming systems: Many msiirga servers post the same video clip in different rates to
accommodate users with heterogeneous bandwidth. To coipéhiinflexibility of nonscalable encoding, some streamin
systems encode a stream into multiple layers. Typicalgralare a few number of layers, because of the layering oadrhe
and the complexity of the coding/decoding processes. lerkyscalable coding, partial layers are not decodablewr&ig
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Figure 1. A multi-sender streaming session using different all@ratichemes.

1(b) shows a layered scalable allocation scheme, wherdrémns is encoded into four layers, each has a bit rate of 128
Kbps. In this case, the receiver can get up to three layeesfrom each sender. Thus the received stream will be of rate
384 Kbps. Due to the coarse-grain nature of the layers, tlisagion scheme cannot leverage the remaining 64 Kbps
bandwidth at each of P1 and P3.

The fine-granularity scalability (FGS) encoding adds digant flexibility to the layered encoding: FGS-encoded
streams provide bit-level scalability, which means thasbieams can be truncated at any bit location. In additi@S+
encoded streams have the property that a low-quality stieaiways a prefix of a higher-quality one. The FGS flexibijlity
however, complicates the problem of allocating bits to sesdecause of the finer resolution and the too many altotati
possibilities that should be considered to select the atattocation. For instance, a possible FGS allocation aswsh
in Figure 1(c), where the received stream has a bit rate olk¥§%. This scheme started by allocating the first 192 Kbps
of the stream to P3. Thus it cannot use P2, because the sttd@2risaa prefix of what would be transmitted by P3. The
only option left for this allocation scheme is to allocate #econd 192 Kbps of the stream to P1. A more careful—actually
optimal—allocation is shown in Figure 1(d), where the reeegets a much better quality stream of 512 Kbps bit rate.

To summarize, this example indicates that significant ¢uatiprovement could be achieved by adopting the fine-
grained scalable encoding in streaming systems with meltipterogeneous senders. It also highlights the impogtahc
the optimal allocation of bits among senders.

The bit allocation problem described above can be solvedfoanae-by-frame basis: For every frame, we optimally
allocate the bits of that frame to senders. The optimal atlon ensures that the maximum number of bits in every frame
is transmitted from senders. More bits of the same framealyéds reconstruction distortion, and hence better playout
quality. The bit allocation problem could also be solvedddslock of multiple frames at once. The rationale is that we
may have an opportunity to further enhance quality by carsig the relative importance of bits in frames belonging to
the same block.

To illustrate the multiple-frame bit allocation problengnsider a block of three frames, as shown in Figure 2(a).
Assume that the optimal solution of the single-frame affimoreproblem determined that senders can transmit up,te-
By, = Bj hits for frames 1, 2, and 3. Further, suppose that the fraraes the rate-distortion (R-D) curves shown in
Figure 2(b). R-D curves map a given bit rate to the corresppondistortion level (detailed description of R-D curves
is given in Section 3). Notice that the R-D curves may diffemfi one frame to another, because they depend on the
temporal and spatial complexities of the frame. Figure B(bicates that transmittin$; , Bo, B3 bits results in distortion
levels D1, Do, D3 for frames 1, 2, and 3, respectively. Notice thag is much larger tharD; and D3, which implies
large fluctuation in the playout quality of the consecutivenies. Quality fluctuations have a negative impact on the
user-perceived quality. Now, consider the same bit budgdhi three-frame block, but distributed differently argdhe
frames, as shown in the lower part of Figure 2(a). This slait#nge in bit distribution results in quality improvemant i
two ways: (i) smaller total distortion in the block; and, mdmportantly, (i) much smaller quality fluctuation in sessive
frames. This is shown in Figure 2(b), where the new distortévels are denoted by}, D5, D%. Notice that the decrease
in bit rates allocated to frames 1 and 2 result in a minor iasedn their distortion levels, while the distortion of frar?
decreases substantially due to the extra bit rate allotatiedin summary, solving the bit allocation problem at tHedk
level optimizes the playout quality by getting the maximummber of bits from senders, and by carefully distributing
these bits among frames using rate-distortion curves.
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Figure 2. The importance of solving the bit allocation problem at thexk level.

In this paper, we formulate and optimally solve the singta¥fe bit allocation problem, and we experimentally show
the effectiveness of our solutions in improving the videsyplut quality. In particular, we make the following contritons.
First, we formulate the single-frame allocation problenaa®ptimization problem with an objective function to mie
the distortion. By using the piece-wise linear rate-digbor model, we transform the general (nonlinear) optimdaat
problem into an integer linear programming (ILP) problene ¥©¢sign a simple rounding scheme that transforms the ILP
problem into a linear programming (LP) one, which could blvesh efficiently using common optimization techniques
such as the Simplex method. We prove that our rounding sclaémag's produces a feasible solution, and the solution is
within a negligible margin from the optimal one. Second, wegmse a new algorithm (FGSAssign) for the single-frame
allocation problem that runs i@(n log n) steps, where is the number of senders. We prove that FGSAssign is optimal.
We solve the multiple-frame allocation problems in the egied version of this papér.

The rest of this paper is organized as follows. We discusdgaélwork in Section 2. Section 3 presents and validates
the rate-distortion model adopted in this paper. In Sectiowe formulate the single-frame allocation problems, aed w
present our rounding scheme. In Section 5, we present the=@®Assign algorithm, and we prove its optimality. We
evaluate our algorithm and compare it against the optimalioi$ection 6. Section 7 concludes the paper.

2. RELATED WORK

Distributed and peer-to-peer streaming has recently vedesignificant research attention. For example, the dised
video streaming framewoflshows the feasibility and benefits of streaming from mudtggrvers to a single receiver. The
receiver uses a rate allocation algorithm to determine¢heisg rate for each server to minimize the total packet I18ss
tomography-based sender selection protocol is propoded optimize quality at the receiver. Both work do not conside
scalable-coded streams. Layered-scalable streams asigleced if ancf to cope with the bandwidth heterogeneity.In,
the multi-sender streaming problem is formulated to mazéntihe streaming quality of all peers and minimize the load on
the originating media distributor. The authorg design practical algorithms to adapt to bandwidth dynaniiigferent
from our work, these two studies employ coarse-graineabddl/, and they are not R-D optimized.

Su and Wang consider a minimization problem for the transimistime of FGS-encoded images’iThey formulate
the problem as a nonlinear program, and then they transfotma series of LP subproblems. Each LP subproblem
determines a peer allocation to maximize the number of veddiits in a given delay bound. Unlike our work, the work
in® does not consider the characteristics of the R-D curvesddgossequences. A framework to solve the problem of
streaming interdependent packetized video data unitslossy networks in R-D optimized fashion is proposed ifhis
framework has been generalized by many researchers fraousgrerspectives. For instantand consider the multiple
server video streaming problem in R-D optimized way. Howgtleey concentrate on nonscalable and layered coded
streams, and do not explicitly specify any R-D models.

3. RATE-DISTORTION MODELS

Rate-distortion (R-D) models are functions that map bisab expected distortion—and hence perceived qualityeklev
Since we are interested in optimizing quality at varioussawe need accurate R-D models. Several analytic R-D models
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Figure 3. The accuracy of the linear R-D model: (a), (b) randomly chdsames from different sequences, and (c) the average error
between curves estimated by the (modified) linear model lem@dtual R-D curves.

for FGS-encoded sequences have been proposed, e.qg., ére-sgat modet? the logarithm modet! and the Generalized
Gaussian modeéf The accuracy and complexity of various FGS R-D models adiestiin1® In each one of these analytic
models, the distortion is related to the rate withanlinearfunction. Nonlinear R-D functions make our bit allocation
problem (described in Section 4) a nonlinear optimizatimbfem, which is hard (if at all feasible) to solve.

Another approach for obtaining R-D models is by empiricaflgasuring the distortion at various bit rates. Since the
range of possible bit rates for the enhancement layer is&llgilarge (order of Mbps), too many sample bit rates are
needed to obtain accurate R-D models. This requires degadldénvideo sequence many times, which is computationally
expensive [14, page 302]. A third approach for construd®Ag models is to empirically measure distortion only at a few
carefully chosen bit rates and interpolate the R-D curveveeh these points based on some inherent characteristtos of
enhancement layer. The piece-wise linear R-D médlelhich we adopt in this paper, falls into this category.

In the following subsections, we first present the pieceswiizear R-D model and how we extract its parameters from
video sequences. Then, we experimentally show its accufatslly, we discuss important properties of this modelahhi
we will employ in the formulation and solution of our bit adiation problem.

3.1. The Piece-wise Linear R-D Model

The key idea of the piece-wise linear motdgwe refer to it simply as the linear model) is that within editplane the

R-D curve can be approximated by a line segment. Line segnoéuifferent bitplanes have different slopes. Figure 3(a)
shows an example. The problem of finding the R-D function is neduced to measuring the distortion at bit rates that
correspond to bitplane boundaries (up to 8 samples in messaand computing the slopes of the different line segsnent

Building and storing the linear R-D model for a given sequeisquite efficient. We first identify the bitplane bound-
aries from the header inserted in each bitplane during th® &&oding process. We compute the size of each bitplane
h, and denote it by,,. If there arez bitplanes, we decode the sequence 1 times but in each time wiauncatethe
enhancement layer at a different bitplane boundary. Afesmoding we compute the distortion—in mean-square error
(MSE)—between the original and reconstructed sequende=n e compute the slogg for each bitplané:.. The R-D
model parameters are extracted only once and stored in afileetle need to store only the size of each bitplane and
the slope of the line segment in that bitplane. The meta fitks @dnegligible storage overhead, up to 64 bytes per frame.
Frames sizes are usually in order of tens of kilo bytes.

3.2. Accuracy of the Linear R-D Model

Since the accuracy of the adopted R-D model is crucial to oalslpm, we validate the accuracy of the linear R-D model.

To do so, we compare the accuracy of the linear model agdiesadtual R-D curves, which are obtained as follows.

We select six equally-spaced sampling rates on each béplahen, we compute the actual distortion by decoding and
comparing the original and reconstructed sequences asaagbling rate. We carry out the comparison over severabvide

sequences of different temporal and spatial complexities.

For visual validation, we randomly choose two frames and fhle actual R-D curves and the ones estimated by the
linear model. Figure 3(a) and 3(b) illustrate that the lmaadel approximates the actual R-D curves quite well. Faremo
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Figure 4. The monotonicity property of the linear R-D model. The figah®ws the slope parametersf two frames from Foreman
(left) and two frames from Mobile (right) sequences. Not tlonly the rightmost frame requires aggregation.

rigorous validation, we compute the absolute error betwberactual and linear model curves at all sampling rates. We
compute the average error per frame, and we repeat that foarales in the considered sequences. The results (plots are
given irP) confirm the accuracy of the linear R-D model: the averagerésress than 2% in almost all cases.

3.3. Properties of the Linear R-D Model

By examining a large set of R-D parameters for many framedpwed that curves produced by the linear model has the
following property: The slopes of the line segments form aotonically increasing series, thatig, < g2 < --- < g, <

0, wheregy, is the slope of line segment in bitplaheFigure 4 demonstrates this property. This is intuitive lnsesthe
most significant bitplanes carry higher significant bitsg #mus the per-bit reduction in distortion is higher. Thisamg
that the most significant bitplanes will have steeper andemegative slopes.

While the above explanation of slope monotonicity makessgwe have seen a few anomalies. For instance, frame
2 of Foreman hag; = —0.15 > —1.8 = go. Almost all anomalies occurred between bitplanes 1 and @mHRurther
examination, we found that the anomalies occur when theddittee first bitplane is very small, around 100 bytes or less
. At that small size, the overhead of the bitplane headerrbesaignificant, which negatively impacts #féectiveper-bit
reduction in distortion (i.e., the slope) for bits in bitp&al. We also notice that the smaller the size of bitplaneelhither
the negative impact.

Because some of the proofs of our optimal bit allocation fmebrequire the monotonicity of the slopes, we propose
a simple processing of linear R-D curves to maintain moniotgn we aggregate any two neighboring bitplanes into a
single bitplane whenever there is a violation in monotdpidror instance, the rightmost subfigure of Figure 4 shows th
slopes before and after bitplane aggregation. Notice fhutjlane aggregation is needed, it is almost always sefiitcio
aggregate the first two planes, and in very rare cases betiWweesecond and third bitplanes. To verify this, we examined
slopes of all bitplanes of all frames in four video sequenédsyo, Mother, Foreman, and Mobile. We found that only
two pairs of consecutive bitplanes out of 5734 total bitpriolated the monotonicity property. Furthermore, these
violations can be eliminated by two more bitplane aggregat{details are given

Finally, we examined the impact of the bitplane aggregatiorihe accuracy of the#ansformedinear R-D curves.
We repeat the accuracy assessment experiments in the ysestdsection, but using linear R-D curves after bitplane
aggregation is performed on them. Figure 3(c) shows thaatkeage error between the modified linear R-D curves and
the actual ones is the same as the (untransformed) lineac&:@s, which is less than 2% in almost all cases.

4. THE BIT ALLOCATION PROBLEM: FORMULATION AND SOLUTION

In this section, we consider the bit allocation problem farltissender video streaming systems that use FGS encoded
streams. We assume the base layer is coded at a reasonalbliy tate and can be transmitted through a reliable channel.
Our goal is to develop a practical algorithm for many-to-streaming sessions such that the available resources are
intelligently allocated to achieve the maximal percepsisaming quality.



4.1. Problem Formulation

The bit allocation problem we address in this paper can liedsts follows. Given multiple senders that can potentially
serve an FGS-encoded video sequence to a receiver, whatersdrave different portions of the sequence and have
different outgoing bandwidth, and the receiver has a limitlee incoming bandwidth. Determine the streaming rate and
the range of bits allocated to each sender to achieve thepbssible video quality at the receiver. It is assumed that
the base layer is coded at a low, and fixed bit rate and can iadlsetelivered by any sender. We seek to optimize the
streaming of the enhancement layer because it contribigieicantly larger bit rates than the base layer, and urtlies
base layer, its bit rate can be controlled.

We address this problem in two steps. First, we optimize thadity of individual frames of the sequence. That is, we
formulate and solve the problem for each frame. In the sesteq we divide the sequence into blocks of frames, each
has a fixed number of frames. Then, we formulate and solveptimization problem for each block. The second step is
presented in the extended version of the p&per.

We now formulate the allocation problem for individual frasn LetT” denote the frame period in seconds, which is the
multiplicative inverse of the frame raté. is fixed for all frames in the considered sequence. Assunre Hren potential
senders, each with outgoing bandwidii(i = 1,2, ...,n). Each sendetrholdss; contiguous bits, which is a portion of
the enhancement layer bit stream. Without loss of gengralé assume that; < sy < --- < s,,, otherwise we re-label
senders to achieve that. Note that the nature of FGS-enamapobnces implies that a lower quality bit stream is always
a subset of a higher quality one. Thatds,s always gprefixof s;; foralli = 1,2,...,n — 1. The receiver incoming
bandwidth is denoted hy;.

Solving the allocation problem should yield an allocatiadliqy A = {(A;,7;)]i = 1,2,...,n}, whereA; is the
number of bits allocated to peeandr; < b, is its streaming rate. Bits are allocated to peers as foll®egr 1 transmits

the range front to A; — 1, peer 2 transmits from\; to A; + A, — 1, and in general peértransmits frome;i A, to
>i—; Ay — 1. Mathematically, the bit allocation problem for a givenrfracan be formulated as:

min - DY A) (1a)
t=1
s.t. Al — TZ'T S 0 (1b)
S A< (10)
t=1
ri <b; (1d)
ZH <bs (1e)
t=1
Aj,ri €Ny i=1,2,...,n. (1f)

The objective function in (1a) is to find the optimal allocetiA* that minimizes the reconstruction distortion, and
hence maximizes the rendered quality. The constraints eagxplained as follows: (1b) ensures that each sender has
enough time to transmit all bits allocated to&(— r,7 < 0 = A;/r; < T). (1c) ensures that the allocated bits to
each sender are within the portion of bits stored at thatesemdhile (1d) and (1€) ensure that the limits on the incoming
and outgoing bandwidth of the receiver and senders are ceteed.

In order to solve this optimization problem, we need the niragppetween the distortion and total number of bits
received. Note that dividing the total number of bits by tfieed) frame period” yields the bit rate. As we discussed
in Section 3, we adopt the linear R-D model for this mappincglose: (i) it is fairly accurate, (ii) its parameters can be
efficiently extracted from the video sequence, and more ntapdly, (iii) it results in a linear objective function ameénce
efficient solution of the optimization problem. Recall thia¢ linear R-D model divides the R-D curve into several line
segments, each corresponds to a bitpfaard has a different slopg, (see Figure 3(a)). The slopg represents the per-bit
reduction in the distortion in bitplarie Therefore, in order to compute the total distortion for agible bit allocation, we
need to find how many bits are transmitted from each bitpl@aelo that, we introduce a new variablg(h = 1,2, ..., 2)
to represent the number of bits transmitted from bitplane is the number of bitplanes in the enhancement layer of the



considered frame. Now the distortion can be computedl-asy_; _, g, y», whered is the distortion when only the base
layer is transmitted. The optimization problem in (1) canrdsvritten as:

rnjn D(ZAt):d+ng Yo (2a)
t=1 v=1

s.t. Al — TZ'T S 0 (Zb)
S A <s; (2¢)

t=1
ri <b; (2d)
ZH <br (2e)

t=1
yn <lp (2f)
YoA=D (29)

t=1 v=1

Agriyn €Ny i=1,2....n; h=1,2,...,z. (2h)

Notice the two new constrains in (2f) and (2g). (2f) makegdshat the number of bits transmitted from a bitplane does
not exceed the size of that bitplane, whereas (2g) ensuaethih total number of bits transmitted from different kaipés
is exactly the same as the number of bits allocated to senders

Unlike (1), (2) is an integer linear programming (ILP) preinl, because the objective function as well as all consgraint
are linear. While ILP problems are less complex than noalipeoblems, they are still NP-hard [16, page 777]. In the
next section, we present a rounding scheme that transftveni& P problem in (2) to a linear programming (LP) problem,
which can be solved using the Simplex method or other effitiBrsolvers. But before doing so, we need to make sure that
the optimal solution for the ILP in (2) will producealid FGS-encoded bit stream. An FGS-encoded bit stream is valid
if it has a contiguous stream of bits with no gaps between théthere is a gap in the bit stream, the FGS decoder will
ignore the rest of the bit stream beyond the gap, which wiluce the quality. The following lemma proves the validity of
the optimal solution of (2).

LEMMA 1. An optimal solution for (2) produces a contiguous FGS-eerchit stream with no bit gaps.

Proof. To prove this lemma, we need to show that no bits from a biggjavill be transmitted before all bits of bitplanes
h < j are transmitted, where j = 1,2, ..., z andz is the number of bitplanes. That is, we need to show that ifpdinal
allocation results iy; # 0 foranyj = 2,3,..., z, then it must be the case thgt = [, whereh = 1,2,...,j — 1, and
Iy, is the size of bitplané. We prove this by contradiction.

Assume that the optimal allocatiott produced;; # 0 and there existg;, < I, for someh < j. We construct another
allocationA which is exactly the same at’, except we shify = min(y;,l, —y};) > 0 bits from bitplanej to bitplaneh.

Alis indeed a feasible allocation because it satisfies alldhsteaints in (2). Furthermore, the distortion associatil A
is given byD = D* + (gn — gj)q < D*, sinceg, is always less thap, because slopes are monotonically increasing, as
discussed in Section 3. This is a contradiction becdises supposed to be the minimum distortidn.

4.2. Rounding Scheme and Linear Programming Solution

In this section, we present a rounding scheme that transftrenlLP problemin (2) to a linear programming (LP) problem,

which can be solved using the Simplex method. We show thataunding scheme results in a solution that is within a

negligible gap from the optimal. Our LP formulation of the &llocation problem is exactly the same as (2), except the
constraint in (2h) is now relaxed to be:

Aiyriyn €ERTU{0); i=1,2,...,n; h=1,2,...,2. 3)



LetA = {(ﬁi, ;)i =1,2,...,n} be the optimal allocation produced by solving the LP probl&m 7; are in general
non-negative real numbers. To obtain integer solutionshHeroriginal ILP problem, we propose the following rounding
scheme:

_ AL 7>
ro= (7, and &= BUE T @
O, OS T S 1

In the following two lemmas, we prove that this rounding soeendeed produces a feasible solution, and that solution
is very close to the optimal one.

LEmMMA 2. Rounding of the optimal solution of the relaxed linear peogming problem using the rounding scheme in (4)
always produces a feasible solution for the integer line@gpamming problem defined in (2).

Proof. We only need to prove that constraint (2b) is satisfied, ithate need to show thak; — 7,7 < 0. Notice that
all other constraints are automatically satisfied becawesemwnd down both of; andA;.

We first consider the case whén> 1. Forany; = 1,2, ...,n, we have:

N Az ’ﬂ:l 31 ?1',/\—1 37{ T‘i:l N )
é — |— AT{, J S AT{, < Ti — AZ S T
T 73] 73] ;
where the first inequality (from the left) is from the defioitiof the floor function, and the second inequality is due & th
factthat|7; | > 7;—1. Nextwe consider the case wher< 7; < 1. Inthis caseA; = 0. ThereforeA;,—7,7 = -7, T < 0,
becaus&; > 0, and the constraint is satisfied.

LEmMMA 3. The rounding scheme in (4) results in a total number of bigs hsmaller than the optimal number of bits by
at mostnT" + n, wheren is the number of senders afidis the frame period.

Proof. We first compute the gap between the optimal and roundedi@adufor an arbitrary sender wherei =
1,2,...,n. If 7, > 1, we have:

. =1 o~ o~ T—1 A,
A-R=A - [ A <A A 1= hi<T 4L
T i T

If 0 <7; <1, we have R R

Therefore, the gap for any sender is bounded’by 1. Thus for alln senders, the gap is at mast’ + n. O

Lemma 3 shows that the gap between the solution resulteddtmmounding scheme and the optimal one is negligible.
To put this gap into perspective, consider an extreme-¢eesssing session in which 30 senders are concurrentlysineg
to a single receiver. Assume that the frame rate is 15 fraraesgrond. Then, the gap is at mdgf15 + 30 = 32 bits.
That is, the rounded solution may transmit at most 4 bytestleen the optimal one from any given frame, which is indeed
negligible given that frame sizes are in the order of kilogsyt

5. FGSASSIGN: AN OPTIMAL ALGORITHM FOR THE SINGLE-FRAME BIT ~ ALLOCATION
PROBLEM

The LP formulation of the bit allocation problems, preseritethe previous section, can be solved by the Simplex method
On average, the Simplex method is efficient, but it has a waasé exponential running time [17, Section 8.6]. While¢he
exist worst-case polynomial time methods (e.g., Karméaskaterior-point algorithm)® for solving general LP optimiza-
tion problems, they are quite complex to implement, and ttee very large average running times, which in many cases
exceed the average running time of the Simplex method.

We propose a greedy algorithm, called FGSAssign, to effiljieolve the single frame bit allocation problem. The
pseudo code for the algorithm is given Figure 5. The basia mfethe algorithm is to transmit the maximum possible
number of bits from each senders. It does so by first sortingealders based on the portion of the stream stored at each
sender, such that < s» < --- < s,. Then, it sequentially allocates to sendé¢t{ = 1,2,...,n) the maximum number



FGSAssign

1. Sort all senders based eny wheres; < so < --- < s5,;
2. xo=-=T,=0; Ay =---=A,=0; 1499 =0;
3. for : = 1tondo

4, T; = Inin(d?i,1 + bZT, SZ),

5. T, = (acz- — xi—l)/T;

6. if (rogy + i < br)then

7. Tagg = Tagg + Tis

8. A =y — mi_q;

9. else

10. T = br — Tagg;

11. Ai =T xr;

12. return

13. endfor

Figure 5. Pseudo code for an optimal and efficient algorithm for thglsiframe bit allocation problem.

of bits which sendef can transmit within the frame peridd. The allocated bits must be available at sendée., they
are a subset of;, and they do not overlap with bits allocatedjtdl < j < 7). Thus FGSAssign avoids holes as well as
overlapping of bits among senders. Therefore, the allooatill result in a contiguous bit stream, which is necesdary
decoding FGS-encoded enhancement layers. The followeayém proves that FGSAssign is optimal and efficient.

THEOREM 1. The FGSAssign algorithm terminatesitn log n) steps, where is the number of senders, and it produces
an allocation that minimizes the distortion of individuedres.

Proof. The termination and time complexity part is straightfordvasorting ofs;’s takesO(n logn) steps and the
for-loop iterates up ta times, each taking a constant number of operations.

For the optimality part, we first notice that for individuahfnes, sending more bits always results in smaller distorti
Therefore, sending the maximum number of bits correspantteet minimum distortion. The maximum number of bits is
determined based on either: (i) the receiver incoming baditthvi;, or (ii) senders outgoing bandwidbh and portions of
stream stored; (1 < i < n). In the first case, becausgs are sorted, the algorithm fills up the entire receiveriscaidth
with non overlapping bits and returns from the for-loop melil2. Thus the maximum number of bits will be transmitted.

In the second case, the algorithm terminates after finishiitgrations of the for-loop. In every iteratiarof the for-
loop, the algorithm assigns to sendéhe maximum number of bits that this sender can transmitstcaimed only by the
outgoing bandwidtlh; and the length of the stored portion of the streamn other words, the algorithm makes a greedy
decision(A,;, r;), and solves a subproblem in the- 1 iteration. To prove that this greedy approach is optimal shvew
that the problem has two properties: greedy-choice andngp8ubstructure [16, Chapter 16].

The greedy-choice property guarantees that a globallymabtsolution can be arrived at by a greedy choice. Suppose
{(Az,r*)|u = 4,7+ 1,...,n} is an optimal solution to the original problem in iteratianSince (A, r;) is a greedy
choice, we have\; > A* (andr; > ;). Now, we construct a new solution from the optimal one bytsty bits from
other peers t@, such that the new solution contains the greedy decisioridDbly, the number of bits remains the same,

thus, we have an optimal solution consists of the greedycehoi

The optimal substructure property ensures that combingrgady decision with an optimal solution to the subproblem
results in an optimal solution to the original problem. Weva this property by contradiction. Consider iteration
Suppose the combination of the greedy decigidn, r;) and a subproblem optimal solutidfA,,r,)jv = i + 1,i +
2,...,n} is not an optimal solution to the original problem. Thus, ve@ ¢ind an optimal solutiofi(A%, r*)|u = i,i +
1,...,n} such thaty " _ Ax > " . A,. SinceA; > Ay by the greedy decision, we must haye,_, , A} >

> v—i+1 Ay, which is a contradiction becau$€;_,, | A, is assumed to be an optimal solution to the subproblem.
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Figure 6. Comparison between nonscalable, OPT, and FGSAssign g (a) Quality achieved by each algorithm, and (b) Pa@knt
quality improvement (in dB) by using scalable over nondalal@algorithms. Data shown for streaming Foreman sequerseehnario |.

6. EVALUATION

In this section, we evaluate the importance of the scaldldeadion problem, and we verify the optimality of our FGSAs
sign algorithm.

6.1. Experimental Setup

Software used and developedin our experiments, we use the MPEG-4 Reference SoftwarsioreR.3° developed
by Microsoft as an experimental package for the MPEG-4 stahdlit is implemented in C++ and contains three major
executableseencoder decoder andfgsserver We instrument the reference software to extract varioasssts of a
video sequence. For instance, we collect the transfornficieeits, number of bitplanes, and size of each bitplaneén th
enhancement layer. This information is used to estimatpdh@meters of the linear R-D model.

We have implemented the FGSAssign algorithm (Figure 5) hadptimal algorithm (referred to as OPT) using the
Simplex method. For comparisons, we have also implemehgeddnscalable allocation algorithm discussed in Section 1
All allocation algorithms are implemented in Matlab. We tha experiments on a 3.0 GHz Pentium 4 workstation running
Windows XP.

Streaming scenarios and video test sequences.compare the performance of the allocation algorithmsdesgn
four representative streaming scenarios, which we belepture various Internet and Intranet streaming settinigs.
the first scenario, we consider a receiver using a high-speedection with enough incoming bandwidth to receive full
quality stream, and four senders with 512 kbps, 256 kbpsivbjps, and 3 Mbps outgoing bandwidth. The two senders
with lower outgoing bandwidth represent peers with cablelemo or ADSL connections, while the other two could be
office or campus workstations. Due to the asymmetry betweeamiing and outgoing bandwidth, peers typically receive
video streams with higher bit rates (quality) than they daérve to others. Therefore, we assume that the sendegs stor
different version of the FGS-encoded stream: 512 kbps, 49yi®dbps, and 10 Mbps, respectively.

The second scenario assumes the receiver has 1 Mbps incbamdgvidth, and there are six senders. Four of them
subscribe to 128 kbps uplink access service while the oti@ionly have 64 kbps uplink. Among those four 128 kbps
senders, three of them store 1 Mbps version of the codedmstaaad the last one stores a 512 kbps version. All others have
a 128 kbps version of the stream. The third scenario simakatentranet video casting that is very common nowadays.
Suppose there are four senders at different facilitiesh @a¢hem has 1.5 Mbps connection. The receiver, located at a
regional center, has larger bandwidth of 3 Mbps. Senders &tar different versions of the stream: 256 kbps, 512 kips,
Mbps, and 4Mbps, respectively. The forth scenario has findeses: four of them have 256 kbps outgoing bandwidth and
store a 1.5 Mbps coded stream. The last sender has 512 klgpsraubandwidth and holds a 512 kbps coded version of
the stream. The receiver has 1.5 Mbps incoming bandwidth.



42,

IN

)
T 3.5
40t :
g | )z )
o %8 oo, h e
DZ: % gl' ] i ' lg‘-ﬂ‘l}l! | !‘%wl"l!i H E 2.5t
& |l oLl e 5
< 36} ’j'ﬁﬁ": b, b, 1 BT, EO £
36} it i, L ,Q‘{ )
£ T iy |V 5
E T L B 6 : S
g ' s 1.5p
S 34} g
7 2 1
32 5
O 0.5
30 - . . , . . | | | | |
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Frame Frame
(a) )

Figure 7. Comparison between nonscalable, OPT, and FGSAssign g (a) Quality achieved by each algorithm, and (b) Pa@knt
quality improvement (in dB) by using scalable over nondalal@algorithms. Data shown for streaming Mobile sequenseé@mario 111

In all scenarios, we stream a set of video sequences witkrdiff characteristics. To form this set of test sequencaes, w
have analyzed twenty representative video sequences fiooug sources. We categorize sequences into three caitgplex
classes based on the average spatial and temporal corigsefieach sequenéé We present results for two sequences:
Foreman and Mobile. Both are coded at 30 fps, and have a CIExE8BB) resolution. Foreman sequence is a low-
complexity sequence and has a scene cut, where the secoredsae more details than the first one. Mobile contains
saturated colors and several moving objects, and therisfaraigh-complexity sequence.

6.2. Results

We present a sample of our results in this section due to djpaitations, more results are availabledin.

Scalable versus nonscalable allocationOur results clearly confirm the potential quality improver&om using
scalable allocation algorithms over the nonscalable dmea] considered streaming scenarios and with all testsecgs,
there was at least 1 dB and up to 8 dB improvement in quality fiéets for all cases #). Figure 6 shows a sample plot for
streaming of Foreman in scenario |, where we see an averadieygmprovement of at least 5 dB. Figure 7 demonstrates
streaming of Mobile in scenario Ill. The figure shows morentBaiB quality improvement.

Optimality of FGSAssign.To verify our analytic results regarding the optimality bEtFGSAssign, we compare the
distortion achieved by solving the LP problem using the S&mpethod versus the distortion achieved by the FGSAssign
algorithm. In all cases, FGSAssign produced exactly theesdistortion values as the optimal as indicated in Figura® 6(
and 7(a).

7. CONCLUSION

In this paper, we formulated and solved the bit allocatiabfem for FGS-encoded video sequences streamed in distibu
and heterogeneous environments. The formulation was doaeumber of steps. First a general optimization problem
was formed, which is transformed to an integer linear progning (ILP) one. Then using a simple rounding scheme, the
ILP problem is transformed to a linear programming probl&ve.proposed an optimal allocation algorithm (FGSAssign)
for the single-frame allocation problem. Our experimengsllts show that solving the bit allocation problem using o
algorithm could provide significant quality improvemeneogolving it using the nonscalable algorithm: An improveine
of up to 8 dB could be achieved in some cases. The quality ivgmnent is even higher when allocating bits to blocks of
multiple frames. This is because multiple frame allocapioovides more chances for optimization.
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