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ABSTRACT

We present optimal schemes for allocating bits of fine-grained scalable video sequences among multiple senders streaming
to a single receiver. This allocation problem is critical inoptimizing the perceived quality in peer-to-peer and distributed
multi-server streaming environments. Senders in such environments are heterogeneous in their outgoing bandwidth and
they hold different portions of the video stream. We formulate the allocation problem as an optimization problem, which
is nonlinear in general. We use rate-distortion models in the formulation to achieve the minimum distortion in the rendered
video, constrained by the outgoing bandwidth of senders, availability of video data at senders, and incoming bandwidthof
receiver. We show how the adopted rate-distortion models transform the nonlinear problem to an integer linear program-
ming (ILP) problem. We then design a simple rounding scheme that transforms the ILP problem to a linear programming
(LP) one, which can be solved efficiently using common optimization techniques such as the Simplex method. We prove
that our rounding scheme always produces a feasible solution, and the solution is within a negligible margin from the
optimal solution. We also propose a new algorithm (FGSAssign) for the allocation problem that runs inO(n log n) steps,
wheren is the number of senders. We prove that FGSAssign is optimal.Because of its short running time, FGSAssign can
be used in real time during the streaming session. Our experimental study validates our analytical analysis and shows the
effectiveness of our allocation algorithm in improving thevideo quality.

Keywords: Fine-grained scalable streaming, FGS, rate-distortion optimized streaming, video streaming, peer-to-peer
streaming, distributed streaming

1. INTRODUCTION

Video streaming over the Internet is increasingly getting very popular. In this paper, we consider video streaming systems
in which a streaming session has multiple senders and a single receiver. Multiple senders may be required in peer-to-peer
streaming environments,1–3 because of the limited capacity and unreliability of peers.Multiple senders are also desired in
distributed streaming systems4 to achieve disjoint network path streaming and hence betterquality. We consider the general
case when senders have heterogeneous outgoing bandwidth, and may store different portions of the requested stream. Our
problem is to optimally allocate to each potential sender a transmission rate and range of bits to transmit such that the
best video quality is achieved at the receiver. We illustrate the importance of the bit allocation problem using the simple
example shown in Figure 1. There are three senders P1, P2, andP3, and one receiver P0. P1, P2, and P3 have outgoing
bandwidth of 192, 128, and 192 Kbps, respectively, and P0 hasincoming bandwidth of 1 Mbps. Furthermore, senders are
assumed to have downloaded different portions of the streamin the past.

Figure 1 compares various possible solutions for the allocation problem, and the quality of the received stream in
each case. In Figure 1(a), a nonscalable allocation scheme is considered, which assumes that the video stream is encoded
using a nonscalable encoder. In nonscalable encoding, the stream has to be downloaded in its entirety, otherwise it is
not decodable. In this case, senders are considered to have different versionsof the same stream. Therefore, under the
nonscalable allocation scheme, the receiver can only get the 128 Kbps stream version. Notice that collaboration among
senders is not possible, because the versions they have are encoded differently. Nonscalable encoding is actually not
uncommon in current Internet streaming systems: Many streaming servers post the same video clip in different rates to
accommodate users with heterogeneous bandwidth. To cope with the inflexibility of nonscalable encoding, some streaming
systems encode a stream into multiple layers. Typically, there are a few number of layers, because of the layering overhead
and the complexity of the coding/decoding processes. In layered scalable coding, partial layers are not decodable. Figure
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Figure 1. A multi-sender streaming session using different allocation schemes.

1(b) shows a layered scalable allocation scheme, where the stream is encoded into four layers, each has a bit rate of 128
Kbps. In this case, the receiver can get up to three layers, one from each sender. Thus the received stream will be of rate
384 Kbps. Due to the coarse-grain nature of the layers, this allocation scheme cannot leverage the remaining 64 Kbps
bandwidth at each of P1 and P3.

The fine-granularity scalability (FGS) encoding adds significant flexibility to the layered encoding: FGS-encoded
streams provide bit-level scalability, which means that bit streams can be truncated at any bit location. In addition, FGS-
encoded streams have the property that a low-quality streamis always a prefix of a higher-quality one. The FGS flexibility,
however, complicates the problem of allocating bits to senders, because of the finer resolution and the too many allocation
possibilities that should be considered to select the optimal allocation. For instance, a possible FGS allocation is shown
in Figure 1(c), where the received stream has a bit rate of 384Kbps. This scheme started by allocating the first 192 Kbps
of the stream to P3. Thus it cannot use P2, because the stream at P2 is a prefix of what would be transmitted by P3. The
only option left for this allocation scheme is to allocate the second 192 Kbps of the stream to P1. A more careful—actually
optimal—allocation is shown in Figure 1(d), where the receiver gets a much better quality stream of 512 Kbps bit rate.

To summarize, this example indicates that significant quality improvement could be achieved by adopting the fine-
grained scalable encoding in streaming systems with multiple heterogeneous senders. It also highlights the importance of
the optimal allocation of bits among senders.

The bit allocation problem described above can be solved on aframe-by-frame basis: For every frame, we optimally
allocate the bits of that frame to senders. The optimal allocation ensures that the maximum number of bits in every frame
is transmitted from senders. More bits of the same frame yield less reconstruction distortion, and hence better playout
quality. The bit allocation problem could also be solved fora block of multiple frames at once. The rationale is that we
may have an opportunity to further enhance quality by considering the relative importance of bits in frames belonging to
the same block.

To illustrate the multiple-frame bit allocation problem, consider a block of three frames, as shown in Figure 2(a).
Assume that the optimal solution of the single-frame allocation problem determined that senders can transmit up toB1 =
B2 = B3 bits for frames 1, 2, and 3. Further, suppose that the frames have the rate-distortion (R-D) curves shown in
Figure 2(b). R-D curves map a given bit rate to the corresponding distortion level (detailed description of R-D curves
is given in Section 3). Notice that the R-D curves may differ from one frame to another, because they depend on the
temporal and spatial complexities of the frame. Figure 2(b)indicates that transmittingB1, B2, B3 bits results in distortion
levelsD1, D2, D3 for frames 1, 2, and 3, respectively. Notice thatD2 is much larger thanD1 andD3, which implies
large fluctuation in the playout quality of the consecutive frames. Quality fluctuations have a negative impact on the
user-perceived quality. Now, consider the same bit budget for the three-frame block, but distributed differently among the
frames, as shown in the lower part of Figure 2(a). This slightchange in bit distribution results in quality improvement in
two ways: (i) smaller total distortion in the block; and, more importantly, (ii) much smaller quality fluctuation in successive
frames. This is shown in Figure 2(b), where the new distortion levels are denoted byD′

1, D
′

2, D
′

3. Notice that the decrease
in bit rates allocated to frames 1 and 2 result in a minor increase in their distortion levels, while the distortion of frame 2
decreases substantially due to the extra bit rate allocatedto it. In summary, solving the bit allocation problem at the block
level optimizes the playout quality by getting the maximum number of bits from senders, and by carefully distributing
these bits among frames using rate-distortion curves.
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Figure 2. The importance of solving the bit allocation problem at the block level.

In this paper, we formulate and optimally solve the single-frame bit allocation problem, and we experimentally show
the effectiveness of our solutions in improving the video playout quality. In particular, we make the following contributions.
First, we formulate the single-frame allocation problem asan optimization problem with an objective function to minimize
the distortion. By using the piece-wise linear rate-distortion model, we transform the general (nonlinear) optimization
problem into an integer linear programming (ILP) problem. We design a simple rounding scheme that transforms the ILP
problem into a linear programming (LP) one, which could be solved efficiently using common optimization techniques
such as the Simplex method. We prove that our rounding schemealways produces a feasible solution, and the solution is
within a negligible margin from the optimal one. Second, we propose a new algorithm (FGSAssign) for the single-frame
allocation problem that runs inO(n log n) steps, wheren is the number of senders. We prove that FGSAssign is optimal.
We solve the multiple-frame allocation problems in the extended version of this paper.5

The rest of this paper is organized as follows. We discuss related work in Section 2. Section 3 presents and validates
the rate-distortion model adopted in this paper. In Section4, we formulate the single-frame allocation problems, and we
present our rounding scheme. In Section 5, we present the newFGSAssign algorithm, and we prove its optimality. We
evaluate our algorithm and compare it against the optimal one in Section 6. Section 7 concludes the paper.

2. RELATED WORK

Distributed and peer-to-peer streaming has recently received significant research attention. For example, the distributed
video streaming framework4 shows the feasibility and benefits of streaming from multiple servers to a single receiver. The
receiver uses a rate allocation algorithm to determine the sending rate for each server to minimize the total packet loss. A
tomography-based sender selection protocol is proposed in1 to optimize quality at the receiver. Both work do not consider
scalable-coded streams. Layered-scalable streams are considered in3 and2 to cope with the bandwidth heterogeneity. In,3

the multi-sender streaming problem is formulated to maximize the streaming quality of all peers and minimize the load on
the originating media distributor. The authors of2 design practical algorithms to adapt to bandwidth dynamics. Different
from our work, these two studies employ coarse-grained scalability, and they are not R-D optimized.

Su and Wang consider a minimization problem for the transmission time of FGS-encoded images in.6 They formulate
the problem as a nonlinear program, and then they transform it to a series of LP subproblems. Each LP subproblem
determines a peer allocation to maximize the number of received bits in a given delay bound. Unlike our work, the work
in6 does not consider the characteristics of the R-D curves of video sequences. A framework to solve the problem of
streaming interdependent packetized video data units overlossy networks in R-D optimized fashion is proposed in.7 This
framework has been generalized by many researchers from various perspectives. For instance,8 and9 consider the multiple
server video streaming problem in R-D optimized way. However, they concentrate on nonscalable and layered coded
streams, and do not explicitly specify any R-D models.

3. RATE-DISTORTION MODELS

Rate-distortion (R-D) models are functions that map bit rates to expected distortion—and hence perceived quality—level.
Since we are interested in optimizing quality at various rates, we need accurate R-D models. Several analytic R-D models
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Figure 3. The accuracy of the linear R-D model: (a), (b) randomly chosen frames from different sequences, and (c) the average error
between curves estimated by the (modified) linear model and the actual R-D curves.

for FGS-encoded sequences have been proposed, e.g., the square-root model,10 the logarithm model,11 and the Generalized
Gaussian model.12 The accuracy and complexity of various FGS R-D models are studied in.13 In each one of these analytic
models, the distortion is related to the rate with anonlinearfunction. Nonlinear R-D functions make our bit allocation
problem (described in Section 4) a nonlinear optimization problem, which is hard (if at all feasible) to solve.

Another approach for obtaining R-D models is by empiricallymeasuring the distortion at various bit rates. Since the
range of possible bit rates for the enhancement layer is typically large (order of Mbps), too many sample bit rates are
needed to obtain accurate R-D models. This requires decoding the video sequence many times, which is computationally
expensive [14, page 302]. A third approach for constructingR-D models is to empirically measure distortion only at a few
carefully chosen bit rates and interpolate the R-D curve between these points based on some inherent characteristics ofthe
enhancement layer. The piece-wise linear R-D model,15 which we adopt in this paper, falls into this category.

In the following subsections, we first present the piece-wise linear R-D model and how we extract its parameters from
video sequences. Then, we experimentally show its accuracy. Finally, we discuss important properties of this model which
we will employ in the formulation and solution of our bit allocation problem.

3.1. The Piece-wise Linear R-D Model

The key idea of the piece-wise linear model15 (we refer to it simply as the linear model) is that within eachbitplane the
R-D curve can be approximated by a line segment. Line segments of different bitplanes have different slopes. Figure 3(a)
shows an example. The problem of finding the R-D function is now reduced to measuring the distortion at bit rates that
correspond to bitplane boundaries (up to 8 samples in most cases), and computing the slopes of the different line segments.

Building and storing the linear R-D model for a given sequence is quite efficient. We first identify the bitplane bound-
aries from the header inserted in each bitplane during the FGS encoding process. We compute the size of each bitplane
h, and denote it bylh. If there arez bitplanes, we decode the sequencez + 1 times but in each time wetruncatethe
enhancement layer at a different bitplane boundary. After decoding we compute the distortion—in mean-square error
(MSE)—between the original and reconstructed sequences. Then we compute the slopegh for each bitplaneh. The R-D
model parameters are extracted only once and stored in a metafile. We need to store only the size of each bitplane and
the slope of the line segment in that bitplane. The meta file adds a negligible storage overhead, up to 64 bytes per frame.
Frames sizes are usually in order of tens of kilo bytes.

3.2. Accuracy of the Linear R-D Model

Since the accuracy of the adopted R-D model is crucial to our problem, we validate the accuracy of the linear R-D model.
To do so, we compare the accuracy of the linear model against the actual R-D curves, which are obtained as follows.
We select six equally-spaced sampling rates on each bitplane. Then, we compute the actual distortion by decoding and
comparing the original and reconstructed sequences at eachsampling rate. We carry out the comparison over several video
sequences of different temporal and spatial complexities.

For visual validation, we randomly choose two frames and plot the actual R-D curves and the ones estimated by the
linear model. Figure 3(a) and 3(b) illustrate that the linear model approximates the actual R-D curves quite well. For more
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Figure 4. The monotonicity property of the linear R-D model. The figureshows the slope parametersg of two frames from Foreman
(left) and two frames from Mobile (right) sequences. Note that, only the rightmost frame requires aggregation.

rigorous validation, we compute the absolute error betweenthe actual and linear model curves at all sampling rates. We
compute the average error per frame, and we repeat that for all frames in the considered sequences. The results (plots are
given in5) confirm the accuracy of the linear R-D model: the average error is less than 2% in almost all cases.

3.3. Properties of the Linear R-D Model

By examining a large set of R-D parameters for many frames, wefound that curves produced by the linear model has the
following property: The slopes of the line segments form a monotonically increasing series, that is,g1 < g2 < · · · < gz <
0, wheregh is the slope of line segment in bitplaneh Figure 4 demonstrates this property. This is intuitive because the
most significant bitplanes carry higher significant bits, and thus the per-bit reduction in distortion is higher. This means
that the most significant bitplanes will have steeper and more negative slopes.

While the above explanation of slope monotonicity makes sense, we have seen a few anomalies. For instance, frame
2 of Foreman hasg1 = −0.15 > −1.8 = g2. Almost all anomalies occurred between bitplanes 1 and 2. From further
examination, we found that the anomalies occur when the sizeof the first bitplane is very small, around 100 bytes or less
. At that small size, the overhead of the bitplane header becomes significant, which negatively impacts theeffectiveper-bit
reduction in distortion (i.e., the slope) for bits in bitplane 1. We also notice that the smaller the size of bitplane 1, the higher
the negative impact.

Because some of the proofs of our optimal bit allocation problem require the monotonicity of the slopes, we propose
a simple processing of linear R-D curves to maintain monotonicity: we aggregate any two neighboring bitplanes into a
single bitplane whenever there is a violation in monotonicity. For instance, the rightmost subfigure of Figure 4 shows the
slopes before and after bitplane aggregation. Notice that if bitplane aggregation is needed, it is almost always sufficient to
aggregate the first two planes, and in very rare cases betweenthe second and third bitplanes. To verify this, we examined
slopes of all bitplanes of all frames in four video sequences: Akiyo, Mother, Foreman, and Mobile. We found that only
two pairs of consecutive bitplanes out of 5734 total bitplanes violated the monotonicity property. Furthermore, thesetwo
violations can be eliminated by two more bitplane aggregations (details are given in5).

Finally, we examined the impact of the bitplane aggregationon the accuracy of thetransformedlinear R-D curves.
We repeat the accuracy assessment experiments in the previous subsection, but using linear R-D curves after bitplane
aggregation is performed on them. Figure 3(c) shows that theaverage error between the modified linear R-D curves and
the actual ones is the same as the (untransformed) linear R-Dcurves, which is less than 2% in almost all cases.

4. THE BIT ALLOCATION PROBLEM: FORMULATION AND SOLUTION

In this section, we consider the bit allocation problem for multi-sender video streaming systems that use FGS encoded
streams. We assume the base layer is coded at a reasonably lowbit rate and can be transmitted through a reliable channel.
Our goal is to develop a practical algorithm for many-to-onestreaming sessions such that the available resources are
intelligently allocated to achieve the maximal perceptualstreaming quality.



4.1. Problem Formulation

The bit allocation problem we address in this paper can be stated as follows. Given multiple senders that can potentially
serve an FGS-encoded video sequence to a receiver, where senders have different portions of the sequence and have
different outgoing bandwidth, and the receiver has a limit on the incoming bandwidth. Determine the streaming rate and
the range of bits allocated to each sender to achieve the bestpossible video quality at the receiver. It is assumed that
the base layer is coded at a low, and fixed bit rate and can be reliably delivered by any sender. We seek to optimize the
streaming of the enhancement layer because it contributes significantly larger bit rates than the base layer, and unlikethe
base layer, its bit rate can be controlled.

We address this problem in two steps. First, we optimize the quality of individual frames of the sequence. That is, we
formulate and solve the problem for each frame. In the secondstep, we divide the sequence into blocks of frames, each
has a fixed number of frames. Then, we formulate and solve the optimization problem for each block. The second step is
presented in the extended version of the paper.5

We now formulate the allocation problem for individual frames. LetT denote the frame period in seconds, which is the
multiplicative inverse of the frame rate.T is fixed for all frames in the considered sequence. Assume there aren potential
senders, each with outgoing bandwidthbi (i = 1, 2, . . . , n). Each senderi holdssi contiguous bits, which is a portion of
the enhancement layer bit stream. Without loss of generality, we assume thats1 ≤ s2 ≤ · · · ≤ sn, otherwise we re-label
senders to achieve that. Note that the nature of FGS-encodedsequences implies that a lower quality bit stream is always
a subset of a higher quality one. That is,si is always aprefixof si+1 for all i = 1, 2, . . . , n − 1. The receiver incoming
bandwidth is denoted bybI .

Solving the allocation problem should yield an allocation policy A = {(∆i, ri)|i = 1, 2, . . . , n}, where∆i is the
number of bits allocated to peeri andri ≤ bi is its streaming rate. Bits are allocated to peers as follows. Peer 1 transmits
the range from0 to ∆1 − 1, peer 2 transmits from∆1 to ∆1 + ∆2 − 1, and in general peeri transmits from

∑i−1

t=1
∆t to∑i

t=1
∆t − 1. Mathematically, the bit allocation problem for a given frame can be formulated as:

min
A

D(

n∑

t=1

∆t) (1a)

s.t. ∆i − riT ≤ 0 (1b)
i∑

t=1

∆t ≤ si (1c)

ri ≤ bi (1d)
n∑

t=1

rt ≤ bI (1e)

∆i, ri ∈ N; i = 1, 2, . . . , n. (1f)

The objective function in (1a) is to find the optimal allocation A∗ that minimizes the reconstruction distortion, and
hence maximizes the rendered quality. The constraints can be explained as follows: (1b) ensures that each sender has
enough time to transmit all bits allocated to it (∆i − riT ≤ 0 =⇒ ∆i/ri ≤ T ). (1c) ensures that the allocated bits to
each sender are within the portion of bits stored at that sender, while (1d) and (1e) ensure that the limits on the incoming
and outgoing bandwidth of the receiver and senders are not exceeded.

In order to solve this optimization problem, we need the mapping between the distortion and total number of bits
received. Note that dividing the total number of bits by the (fixed) frame periodT yields the bit rate. As we discussed
in Section 3, we adopt the linear R-D model for this mapping because: (i) it is fairly accurate, (ii) its parameters can be
efficiently extracted from the video sequence, and more importantly, (iii) it results in a linear objective function andhence
efficient solution of the optimization problem. Recall thatthe linear R-D model divides the R-D curve into several line
segments, each corresponds to a bitplaneh and has a different slopegh (see Figure 3(a)). The slopegh represents the per-bit
reduction in the distortion in bitplaneh. Therefore, in order to compute the total distortion for a possible bit allocation, we
need to find how many bits are transmitted from each bitplane.To do that, we introduce a new variableyh (h = 1, 2, . . . , z)
to represent the number of bits transmitted from bitplaneh. z is the number of bitplanes in the enhancement layer of the



considered frame. Now the distortion can be computed asd +
∑z

h=1
gh yh, whered is the distortion when only the base

layer is transmitted. The optimization problem in (1) can bere-written as:

min
A

D(
n∑

t=1

∆t) = d +
z∑

v=1

gv yv (2a)

s.t. ∆i − riT ≤ 0 (2b)
i∑

t=1

∆t ≤ si (2c)

ri ≤ bi (2d)
n∑

t=1

rt ≤ bI (2e)

yh ≤ lh (2f)
n∑

t=1

∆t =

z∑

v=1

yv (2g)

∆i, ri, yh ∈ N; i = 1, 2, . . . , n; h = 1, 2, . . . , z. (2h)

Notice the two new constrains in (2f) and (2g). (2f) makes sure that the number of bits transmitted from a bitplane does
not exceed the size of that bitplane, whereas (2g) ensures that the total number of bits transmitted from different bitplanes
is exactly the same as the number of bits allocated to senders.

Unlike (1), (2) is an integer linear programming (ILP) problem, because the objective function as well as all constraints
are linear. While ILP problems are less complex than nonlinear problems, they are still NP-hard [16, page 777]. In the
next section, we present a rounding scheme that transforms the ILP problem in (2) to a linear programming (LP) problem,
which can be solved using the Simplex method or other efficient LP solvers. But before doing so, we need to make sure that
the optimal solution for the ILP in (2) will produce avalid FGS-encoded bit stream. An FGS-encoded bit stream is valid
if it has a contiguous stream of bits with no gaps between them. If there is a gap in the bit stream, the FGS decoder will
ignore the rest of the bit stream beyond the gap, which will reduce the quality. The following lemma proves the validity of
the optimal solution of (2).

LEMMA 1. An optimal solution for (2) produces a contiguous FGS-encoded bit stream with no bit gaps.

Proof. To prove this lemma, we need to show that no bits from a bitplanej will be transmitted before all bits of bitplanes
h < j are transmitted, whereh, j = 1, 2, . . . , z andz is the number of bitplanes. That is, we need to show that if an optimal
allocation results iny∗

j 6= 0 for anyj = 2, 3, . . . , z, then it must be the case thaty∗

h = lh, whereh = 1, 2, . . . , j − 1, and
lh is the size of bitplaneh. We prove this by contradiction.

Assume that the optimal allocationA∗ producedy∗

j 6= 0 and there existsy∗

h < lh for someh < j. We construct another

allocationÂ which is exactly the same asA∗, except we shiftq = min(y∗

j , lh − y∗

h) > 0 bits from bitplanej to bitplaneh.

Â is indeed a feasible allocation because it satisfies all the constraints in (2). Furthermore, the distortion associatedwith Â
is given byD̂ = D∗ + (gh − gj)q < D∗, sincegh is always less thangj because slopes are monotonically increasing, as
discussed in Section 3. This is a contradiction becauseD∗ is supposed to be the minimum distortion.

4.2. Rounding Scheme and Linear Programming Solution

In this section, we present a rounding scheme that transforms the ILP problem in (2) to a linear programming (LP) problem,
which can be solved using the Simplex method. We show that ourrounding scheme results in a solution that is within a
negligible gap from the optimal. Our LP formulation of the bit allocation problem is exactly the same as (2), except the
constraint in (2h) is now relaxed to be:

∆i, ri, yh ∈ R
+ ∪ {0}; i = 1, 2, . . . , n; h = 1, 2, . . . , z. (3)



Let Â = {(∆̂i, r̂i)|i = 1, 2, . . . , n} be the optimal allocation produced by solving the LP problem. ∆̂i, r̂i are in general
non-negative real numbers. To obtain integer solutions forthe original ILP problem, we propose the following rounding
scheme:

ri = ⌊r̂i⌋, and ∆i =

{
⌊∆̂i

bri−1

bri

⌋, r̂i > 1

0, 0 ≤ r̂i ≤ 1
(4)

In the following two lemmas, we prove that this rounding scheme indeed produces a feasible solution, and that solution
is very close to the optimal one.

LEMMA 2. Rounding of the optimal solution of the relaxed linear programming problem using the rounding scheme in (4)
always produces a feasible solution for the integer linear programming problem defined in (2).

Proof. We only need to prove that constraint (2b) is satisfied, thatis, we need to show that∆i − riT ≤ 0. Notice that
all other constraints are automatically satisfied because we round down both of̂ri and∆̂i.

We first consider the case whenr̂i > 1. For anyi = 1, 2, . . . , n, we have:

∆i

ri

=
⌊∆̂i

bri−1

bri

⌋

⌊r̂i⌋
≤

∆̂i
bri−1

bri

⌊r̂i⌋
<

∆̂i
bri−1

bri

r̂i − 1
=

∆̂i

r̂i

≤ T,

where the first inequality (from the left) is from the definition of the floor function, and the second inequality is due to the
fact that⌊r̂i⌋ > r̂i−1. Next we consider the case when0 ≤ r̂i ≤ 1. In this case,∆i = 0. Therefore,∆i−riT = −riT ≤ 0,
becauseri ≥ 0, and the constraint is satisfied.

LEMMA 3. The rounding scheme in (4) results in a total number of bits that is smaller than the optimal number of bits by
at mostnT + n, wheren is the number of senders andT is the frame period.

Proof. We first compute the gap between the optimal and rounded solutions for an arbitrary senderi, wherei =
1, 2, . . . , n. If r̂i > 1, we have:

∆̂i − ∆i = ∆̂i − ⌊∆̂i

r̂i − 1

r̂i

⌋ < ∆̂i − ∆̂i

r̂i − 1

r̂i

+ 1 =
∆̂i

r̂i

+ 1 ≤ T + 1.

If 0 ≤ r̂i ≤ 1, we have
∆̂i − ∆i = ∆̂i ≤ r̂iT ≤ T < T + 1.

Therefore, the gap for any sender is bounded byT + 1. Thus for alln senders, the gap is at mostnT + n.

Lemma 3 shows that the gap between the solution resulted fromour rounding scheme and the optimal one is negligible.
To put this gap into perspective, consider an extreme-case streaming session in which 30 senders are concurrently streaming
to a single receiver. Assume that the frame rate is 15 frames per second. Then, the gap is at most30/15 + 30 = 32 bits.
That is, the rounded solution may transmit at most 4 bytes less than the optimal one from any given frame, which is indeed
negligible given that frame sizes are in the order of kilo bytes.

5. FGSASSIGN: AN OPTIMAL ALGORITHM FOR THE SINGLE-FRAME BIT ALLOCATION
PROBLEM

The LP formulation of the bit allocation problems, presented in the previous section, can be solved by the Simplex method.
On average, the Simplex method is efficient, but it has a worst-case exponential running time [17, Section 8.6]. While there
exist worst-case polynomial time methods (e.g., Karmarkar’s interior-point algorithm)18 for solving general LP optimiza-
tion problems, they are quite complex to implement, and theyhave very large average running times, which in many cases
exceed the average running time of the Simplex method.

We propose a greedy algorithm, called FGSAssign, to efficiently solve the single frame bit allocation problem. The
pseudo code for the algorithm is given Figure 5. The basic idea of the algorithm is to transmit the maximum possible
number of bits from each senders. It does so by first sorting all senders based on the portion of the stream stored at each
sender, such thats1 ≤ s2 ≤ · · · ≤ sn. Then, it sequentially allocates to senderi (i = 1, 2, . . . , n) the maximum number



FGSAssign

1. Sort all senders based onsi, wheres1 ≤ s2 ≤ · · · ≤ sn;
2. x0 = · · · = xn = 0; ∆1 = · · · = ∆n = 0; ragg = 0;
3. for i = 1 to n do
4. xi = min(xi−1 + biT, si);
5. ri = (xi − xi−1)/T ;
6. if (ragg + ri < bI) then
7. ragg = ragg + ri;
8. ∆i = xi − xi−1;
9. else
10. ri = bI − ragg;
11. ∆i = T × ri;
12. return
13. endfor

Figure 5. Pseudo code for an optimal and efficient algorithm for the single-frame bit allocation problem.

of bits which senderi can transmit within the frame periodT . The allocated bits must be available at senderi, i.e., they
are a subset ofsi, and they do not overlap with bits allocated toj (1 ≤ j < i). Thus FGSAssign avoids holes as well as
overlapping of bits among senders. Therefore, the allocation will result in a contiguous bit stream, which is necessaryfor
decoding FGS-encoded enhancement layers. The following theorem proves that FGSAssign is optimal and efficient.

THEOREM 1. The FGSAssign algorithm terminates inO(n log n) steps, wheren is the number of senders, and it produces
an allocation that minimizes the distortion of individual frames.

Proof. The termination and time complexity part is straightforward: sorting ofsi’s takesO(n log n) steps and the
for-loop iterates up ton times, each taking a constant number of operations.

For the optimality part, we first notice that for individual frames, sending more bits always results in smaller distortion.
Therefore, sending the maximum number of bits corresponds to the minimum distortion. The maximum number of bits is
determined based on either: (i) the receiver incoming bandwidth bI , or (ii) senders outgoing bandwidthbi and portions of
stream storedsi (1 ≤ i ≤ n). In the first case, becausesi’s are sorted, the algorithm fills up the entire receiver’s bandwidth
with non overlapping bits and returns from the for-loop in line 12. Thus the maximum number of bits will be transmitted.

In the second case, the algorithm terminates after finishingn iterations of the for-loop. In every iterationi of the for-
loop, the algorithm assigns to senderi the maximum number of bits that this sender can transmit, constrained only by the
outgoing bandwidthbi and the length of the stored portion of the streamsi. In other words, the algorithm makes a greedy
decision(∆i, ri), and solves a subproblem in thei + 1 iteration. To prove that this greedy approach is optimal, weshow
that the problem has two properties: greedy-choice and optimal substructure [16, Chapter 16].

The greedy-choice property guarantees that a globally optimal solution can be arrived at by a greedy choice. Suppose
{(∆∗

u, r∗u)|u = i, i + 1, . . . , n} is an optimal solution to the original problem in iterationi. Since(∆i, ri) is a greedy
choice, we have∆i ≥ ∆∗

i (andri ≥ r∗i ). Now, we construct a new solution from the optimal one by shifting bits from
other peers toi, such that the new solution contains the greedy decision. Obviously, the number of bits remains the same,
thus, we have an optimal solution consists of the greedy choice.

The optimal substructure property ensures that combining agreedy decision with an optimal solution to the subproblem
results in an optimal solution to the original problem. We prove this property by contradiction. Consider iterationi.
Suppose the combination of the greedy decision(∆i, ri) and a subproblem optimal solution{(∆v, rv)|v = i + 1, i +
2, . . . , n} is not an optimal solution to the original problem. Thus, we can find an optimal solution{(∆∗

u, r∗u)|u = i, i +
1, . . . , n} such that

∑n

u=i ∆∗

u >
∑n

v=i ∆v. Since∆i ≥ ∆∗

i by the greedy decision, we must have
∑n

u=i+1
∆∗

i >∑n
v=i+1

∆v, which is a contradiction because
∑n

v=i+1
∆v is assumed to be an optimal solution to the subproblem.
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Figure 6. Comparison between nonscalable, OPT, and FGSAssign algorithms: (a) Quality achieved by each algorithm, and (b) Potential
quality improvement (in dB) by using scalable over nonscalable algorithms. Data shown for streaming Foreman sequence in scenario I.

6. EVALUATION

In this section, we evaluate the importance of the scalable allocation problem, and we verify the optimality of our FGSAs-
sign algorithm.

6.1. Experimental Setup

Software used and developed.In our experiments, we use the MPEG-4 Reference Software Version 2.519 developed
by Microsoft as an experimental package for the MPEG-4 standard. It is implemented in C++ and contains three major
executables:encoder, decoder, and fgs server. We instrument the reference software to extract various statistics of a
video sequence. For instance, we collect the transform coefficients, number of bitplanes, and size of each bitplane in the
enhancement layer. This information is used to estimate theparameters of the linear R-D model.

We have implemented the FGSAssign algorithm (Figure 5) and the optimal algorithm (referred to as OPT) using the
Simplex method. For comparisons, we have also implemented the nonscalable allocation algorithm discussed in Section 1.
All allocation algorithms are implemented in Matlab. We runthe experiments on a 3.0 GHz Pentium 4 workstation running
Windows XP.

Streaming scenarios and video test sequences.To compare the performance of the allocation algorithms, wedesign
four representative streaming scenarios, which we believecapture various Internet and Intranet streaming settings.In
the first scenario, we consider a receiver using a high-speedconnection with enough incoming bandwidth to receive full
quality stream, and four senders with 512 kbps, 256 kbps, 1.5Mbps, and 3 Mbps outgoing bandwidth. The two senders
with lower outgoing bandwidth represent peers with cable modem or ADSL connections, while the other two could be
office or campus workstations. Due to the asymmetry between incoming and outgoing bandwidth, peers typically receive
video streams with higher bit rates (quality) than they could serve to others. Therefore, we assume that the senders store
different version of the FGS-encoded stream: 512 kbps, 4 Mbps, 8 Mbps, and 10 Mbps, respectively.

The second scenario assumes the receiver has 1 Mbps incomingbandwidth, and there are six senders. Four of them
subscribe to 128 kbps uplink access service while the other two only have 64 kbps uplink. Among those four 128 kbps
senders, three of them store 1 Mbps version of the coded stream, and the last one stores a 512 kbps version. All others have
a 128 kbps version of the stream. The third scenario simulates an Intranet video casting that is very common nowadays.
Suppose there are four senders at different facilities, each of them has 1.5 Mbps connection. The receiver, located at a
regional center, has larger bandwidth of 3 Mbps. Senders store four different versions of the stream: 256 kbps, 512 kbps,4
Mbps, and 4Mbps, respectively. The forth scenario has five senders: four of them have 256 kbps outgoing bandwidth and
store a 1.5 Mbps coded stream. The last sender has 512 kbps outgoing bandwidth and holds a 512 kbps coded version of
the stream. The receiver has 1.5 Mbps incoming bandwidth.
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Figure 7. Comparison between nonscalable, OPT, and FGSAssign algorithms: (a) Quality achieved by each algorithm, and (b) Potential
quality improvement (in dB) by using scalable over nonscalable algorithms. Data shown for streaming Mobile sequence inscenario III.

In all scenarios, we stream a set of video sequences with different characteristics. To form this set of test sequences, we
have analyzed twenty representative video sequences from various sources. We categorize sequences into three complexity
classes based on the average spatial and temporal complexities of each sequence.13 We present results for two sequences:
Foreman and Mobile. Both are coded at 30 fps, and have a CIF (352x288) resolution. Foreman sequence is a low-
complexity sequence and has a scene cut, where the second scene has more details than the first one. Mobile contains
saturated colors and several moving objects, and thereforeis a high-complexity sequence.

6.2. Results

We present a sample of our results in this section due to spacelimitations, more results are available in.5

Scalable versus nonscalable allocation.Our results clearly confirm the potential quality improvement from using
scalable allocation algorithms over the nonscalable ones:In all considered streaming scenarios and with all test sequences,
there was at least 1 dB and up to 8 dB improvement in quality (see plots for all cases in5). Figure 6 shows a sample plot for
streaming of Foreman in scenario I, where we see an average quality improvement of at least 5 dB. Figure 7 demonstrates
streaming of Mobile in scenario III. The figure shows more than 3 dB quality improvement.

Optimality of FGSAssign.To verify our analytic results regarding the optimality of the FGSAssign, we compare the
distortion achieved by solving the LP problem using the Simplex method versus the distortion achieved by the FGSAssign
algorithm. In all cases, FGSAssign produced exactly the same distortion values as the optimal as indicated in Figures 6(a)
and 7(a).

7. CONCLUSION

In this paper, we formulated and solved the bit allocation problem for FGS-encoded video sequences streamed in distributed
and heterogeneous environments. The formulation was done in a number of steps. First a general optimization problem
was formed, which is transformed to an integer linear programming (ILP) one. Then using a simple rounding scheme, the
ILP problem is transformed to a linear programming problem.We proposed an optimal allocation algorithm (FGSAssign)
for the single-frame allocation problem. Our experimentalresults show that solving the bit allocation problem using our
algorithm could provide significant quality improvement over solving it using the nonscalable algorithm: An improvement
of up to 8 dB could be achieved in some cases. The quality improvement is even higher when allocating bits to blocks of
multiple frames. This is because multiple frame allocationprovides more chances for optimization.
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