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ABSTRACT

Due to recent technological advances in capturing and processing
devices, hyperspectral imaging is becoming available for many com-
mercial and military applications such as remote sensing, surveil-
lance, and forest fire detection. Hyperspectral cameras provide
rich information, as they capture each pixel along many frequency
bands in the spectrum. The large volume of hyperspectral images
as well as their high dimensionality make transmitting them over
limited-bandwidth channels a challenge. To address this challenge,
we present a method to prioritize the transmission of various com-
ponents of hyperspectral data based on the application needs, the
level of details required, and available bandwidth. This is unlike
current works that mostly assume offline processing and the avail-
ability of all data beforehand. Our method jointly and optimally
selects the spectral bands and their qualities to maximize the utility
of the transmitted data. It also enables progressive transmission of
hyperspectral data, in which approximate results are obtained with
small amount of data and can be refined with additional data. This
is a desirable feature for large-scale hyperspectral imaging applica-
tions. We have implemented the proposed method and compared
it against the state-of-the-art in the literature using hyperspectral
imaging datasets. Our experimental results show that the proposed
method achieves high accuracy, transmits a small fraction of the hy-
perspectral data, and significantly outperforms the state-of-the-art;
up to 35% improvements in accuracy was achieved.
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1 INTRODUCTION

Hyperspectral cameras capture a scene in many wavelength bands
across the spectrum, providing far more information than regular
cameras that operate in the visible light range. For example, when
observing a remote object (e.g., a car), signals in the visible light
band can show the shape/color of the object, whereas signals in the
infrared band can determine the temperature of that object (e.g.,
whether the car engine is on). Furthermore, signals in other bands
can identify the surroundings of that object, e.g., whether the area
has vegetation, the moisture level in the soil, and the presence and
depth of water nearby.

A simple illustration of hyperspectral imaging is shown in Fig-
ure 1, which shows a scene captured in the spatial x, y domain as
well as in the spectral A domain. For each value of A, the scene is
captured in a different frequency band, and thus different informa-
tion about the scene is revealed. Current, commercially available,
hyperspectral cameras can capture more than 200 bands, and thus
produce huge amounts of high-dimensional data. The data shown
in Fig. (1) is referred to as a hyperspectral data cube. Hyperspectral
imaging is useful in many commercial/civilian applications such as
agricultural research, land-cover mapping, forest monitoring, and
mapping of natural disasters [4], as well as military applications
including remote sensing, surveillance, and identification of cam-
ouflaged objects [9]. Recent technological advances in capturing
and processing devices have made hyperspectral camera systems
smaller, more powerful, and cost effective [3]. Thus, their adoption
in various applications is expected to accelerate in the future.

In many applications, e.g., forest fire detection [1] and gas leak de-
tection [7] [13] [12], the hyperspectral data is captured from remote
sites (e.g., using drones) and needs to be transmitted in a timely
manner to a processing station for taking actions. For instance, in
forest fire detection, hotspots are locations that have higher tem-
perature and lower humidity and are thus likely to start fires [17].
Timely identification of these spots is crucial in preventing or con-
trolling forest fires, as well as taking precautionary measures such
as issuing evacuation alerts. Waiting for drones carrying the hy-
perspectral cameras to come back with the captured data may take
hours and by then the data may be less useful or even obsolete. Data
transmission typically occurs over satellite or cellular links, which
poses a major challenge, because of the channel dynamics, large
data volume, and the complex nature of the hyperspectral data and
the way it is used. Specifically, hyperspectral data is typically used
to identify/classify material(s) present in a scene. This is possible
because hyperspectral cameras capture information across a large
portion of the spectrum, and thus each material will likely produce
a spectral signature, which can be used to identify that material.
For example, the presence of soil in a scene results in signal val-
ues in certain frequency bands that are quite different from those
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Figure 1: Example of a hyperspectral data cube. The material
of each spatial location can be identified using its spectral
signature.

produced by the presence of rocks or water. Illustration of spectral
signatures is given in the left part of Figure 1.

In this paper, we focus on applications that require transmit-
ting hyperspectral imaging data over limited-bandwidth channels.
We present a method to dynamically prioritize the transmission
of various components of hyperspectral data based on the avail-
able bandwidth in order to maximize the utility of the received
(partial) data. Specifically, our method encodes each band of the hy-
perspectral data into multiple cumulative layers. Then, given a bit
budget, the method optimally selects which bands to transmit and
the quality (layers) of each band such that the resulting accuracy of
processing the received data is maximized. Our method is general
and supports any type of processing of hyperspectral data.

We have implemented the proposed method and tested it on mul-
tiple hyperspectral datasets. We compared our approach against
the state-of-the-art methods in the literature [16], [22], [20], [18],
[19], and [15]. Our results show that the proposed method signif-
icantly outperforms the state-of-the-art in terms of the achieved
accuracy while using the same amount of data; up to 35% in the
accuracy can be achieved, especially when the bit budget is small,
which is the common case. In addition, the results show that our
method efficiently supports gradual transmission of hyperspectral
data which is an important feature since many hyperspectral imag-
ing applications target analyzing data from vast remote areas. For
example, our results demonstrate that an approximate classification
of a scene can be achieved by transferring a very small amount
of the hyperspectral data (around 3%). If a finer classification is
needed, additional data can be transferred and combined with the
data already received. This gradual data transmission and analysis
can save substantial communication and processing resources in
real hyperspectral applications. Furthermore, because our method
jointly and optimally selects bands and their qualities, it can achieve
up to 98% reduction in the amount of transmitted data while still
achieving very high accuracy.

The rest of this paper is organized as follows. We summarize
the related work in Sec. 2. We describe the considered problem in
Sec. 3. In Sec. 4, we present our proposed solution. We present our
evaluation in Sec. 5, and conclude the paper in Sec. 6.
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2 RELATED WORK

In order to address the large volume of data, several works have
proposed lossy and lossless compression techniques for hyperspec-
tral image cubes [2, 5, 8, 21]. For example, Zhang and Liu [21]
present a lossless compression method based on 3D wavelet coding.
Fu et al. [8] present an example of lossy compression method for
hyperspectral images, which takes advantage of both the spectral
and spatial information. The method first constructs superpixels,
which are homogeneous regions that share similar spectral sig-
natures. Different levels of distortion are then assigned to each
superpixel using an adaptive coding scheme which optimizes the
overall rate-distortion performance. Chen et al. [2] propose a com-
pression method that preserves the quality of important bands,
which are specified by target applications. Egho et al. [5] propose
an adaptive hyperspectral image compression technique suitable
for both lossy and lossless compression in which Karhunen-Loeve
Transform (KLT) is used for spectral de-correlation. A compari-
son of different hyperspectral image compression methods can be
found in [11]. Our work in this paper focuses on selecting which
bands to transmit and at what qualities, and thus it is orthogonal
to compression methods.

Feature engineering methods have been extensively studied for
hyperspectral images as a way to select the most important parts
of the data. Feature engineering includes feature extraction and
feature selection (band selection). In feature extraction, nonlinear
transformations are used to extract the most discriminative fea-
tures. For instance, in [6], the local covariance matrix is used to
characterize the correlation among different spectral bands.

The closest works to ours are the ones that present feature/band
selection methods, e.g., [15, 16, 18-20, 22]; we will compare our
method against all of them in Sec. 5. Feature/band selection meth-
ods find the most representative bands from the hyperspectral data
cube without transforming them. Thus, they retain the physical
meaning of each band. The authors of [16] present an unsupervised
band selection method based on manifold ranking, whereas the au-
thors of [22] use fuzzy clustering with particle swarm optimization
to select bands. In [19], a clustering-based band selection algorithm
is studied. An unsupervised band selection approach is introduced
in [15], which obtains the most representative bands using corre-
lation matrix and measurement of block-diagonal structure used
in segmenting all bands into subspaces. In [20], a feature selec-
tion method is designed based on a memetic algorithm; a memetic
algorithm is an extension of genetic algorithms. Finally, a deep
convolutional neural network (CNN) has been proposed to select
bands [18]. This work first partitions the spectral domain using dis-
tance density. It then randomly selects different band combinations
according to each partition’s distance density and uses the CNN
model to test the band combinations.

Note that in our proposed method, band selection is preferred
over feature extraction. This is because our approach is designed to
provide an approximate estimation of the area first and finer details
upon the user’s request. Thus, the physical meaning of the bands
needs to be retained in order for previously transmitted data to be
useful.
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3 PROBLEM DESCRIPTION

We consider the problem of optimizing the transmission of remotely-
captured hyperspectral imaging data over a dynamic channel to
maximize the utility of the received data for complex processing
tasks such as material identification and classification. This is an im-
portant problem for applications such as teleoperation, remote sens-
ing, surveillance, and controlling unmanned systems. As an example
scenario, consider a UAV (Unmanned Aerial Vehicle) equipped with
a hyperspectral camera dispatched to explore a remote scene. The
camera captures a scene across many frequency bands in the spec-
trum, and needs to transmit the data to a base station for processing
and taking actions such as alerting a human operator about the
existence of some objects or steering the UAV to a different location.
Our problem is to identify the most important components of the
hyperspectral data to transmit from the UAV within a given bit
budget such that the accuracy of the data processing task at the
base station is maximized. This problem is more complex, and more
general, than the band selection problem addressed in previous
works, e.g., [16, 18, 19], where there is no limitation on the amount
of data and thus all bands are available at the base station.

The captured hyperspectral data is divided into cubes. The dimen-
sions of each cube are x, y, A, where x, y are the spatial dimensions,
and A is the spectral dimension. Cubes are transmitted successively
by the camera to the processing station. Once it receives a hyper-
spectral data cube, the processing station uses this data as input to
a pre-trained deep learning model to identify materials and objects
in the remote scene using their hyperspectral signatures. The data
volume in each cube is, however, very large to be transmitted in a
timely manner, even after significant compression. To address this
problem, we first propose to encode each band in the hyperspectral
data cube into multiple qualities, using any scalable coding method
that produces cumulative quality layers, i.e., the quality progres-
sively increases by adding layers. For concrete discussion, we use a
multi-level two-dimensional discrete wavelet transform (2D-DWT)
in our solution. Figure 2 illustrates the considered problem for one
cube of hyperspectral data. There are N spectral bands in each cube.
Each band can be considered as an image of dimensions x, y. Each
band is encoded at Q cumulative quality levels. Then, our problem
is to optimally and jointly select which bands to transmit and the
quality of each band given a bit budget C. It is straightforward to
show that this band-quality selection problem is NP-Complete, by
reducing the multiple-choice knapsack problem to it. The search
space for finding the optimal solution is O(Q) in the worst case,
which is prohibitive as N is in the order of hundreds of bands for
current cameras and Q is usually in the range of 2 to 5 quality levels.

It is important to note that the utility of the received bands is typ-
ically a non-linear function. This is because, as illustrated in the left
part of Figure 1, spectral bands react differently to various materials
in the captured scene, creating the so-called spectral signatures for
different materials across the spectrum, which indicates that there
is correlation among bands. Thus, depending on the processing
task to be done on the received bands, the relative importance of
individual band varies. In addition, the possibility of using different
qualities for each band adds another level of complexity to the
problem, compared to prior works [10, 15, 20].
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QO Quality Levels

Figure 2: Illustration of the band and quality selection prob-
lem for hyperspectral images.

4 PROPOSED SOLUTION

The proposed solution is referred to as BQSA (Band-Quality Se-
lection Algorithm). At high level, BQSA is executed once for each
hyperspectral data cube to select bands and their qualities such that
a given bit budget for that cube is not exceeded. As discussed in the
previous section, jointly selecting bands and their qualities is an
NP-Complete problem. We utilize some characteristics of the hyper-
spectral images to transform this problem into another equivalent
problem, which has a substantially smaller search space and thus
can be solved in polynomial time (Section 4.1). Then, we design an
efficient method to search for the optimal solution in the reduced
(polynomial) search space (Section 4.2). Finally, we discuss various
optimizations and practical issues (Section 4.3).

4.1 Reducing the Search Space

As discussed in Section 3, the search space is O(QN), where Q is
the number of quality levels and N is the number of bands, which
is prohibitive. To address this, we prioritize the bands and then
choose quality levels in a way that substantially reduces this search
space. An important feature of our solution is that it retains the
physical meaning of each band, that is, it does not mix or transform
bands into a different domain where the distinction between bands
is lost, as is the case with prior band prioritization methods, e.g.,
in [10, 14]. This is crucial for utilizing the prioritized bands in
achieving classification with different granularities as well as to
support various bit budgets.

To prioritize hyperspectral bands, we first transform the 3-D data
cube DxxyxN into a 2-D matrix Mgxn, where S is the number
of pixels in the dataset (S = X X Y). Then, we use PCA (Principal
Component Analysis) to extract N principal components from the
matrix M. Each principal component is a linear combination of
bands, which also means that each band has a contribution (weight
wj) to each component i. Further, each principal component i is
associated with an explained variance ratio (EVR), which is the
ratio of the variance of that component to the total variance, and
it is denoted by v;. EVR indicates the relative importance of each
principal component. Then, we can define the importance of each
band as follows:

valuej = wj1 v1 + Wj2 V2 + -+ + WiN UN,

(1)
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where value; is the importance of band j, wj; is the weight of
band j in the ith principal component, and v; is the explained
variance ratio of the ith principal component. This is an intuitive
quantification of the relative value of each band, because it uses the
explained variance ratios of principal components (i.e., their relative
importance) and the weights of bands which capture the relative
contributions of various bands in each principal component. After
computing the values of all bands, we rank them in descending
order based on their values. We note that the principal component
analysis is done offline on training datasets relevant to the task in
hand.

Band ranking allows us to simplify the band-quality selection
problem by imposing some structure on the search process for the
optimal solution. Specifically, using band ranking, the band-quality
selection problem can be mathematically formulated as follows:

maximize Classification Accuracy
N Q

subject to Z Zbijxij <C,
i=1 j=1
Xij <Xgop, i=2...N j=1..0 (@
Xij < Xj(j-1)» i=1,....N j=2,...,0,
xijE{O,l}, i=1,....N j=1,...,0,

where b;;j refers to the extra information required to send band i
with quality j assuming that the j — 1 quality of this band is already
in hand. The variable x;; takes a binary value indicating whether
band i with quality j is selected; j = 0 means that the band is not
selected. Thus, in order to choose a band with quality J, all x;; with
Jj < J should be selected. The first constraint ensures better quality
for bands with higher ranking. The second constraint allows a band
to have a specific quality only if its lower quality versions have
already been selected.

By prioritizing the quality of higher ranked bands in the for-
mulation (Eq. (2)), the search space is reduced to O(N?), which
is substantially smaller than O(Q™). Recall that N is around 200
bands while Q typically ranges from 2 to 5 quality layers. Although
much smaller than the original search space, trying all O(N<) band-
quality combinations to find the optimal solution is still costly. This
is because each combination may involve computing the utility
(accuracy) of a deep learning model. We next design an efficient
algorithm to quickly explore the search space and find the optimal
solution.

4.2 Computing the Optimal Solution

We design a branch-and-bound (B&B) algorithm to find the optimal
solution for the band-selection problem. The key idea is to structure
the search space as a tree, where each node has an upper bound
which describes the best case possible that can occur from the
subtree rooted at that node. During the search, if we reach a node
that has an upper bound worse than what we already have, the
entire subtree under that node is pruned. Such pruning greatly
accelerates the search process. In the following, we describe how we
form the initial tree, determine the upper bound for each node, and
search the tree to find the optimal solution. We note that, like other
branch-and-bound algorithms, the focus of our search algorithm
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is to substantially reduce the average computation time for typical
inputs, where the upper bound helps in pruning many branches
quickly. Although unlikely to occur in practice, it is possible to find
an input that forces our algorithm to explore every single node in
the tree; that is, in the worst-case, the time complexity is O(N Q).
Forming the search tree: We form a tree with depth of Q levels.
The first level (L1) initially has N + 1 branches, each indicating the
number of bands it can choose from the highest quality level. We
denote this number as Num;j and it is in the range of 0 to N. Each
child node will in turn branch out to indicate the number of bands
that can be chosen from the next quality level (Numsy), and so on.
Note that the number of branches each node can have in a level
depends on the Num of that node and its ancestors. For example,
Numj = N means all N bands have been selected with highest
quality and thus that node can only have one branch with a value
of zero (Numy = 0).

Next, we compute the upper bound for each node, which will
be used in pruning tree branches to accelerate the search, without
missing the optimal solution. The upper bound depends on the
maximum amount of data that can be transmitted C. We first start by
pruning the tree branches that do not meet the capacity constraint C.
For each level of the tree, we check the feasibility of each branch by
calculating the total amount of required data to send the associated
bands with the specified qualities and comparing against C.

Figure 3 shows an example of a pruned tree with Q = 4 and
N = 200. In this example, C is sufficient to send up to 20 bands
with full quality. After sending 20 bands with their highest quality,
the remaining capacity is not enough to send another high quality
band; it is sufficient to send 1 more band with quality level 2, or 3
bands with quality level 3. To compute the upper bound for a node
in the kth level of the tree, we check all remaining Q — k lower
levels under this node. At each level, we choose the maximum
number of bands available, and take their maximum band/quality
as the upper bound. For example, in Figure 3, at the position of
the red node we have enough capacity left to send a maximum
of 73 bands with quality level 3, or 185 bands with quality level
4. Based on the tree structure, we are not allowed to choose 73
bands with quality 2, and the remaining 112 bands with quality
level 4. However, by choosing this band/quality combination, we
are sure that no other combinations will result in a better accuracy
since they either have less number of bands, or bands with lower
qualities. Therefore, choosing to send 73 bands with quality level 3
and the remaining 112 bands with quality level 4 is a conservative
upper bound. Although the upper bound may not even be a feasible
solution (as in the example just mentioned), it ensures that we do
not miss the optimal solution. The upper bound of the red node
will be then set to (13, 2,73, 54).

Exploring the search tree: With the tree in hand, we start ex-
ploring the tree by first checking all nodes in the first level. We
evaluate each node by using its upper bound to modify the sample
labeled dataset and feed it to our deep learning model. To start the
algorithm we need an initial response. Our experiments show that
using more bands with low quality is better than using fewer bands
with higher quality. So we choose the left most response in the
tree. For leaf nodes, we just choose the maximum number available
without checking the rest. After reaching a leaf node and having
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Figure 3: Example tree with 4 quality levels and 200 bands.
The value in each node represents the number of bands cho-
sen from that quality level. The highlighted path shows the
steps our algorithms takes to reach the optimal solution.

an actual feasible solution at hand, we trace our steps backward. At
each step, we compare our current best result with the previously
evaluated lower bounds of that level. If our current feasible solution
is still better than all other upper bounds in all levels then we have
found the optimal solution. If not, we will continue our search down
the branches of the node that had the better upper bound. The pink
path in Figure 3 shows the process of finding the optimal solution.

Note that evaluating the deep learning model is an expensive
task which takes time in the order of seconds to execute. Thus, in
order to avoid having to compute the same selection multiple times,
each time a selection is evaluated, the result is saved for future use.

4.3 Remarks and Optimizations

Band Bundling: To further reduce the running time of the band-
quality selection algorithm, we propose grouping multiple neigh-
bouring bands together in a bundle. This is not expected to sig-
nificantly impact the accuracy of the produced solution, because
in practice the spectral signature does not change abruptly across
neighboring bands (see Figure 1). We evaluate the impact of the
bundle size on the accuracy and processing time in Section 5.2.
Deployment of BQSA: The proposed algorithm is executed by
the receiving side for each hyperspectral data cube; the capturing
camera (sending side) is not assumed to do any processing other
than encoding the hyperspectral images into multiple quality levels.
The receiving side has a trained deep learning model for the tasks to
be performed on the hyperspectral data. It also has a labeled sample
dataset. During runtime, the available bit budget is estimated by
the sending side and sent to the receiving side. Using this budget
and the sample dataset, the algorithm determines the optimal bands
to request and their qualities. Once these bands arrive, they are
used as input to the deep learning model, and based on the results,
various actions can be taken according to the semantic of the target
application. For example, more bands/qualities from the same data
cube can be requested to improve the accuracy or achieve finer-
grained classification. Then, another hyperspectral data cube is
processed, and so on.

One possible optimization on the above operation is as follows.
Since spectral signatures of different materials do not change, prior
hyperspectral datasets can be used to pre-compute search trees for
common use cases. For example, search trees for multiple bandwidth
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values expected to be observed during the flight of the UAV carrying
the hyperspectral camera can be pre-computed using datasets of
various materials that might be present in the explored remote
scene. The resulted trees can be pre-loaded on the UAVs so that the
now much simpler search process can be done on them to choose
bands and their quality to transmit.

5 EVALUATION

We implemented the proposed solution and compared it against
the state-of-the-art band selection approaches using diverse hyper-
spectral imaging datasets.

5.1 Datasets and Experimental Setup

Datasets: We use four hyperspectral imaging datasets; most of
them were used in previous works which enables us to conduct
fair comparisons. The datasets were captured from diverse envi-
ronments, have different resolutions, and cover different spectral
ranges. Each dataset is a hyperspectral cube in the form x,y, A,
where x, y are the spatial dimensions and A is the spectral dimen-
sion. Each x, y pixel has a label indicating the actual material of
the physical location corresponding to that pixel, which provides
ground truth for our evaluation. The details of the four datasets are
as follows:

o Kennedy Space Center (KSC). This dataset was acquired by
the NASA Airborne Visible/Infrared Imaging Spectrometer
(AVIRIS) on top of the Kennedy Space Center in Florida. It has
512 X 614 pixels and 224 bands in the 400-2500 nm spectral
range. The data contains 13 upland and wetland classes, e.g.,
marshes, swamps, water, and scrubs.

Indian Pines (IN). This dataset was acquired by the NASA
AVIRIS from North-western Indiana. It has 145 X 145 pix-
els and 224 bands in the 400-2500 nm spectral range. It
contains 16 vegetation classes including: alfalfa; different
kinds of corns, grass, and soybeans; windrowed hay; oat;
wheat; and woods. It also includes two mixed classes of
building/grass/tree and stone/steel/towers.

Pavia University (PU). This dataset was gathered by the Re-
flective Optics System Imaging Spectrometer from Pavia
University in Northern Italy. It has a size of 610 X 340 pixels
and 103 bands in the 430-860 nm spectral range. There are
nine labeled classes in this dataset: asphalt, meadows, gravel,
trees, painted metal sheets, bare soil, bitumen, self-blocking
bricks, and shadows.

Salina Scene (SA). This dataset was also captured by the
NASA AVARIS. It has 512 x 217 pixels and 204 bands in the
400-2500 nm spectral range. It contains 16 classes of vegeta-
bles including different kinds of broccoli, lettuce, corn, and
celery; vineyard fields including untrained, vertical trellis,
developed soil vineyard, and untrained grapes; bare soils;
fallow; and stubble.

Deep Learning with Multiple Quality Levels. As discussed in
Sec. 3, our problem formulation and solution are general. To provide
a concrete case study on using our solution, we describe it in the
context of classification of hyperspectral data using deep learning.
Specifically, we consider the state-of-the-art Spectral-Spatial Resid-
ual Network (SSRN) architecture in [23]. We define the loss as Eq.(3)
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in which the difference between predicted §y = [§1, J2, ..., 7] and
ground-truth y = [y1,y2,...,yr] one-hot label vectors and L is
the number of classes. For comparison purposes, we report overall
accuracy.

L L
J@.y) =) yillog > ¥ — ) 3)
i=1 j=1

SSRN consists of a spectral feature learning section, concatenated
with a spatial feature learning section, followed by pooling and
fully connected layers. However, this model requires the availability
of the full data cube in its full quality as input. In our experiments,
a high accuracy was achieved by SSRN framework when tested
on data where all bands are available with full quality. Its accu-
racy, however, substantially dropped to around 15% when given
all bands but with reduced quality or given a subset of bands with
the original quality. We modify the training process to allow the
model to process subsets of the bands and with different quality
levels. We generate a representative training dataset that results in
good accuracy as follows. We first acquire a labeled hyperspectral
dataset that can be used for training. For each data point in the
training set, we choose Q random values, [L1, L, . . ., LQ] such that
(L1 + Lz + -+ + Lp) < N. These values indicate the number of
bands chosen from each quality level, and can thus represent a
sample selection. If the sum is smaller than N, some bands will be
discarded. We then modify the data point according to that selec-
tion by changing the quality of each band to the respective selected
quality. If a band is not selected, it is removed. The modified point
is then placed in the modified dataset. We repeat this process 100
times for each data point in the training set, resulting a modified
dataset that is 100 times the original training data size.

We divide each dataset into three parts: training, validation, and
testing. Each of the first two parts is 10% of the dataset, and both are
used to train and validate the CNN model. The third part has 80% of
the dataset and is used in evaluating the accuracy of the proposed
method and comparing it against others in the literature. We use
a 4-level 2D-DWT decomposition to generate 5 different quality
levels for each band. We then pre-process the data by normalizing
each band to a mean value of zero and a unit variance.

To evaluate the scalability and adaptability of our solution, we
define two levels of classification granularities. Specifically, for
each of the PU and KSC datasets, we create 2 versions of the data.
The first version uses the original labels of the datasets, with PU
and KSC having 9 and 13 classes, respectively. We refer to this
version as the fine-grained classification. In the second version,
we merge similar classes together, resulting in a coarse-grained
classification. For example, in the PU dataset, we merge the Asphalt
and Bitumen classes together, and we also merge the Meadows
and Trees classes, resulting in a total of 7 classes: Asphalt/Bitumen,
Vegetation (Meadows/Trees), Gravel, Metal Sheets, Bare Soil, Bricks,
Shadows. Similarly, the coarse-grained version of the KSC dataset
has 8 classes instead of 13.

In the following subsections, we present representative samples
of our results.

5.2 Performance of our Method

We analyze the performance of our method from different perspec-
tives. First, we use our method to select bands and their qualities
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Figure 5: Effect of bundle size on accuracy and execution
time.

and measure the accuracy it achieves given different maximum
bit budget C. The accuracy is computed by comparing the class
produced by our method for each pixel against the ground-truth
class defined in the label of that pixel.

Two sample results from the PU and KSU datasets are shown in
Figure 4. The results show that using our band-quality selection
method, only a small portion of the data is required to achieve high
accuracy even for fine-grained classification. For example, for a 97%
accuracy for the PU dataset, Figure 4a, transmission of only 5MB of
data is enough for identifying all individual classes in the dataset
(the fine-grained curve in the figure). Given that the total data
size is 68MB, our method can achieve almost 90% reduction in the
amount of transmitted data while still achieving very high accuracy.
Figure 4a also shows that the coarse-grained classification can be
achieved with transmitting only 2MB out of the 68MB dataset, that
is, with less than 3% of the total data, our method can identify 7
different classes with an accuracy of 98%. Furthermore, notice that
our method enables gradual transmission of hyperspectral data,
which is quite beneficial especially when capturing/exploring large
areas. For example, a coarse-grained classification can be performed
initially. Then, if a finer classification is needed, additional data
can be transfered and combined with the data already received
to produce the fine-grained classification. For the PU datasets, for
example, additional 5MB of data is needed beyond the 2MB used
for the initial coarse-grained classification.

We next analyze the effect of band bundling (as described in
Sec. 4.3) on the accuracy and running time of our method. We show
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Figure 6: Comparison between state-of-the-art methods and our method (BSQA) for three different datasets.

the results for the PU dataset in Figure 5 for bundles of sizes 1, 5, and
10 and for different maximum amount of data values C. Figure 5a
shows the time to construct the branch and bound search tree and
compute the optimal solution for a given maximum amount of
data. This time was measured on a commodity workstation with
GeForce GTX 980 GPU. As shown in the figure, using individual
bands (bundle size of 1) may require a long time to find the optimal
solution, especially for the data amounts in the range of 1-3 MB.
Outside this range, the data size is either too small which makes the
search tree very small, or the data is large enough which makes the
algorithm quickly prune many branches. Bundles of size 10 bands
run very fast, but produce lower accuracy as shown in Figure 5b.
Bundles of size 5 bands achieve comparable accuracy to individual
bands while requiring much smaller executing times. Thus, we use
bundles of 5 bands in the rest of our experiments.

5.3 Comparison against State-of-the-Art

We compare the proposed method, which is referred to as BQSA,
against the closest and most recent works in the literature for
feature/band selection for hyperspectral images, which are MR
[16], BSCNN [18], MABS [20], PSO [22], TLBS[15], and GOC [19].
These methods are briefly described in Sec. 2

We implemented some of these methods as close as we could to
the descriptions in their corresponding papers. However, due to the
lack of some details and parameter values, the performance of such

methods was much lower than what is reported in their papers.

To be conservative, we compared the performance of our method
against the best results reported in the papers of the other methods
on the datasets used in those papers. Specifically, for each method,
we check the dataset used and find the achieved accuracy for various
data amounts C from the figures in the paper. Some papers used
number of bands; which we converted to data values given the size
of each band in the dataset. Some of the previous methods were
evaluated on a subset of the four hyperspectral datasets and/or
on smaller ranges of data. These methods are not shown in some
figures, and/or their curves do not span the whole range.

Three samples of our results are shown in Figure 6 for the PU,
IN, and SA datasets. The figure clearly shows that our method
outperforms all others for all datasets and for all data ranges. The
accuracy improvements are substantial, especially for the smaller
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values of the available data, which are the most important and
practical ranges for transmitting data over wireless channels. For
example, for the PU dataset, the best accuracy produced by any
method in the literature for C = 5 MB is less than 80%, while our
method produces an accuracy of about 95%. For the IN dataset, the
gain is even higher, where our method achieves an accuracy of
more than 95% for a very small value of C = 0.5 MB, while other
methods result in an accuracy less than 60%.

6 CONCLUSIONS

Hyperspectral imaging facilitates remote exploration of a scene by
capturing the spectrum of each pixel. However, the high dimen-
sionality and huge data size of hyperspectral images impose many
challenges on transferring and processing such data. In this work,
we proposed a method to select and transmit the most important
parts of the hyperspectral data that maximize the utility of the
received data. Our method jointly optimizes the number of selected
bands and their qualities while taking into account previously sent
information. We compared our method against the closest ones in
the literature using four labeled hyperspectral imaging datasets.
Our results show that the proposed method can achieve approx-
imate classification with high accuracy using a small amount of
data. For example, in one of our datasets, an accuracy of 98% for
coarse-grained classification is achieved with less than 3% of the hy-
perspectral data transferred. In addition, our method significantly
outperforms the state-of-the-art, especially in practical cases where
the available bandwidth to transmit hyperspectral data is limited.
For example, for one of our datasets, the best classification accu-
racy produced by any method in the literature was less than 60%
when the maximum allowed data to transmit was 0.5 MB, while
our method achieved an accuracy of more than 95% for the same
amount of data.
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