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ABSTRACT
Streaming virtual reality (VR) content is becoming increasingly
popular. Advances in VR technologies now allow providing users
with an immersive experience by live streaming popular events,
such as the Super Bowl, in the form of 360-degree videos. Such
services are highly interactive and impose substantial load on the
network, especially cellular networks with inconsistent link capac-
ities. In this paper, we perform rigorous analysis of 1300 VR head
traces and propose a multicast DASH-based tiled streaming solu-
tion, including a new tile weighting approach and a rate adaptation
algorithm, to be utilized in mobile networks that support multi-
cast such as LTE. Our proposed solution weighs video tiles based
on user’s viewports, divides users into subgroups based on their
channel conditions and tile weights, and determines the bitrate
for each tile in each subgroup. Tiles in the viewports of users are
assigned the highest bitrate, while other tiles are assigned bitrates
proportional to the probability of users changing their viewports
to include those tiles. We compare the proposed solution against
the closest ones in the literature using simulated LTE networks
and show that it substantially outperforms them. For example, it
assigns up to 46% higher video bitrates to video tiles in the users’
viewports than current approaches which substantially improves
the video quality experienced by the users, without increasing the
total load imposed on the network.

CCS CONCEPTS
•Information systems→ Multimedia streaming; •Networks
→Mobile networks;

KEYWORDS
Mobile Multimedia, Video Streaming, Adaptive Streaming, Multi-
cast.

1 INTRODUCTION
�e virtual reality (VR) market is predicted to �ourish sixfold reach-
ing $30 billion by 2020 [3]. Recently, technology giants, such as
Facebook and YouTube, have been integrating VR services in their
existing platforms. �is makes VR content more accessible than
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ever before. In this paper, VR content refers to immersive 360-
degree videos, where users can change their view angles. Moreover,
next generation massive MIMO cellular networks will help users
stream such content on their mobile devices and enjoy an immersive
panoramic viewing experience.

Providing users with an immersive experience requires VR con-
tent with 4K+ resolutions and up to 60 fps, which is very bandwidth
demanding. A recent measurement study shows that current com-
mercial 360 video delivery platforms are utilizing a delivery scheme
similar to traditional Internet videos [19]. In such systems, the
entire video is streamed to users. However, employing such ap-
proach to stream interactive VR videos wastes signi�cant network
bandwidth, because users can only watch a portion of the video at
a time depending on the utilized VR headset, while the rest of the
transmi�ed data outside the user viewing range is wasted. For ex-
ample, for Oculus DK2, the visible portion is 110◦ horizontally and
90◦ vertically. It also increases the power consumption of mobile
devices. A trivial solution would be to stream only the currently
viewed parts of the video. However, it is common in VR applications
that users change their viewing directions and if the new viewport
is not found in the bu�er, users would be shown a blank or freezing
picture and lose their immersive experience.

�ere have been a few a�empts to utilize tiling techniques to
decrease the required bandwidth for VR content. In such techniques,
the video is �rst divided into smaller tiles. Each tile is then encoded
at multiple bitrates. Tiles required to construct the viewport are
streamed with high bitrate and the others with low bitrate. �e
chief challenges of tiling are how to choose tile sizes and weights
based on users’ viewing behavior, and optimize the streaming tiles
bitrates to reduce the total required bandwidth while maintaining
the user perceived quality.

Although tiling helps with bandwidth reduction, it is not enough.
Streaming a live VR video to millions of users still would not be
practical without utilizingmulticast schemes. �anks to the Evolved
Multimedia Broadcast Multicast Services (E-MBMS) feature in Long
Term Evolution (LTE) networks, base stations can employ point-
to-multipoint bearers to serve a huge number of users consuming
simultaneously the same content [2] [14]. One of the key challenges
of the E-MBMS is the radio resource management. In fact, resource
allocation strategies signi�cantly a�ect the received Signal to Noise
Ratio (SNR), the user perceived quality and the network throughput.
Recent papers [9], [6] employ a multicast grouping strategy to
serve the users with similar channel conditions with the same
video quality level, maximizing the spectral e�ciency. However,
these approaches are not suitable for streaming VR content because
of the VR-speci�c characteristics. For example, users watching a
traditional live stream can be served with a single multicast session,
while in the case of 360 live streaming, di�erent users may be
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watching di�erent parts of the video, and even the same user can
change his/her viewport during the streaming session.

In this work, we propose a hybrid tiling multicast solution for
live streaming of VR content. It includes a new tile weighting
approach and a rate adaptation algorithm. To do so, we �rst prepare
a fairly big dataset, including over 1300 VR head traces. We perform
rigorous analysis to investigate users’ viewing behavior and use
this information to develop a probabilistic tile weighting technique
to be�er address viewport changes in VR applications. �en, we
formulate the problem of multicast adaptive tiled streaming with
the goal of maximizing the average data rate of served video streams
while keeping the data rates proportional to tile weights. We show
that this problem is NP-hard and propose a heuristic algorithm to
solve it. Out rate adaptation algorithm can be used with other tile
weighting approaches. However, our tile weighting approach be�er
captures users’ viewport changes during the rate adaptation cycle,
hence allowing longer adaptation cycles and consequently less
feedback overhead. �rough our extensive simulations, we show
that the proposed algorithm can achieve substantial improvements
in the overall data rate of video sessions. For example, it provides
up to 46.81% more bit rates for the video tiles that are required to
construct the viewports with the same amount of radio resources.

�e remainder of this paper is organized as follows. Section 2
summarizes the related work in the literature. Section 3 describes
the considered system model and operation. Section 4 explains our
head traces dataset preparation and analysis, and demonstrates the
proposed tile weighting approach. Section 5 formulates the rate
adaptation problem and presents our proposed algorithm. Section
6 presents the simulation results and comparisons against other
works in the literature. Finally, Section 7 concludes the paper.

2 RELATEDWORK
2.1 Virtual Reality Streaming
Streaming virtual reality content had not been feasible until re-
cently. Light headsets with high-quality screens and high-accuracy
head tracking enabled this to happen. Multiple works and experi-
ments have been carried out to discover the appropriate se�ings
for streaming such content. In [12], the video is divided into tiles
and each tile is encoded at multiple bitrates. �e quality of the tiles
is determined based on the total available bandwidth and the user’s
desired view. However, in this work, the viewports are pre-de�ned.
Gaddam et al. [10] leverage user controls such as pan-tilt-zoom and
head tracking signals to determine the tiles in the current viewport.
�ey conclude that a pyramidal tile weighting approach is a good
trade-o� between bandwidth saving and perceived video quality.
Qian and Han [19] conduct a measurement study on Facebook and
YouTube 360-degree video platforms revealing that both utilize
progressive download over HTTP. �en, through trace-driven sim-
ulations, they show that tiled streaming could save 40-80% of the
bandwidth depending on the video content and number of tiles.

�e motion-constrained tile set (MCTS) feature of HEVC [15]
has been investigated in [25] [13] [21] to reduce the transport
complexity and support devices with a single hardware decoder.
Bao et al. [8] provide a dataset to show that head movements can be
predicted on a time scale of 100-500ms, leading to 45% bandwidth

reduction. �ey did not consider dynamic adaptive streaming over
HTTP (DASH), though.

All of the above works have focused on unicast streaming, while
we focus onmulticast streaming of popular live events to large-scale
mobile users.

2.2 Mobile Multicast
Multiple works have considered incorporating the notion of adap-
tive streaming into multicast se�ings. Monserrat et al. [16] utilize a
joint unicast-multicast streaming approach, in which mobile termi-
nals are served using unicast or multicast connections. If a multicast
session is initiated, the base station will set its transmission power
based on the worst channel condition to accommodate terminals
at the cell edge. Chen et al. [9] also apply a joint unicast-multicast
streaming approach to maximize the average data rate at mobile
terminals. Almowuena et al. [6] propose an energy-aware resource
allocation algorithm to utilize joint unicast-multicast in both in-
dependent cells and single frequency networks (SFNs). Wang et
al. [22] propose a mixed resolution tiling scheme for broadcasting
zoomable videos on wireless LANs. �eir subjective experiments
on the impact of having di�erent qualities for tiles in the viewport
[23] show that minor di�erences in resolution are hardly noticed.

Di�erent from prior works, which are designed for traditional
2D videos, we propose a complete multicast VR streaming solution
including a new tile weighting approach and a rate adaptation
algorithm. Both take 360 video characteristics and user interactivity
into consideration.

3 SYSTEM MODEL AND OPERATION
3.1 Mobile Network
We consider a cellular network with multiple mobile terminals as
shown in Figure 1. �e cellular network supports multicast services
such as E-MBMS [14]. Mobile terminals move through the network
and may enter or leave MBMS-enabled cells as they move. �e
link capacity for each mobile terminal �uctuates over time due to
physical mobility and time-varying channel impairments such as
shadowing, multipath fading, and variations in other tra�c served
by the same base station. Mobile terminals report the channel state
information or channel quality indicator (CQI) to the associated
base station via an uplink channel. �e granularity of channel
state information is at the subcarrier level. Higher modulation and
coding scheme (MCS) modes require good channel quality and lead
to higher per-resource block capacity. On the other hand, lower
MCS modes are more robust and usable for diverse (both good and
weak) channel qualities.

�e radio resources of a base station are divided along both time,
represented by sub-frame, and frequency, represented by subcarrier.
A resource block is the smallest unit that can be allocated by the
base station.

3.2 Virtual Reality Content
High-quality 360 videos are chie�y recorded by camera array sys-
tems. �e captured videos are �rst stitched and warped onto a
3D sphere and then projected to a 2D map using several mapping
schemes. �e map is encoded and streamed over the network to
users. On the client side, a 360 video player calculates and displays
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Figure 1: Architecture of a mobile network, in which heterogeneous clients share radio resources and view 360-degree videos.

the viewing area based on the user’s viewing direction and �eld of
view (FoV) or viewports.

�e projected 360 video, e.g., equirectangular [11] or cubic map-
pings [17], are �rst temporally divided into a sequence of small
segments. �en, each frame in a segment is spatially divided into a
grid of tiles. Tiles are pre-encoded in multiple quality representa-
tions, each with a particular video bit rate. �ese representations
are stored on the content server. For each video, there is a Me-
dia Presentation Description (MPD) �le which informs streaming
clients about the bitrate and quality of the available representations,
and helps them locate the video tiles. �is �le utilizes the Spatial
Representation Description (SRD) feature of DASH to describe spa-
tial relationships between associated pieces of video content [4]
[18].

3.3 Video Streaming Pipeline
According to the MBMS speci�cations [2], the content provider
supplies the media, as well as the service descriptions and control
data, to the Broadcast Multicast Service Center (BM-SC). For DASH
streaming, the MBMS download delivery method should be used
[2], [20]. In this method, the media content is transferred via HTTP
from the content provider to the BM-SC, and via the FLUTE protocol
[5] from the BM-SC to the MBMS clients. Associated delivery
methods, such as �le-repair, are also available and o�ered on HTTP.
Moreover, the delivery method provides functionalities such as
security and key distribution, and reliability control by means of
forward-error-correction (FEC) techniques.

It is worthy to mention that the speci�cations allow continuity
between DASH over MBMS and DASH over HTTP so that when a
mobile terminal exits the MBMS service coverage, it can still receive
the service although using the conventional unicast DASH system
[2] [14]. It is recommended to have a separate MPD �le for each of
unicast and multicast schemes.

�e content provider creates an MBMS user service on the BM-
SC and updates the MPD �le periodically via Update Session pro-
cedure. �is MPD �le contains all representations available on
the content provider server. �e BM-SC modi�es the MPD �le,
determining the suitable representation for each client as explained
later, and then sends it to clients. An MBMS-compatible DASH
client discovers the MBMS user services via User Service Discov-
ery/Announcement procedure and then chooses the desired video
stream. �en, it registers to that service and activates the MBMS
service bearer, speci�ed in the service description. At this time, the
MBMS delivery function in BM-SC is triggered, the MBMS service
bearer is activated, and the content is transferred to all listening
clients.

During the session, the MBMS client informs the BM-SC about
which video tiles are required for rendering the viewport for that
client. �is is carried out periodically through the Consumption
Reporting procedure, which has been provisioned in the MBMS
speci�cation to best utilize the network resources in supporting
unicast and multicast services. �e reporting interval, that shall be
set according to the duration of the scheduling window, is included
in the service description by the MBMS service provider. Consump-
tion reports are based on XML and therefore can be easily extended
to include extra information. �ey allow MBMS clients to inform
the BM-SC about the importance (weight) of each video tile accord-
ing to the user’s current viewport and his/her predicted viewport
in the short time ahead. Using such information and running our
rate adaptation algorithm, the BM-SC determines the appropriate
representation for each video tile that should be streamed to clients.
�e details of the algorithm are described in Section 5.

According to the output of the algorithm, the BM-SC updates
the MPD �le. Speci�cally, from all available representations of a
video tile, only the ones that the rate adaptation algorithm has
determined will be published as available in the updated MPD �le.
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Figure 2: Probability distribution functions (PDFs) of the
Yaw, Pitch, andRoll angles and average percentage that each
tile is required to construct the viewport for a sample 4K
video.

�e algorithm might consider more than one multicast group for a
video tile. �erefore, the BM-SC speci�es the corresponding CQI
range for each representation. Upon the receipt of the updatedMPD
�le, the client knows, according to its CQI, what representation
should be streamed for each video tile and starts downloading them.
When the MBMS service is over or the user just wants to leave,
the client deregisters from the service and deactivates the MBMS
service bearer.

4 TILING ANALYSIS
As part of our proposed solution, we �rst prepare a head traces
dataset and analyze it to �nd suitable tiling con�gurations based
on bitrate overhead, viewport change distribution, and the ROI
coverage. It is worth mentioning that the method we utilize to
determine tiling con�gurations can be applied to any head traces
datasets.

4.1 Dataset Preparation
We combine two head traces datasets to cover a variety of VR video
content and viewing behaviors. �ey include a total of 1335 sessions.
�e �rst dataset [8] contains sixteen 360-degree video clips, mostly
at 4K resolution, downloaded from YouTube and spanning sports,
landscape, and entertainment categories. We refer to them as V1-
V16. �ey were watched by 153 volunteers resulting in a total of
985 recording sessions. Each session includes the view angles of
the subject for every 0.1 seconds, in the form of Euler angles.

�e second dataset [1] contains seven 360-degree videos from
YouTube: Elephants, Rhinos, Diving, Rollercoaster, Timelapse, Venice,
and Paris. We refer to them as V17-23. A total of 350 sessions from
59 volunteers were collected. �e view angles are stored in the
form of Hamilton quaternions representation. �aternions are
preferred over Euler angles in computer graphics because they are
more computationally e�cient and overcome the Gimbal lock issue.
However, Euler angles are used for visualization purposes.

�e sampling frequency is not constant, therefore we use linear
interpolation, as utilized in [8], to have uniform samples every 0.1
seconds.

4.2 Tile Sizes
�e size of video tiles is important in several aspects. First, dividing
the video into tiles negatively a�ects the e�ciency of the video
encoder, since the motion vector search in the encoding process
becomes restricted around the tile borders. Second, smaller tile sizes,
i.e., more number of tiles, will result in more multicast sessions and
consequently requires more resource blocks. On the other hand,
big tile sizes do not capture the bene�ts of the region of interest
(ROI). More speci�cally, when big tile sizes are used, a large subset
of tiles are always required to construct the viewport, even though
only a small portion of the video is watched by the user at a time.
Hence, the maximum gain of rate adaptation decreases.

Figure 2 shows the average percentage of required tiles to con-
struct the user�s viewport for a sample video. It also shows the
probability distribution function (PDF) of Euler angles for the video
for all the users who watched it. �is video is 30-second long, and
watched by about 50 subjects. �e color spectrum from red to yel-
low represents the range from 100% to 0%. As can be seen, as the
tile size decreases, the region of interest is discerned more precisely,
resulting in more e�cient bandwidth saving. Note that the size
of the ROI is constant; however, the number of tiles in the ROI
changes as the tile size changes. �e average percentage of tiles in
non-ROI regions across the videos in our dataset is 44.74%, 56.95%,
67.54%, and 71.87% for 2×4, 3×6, 4×8, and 6×12, respectively. �e
value for 6×12 is 4.33% more than that for 4×8, however choosing
it would be at the cost of having 40 more �les per segment on the
server. Moreover, the average bitrate overhead over all the videos
in the dataset, resulting from tiling, is about 6% for 6×12, while that
is 3.78% for 4×8. �erefore, 4×8 tiling is preferred here.

4.3 Tile Weights
Interactivity plays a key role in VR applications. When the user
changes the viewport, if a video tile required to construct the new
viewport does not exist at the client, a blank or static image has
to be temporarily shown, which causes dramatic video quality
degradation. �erefore, it is recommended to stream all tiles in
such highly interactive applications, albeit with di�erent bit rates
for each tile. However, determining the bitrates of the tiles is a
challenging task, because it should consider current viewport and
its change in near future. To address this issue, tiles are weighed
and their bitrates are assigned proportional to their weights. Here,
we �rst review binary and pyramidal weightings [19]. �en, we
analyze the viewport changes in terms of view angles and tiles, and
propose a new data driven probabilistic tile weighting approach.

Binary. �is is a straightforward approach in which the tiles in
the viewport have the maximum weight and other tiles have the
minimum weight. �e drawback of this approach manifests itself
when a user changes the viewport and a neighboring tile is required
to construct the new viewport. Since that tile’s weight is set to the
minimum, the video quality degradation would be signi�cant.

Pyramidal. �e weight of a tile gradually decreases according to
its distance to the viewport. All neighboring tiles of the viewport
tiles are at distance one. Neighbors of neighbors are at distance
two, and so on. �e challenge of this approach is how to determine
tile weights at a speci�c distance. A simple idea is to normalize the
weights based on the distance range. For panoramic videos, the
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Figure 3: Cumulative distribution functions (CDFs) of view angle change

authors of [19] suggest to set the weights according to the zoom
level and tilt and pan tendency.

Probabilistic. We propose to weigh the tiles based on the prob-
ability distributions of the viewport changes, which we infer by
analyzing the head traces in our dataset. Figure 3 illustrates the
cumulative distribution function of view angle change in three
directions on di�erent time scales in our dataset. As can be seen,
small angle changes are far more likely than big angle changes,
especially when the time scale is small. Also, the amount of change
in Yaw is bigger than that of Pitch and Roll. For one-second time
scale, almost 80% of the viewport changes are in the ranges [-38.1,
36.2], [-14.5, 15.2], and [-5.3, 5.0] for Yaw, Pitch, and Roll angles,
respectively.

We can perform the same calculation in the 2D projected domain.
For example, Figure 3 also represents the view changes along the
equirectangular axes. �erefore, to assign the tile weights, we
calculate the probability of tile changes rather than view angles.
We want to know how far the viewport tiles at the beginning of the
time window will probabilistically move during the time window.
LetWN p be the weight of neighborhood Np whose distance from
the current viewport is p. It can be calculated as follows.

WN p =

∑
i
∑
s
∑
q
∑
t ∈N s

0,i
h(t ∈ N s+qδ

p,i )∑
i
∑
s Q |N s

0,i |
, (1)

where s is the start time of each time window, Q is the number
of interpolated viewport samples in each time window, δ is the
interpolation interval, N s

p,i is the set of tiles in the neighborhood
with distance p from the user i’s viewport at time instance s . Note
that N s

0,i is user i’s viewport at time instance s . Function h(·)
returns one if its argument is satis�ed, otherwise returns zero. Eq.
(1) calculates how probable a tile at distance p from the viewport at
the beginning of the time window turns out to be a viewport tile
during the time window.

5 RATE ADAPTATION
5.1 Problem Statement
Our rate adaptation problem for streaming virtual reality content
over cellular networks can be stated as follows.

Given the video requests, viewports, and channel conditions of
multiple mobile terminals streaming tiled 360 videos, determine the
optimal transmission scheduling for each base station that assigns the
available resource blocks to multicast sessions, decides the number
of multicast groups, and determines the data rate of each tile stream

for each mobile terminal such that the average video quality for all
mobile terminals is maximized.

max
x

|L |∑
i

|T |∑
j

|M |∑
k

xi, j,kU (ξi ,R(tj ,mk )) (2a)

s. t. ∀i ∈ L,
|T |∑
j

|M |∑
k

xi, j,k = 1 (2b)

|T |∑
j

|M |∑
k

yj,k
R(tj ,mk )
α j,k

6 Π (2c)

yj,k =

{
1 ∃i ∈ L,xi, j,k = 1

0 otherwise
(2d)

�e mathematical formulation of the problem is given in Eq. (1).
Symbols used in the paper are listed in Table 1. Let L be the set of
mobile terminals, and T the set of all video tiles available. Since we
are considering a live streaming scenario, we assume that all users
who are streaming the same video are requesting the same segment
index. Moreover, VR applications are interactive and users can
freely change their viewports. If a video tile is not sent and a user
happens to change his/her viewport to that video tile, the client
video player would be unable to construct that part of the scene,
resulting in huge video quality degradation. �erefore, all video
tiles are streamed at all time, although with minimum qualities.
Also, note that the formulation in Eq. (1) allows di�erent tile sizes
and weights.

At each adaptation cycle (equals to segment size), we need to
form multicast groups and set their data rates such that the average
utility for all mobile terminals is maximized, Eq. (1a). Let M be
the set of MCS modes. �e total number of possible sessions is
the number of video tiles multiplied by the number of MCS modes.
However, based on users’ channel conditions and viewports only
a set of these sessions will be used. �e decision variable xi, j,k
determines which user should be in what multicast session. �e
utility of each decision is measured by function U which depends
on the user’s viewport and the tile’s data rate, which is a function
of the relative weight of the tile to the user’s viewport and the
corresponding MCS for the session. �e constraint in Eq. (1b)
ensures that users receive only one representation for each video
tile. �e constraint in Eq. (1c) implements the restriction on the
available radio blocks for this service, denoted by Π. It uses an
auxiliary variable yj,k , de�ned in Eq. (1d), to inspect whether any
user is using the multicast session (j,k), i.e., the session in which
the video tile tj is streamed with the MCSmk . �e variable α j,k is
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Algorithm 1: MVR (Multicast Virtual Reality)
Input :

T ← Set of requested video tiles
R ← Set of available data rates for video tiles
V ← Set of users’ viewports
M ← Set of available MCSs
B ← Bandwidth available for video services

Output :
X ← Multicast subgroups and their bitrates

1 X = ϕ
2 // Perform the minimum grouping stage to maximize the number of

served terminals
3 for each video tile t do
4 mt = minimum MCS suited for all users of this tile
5 rt = minimum bit rate for this tile
6 Xi,t,mt = 1, ∀i ∈ L, s.t i watches tile t
7 end
8 // Perform rate adaptation to increase viewport rate and utility
9 while Bandwidth(X) <B do

10 U = ϕ
11 for each video tile t do
12 for each MCS groupm do
13 // calculate the sum of utility over all users, if the bitrate

were increased for each MCS groupmk (not multicast
subgroup)

14 Xt,m = GetNext(rt ,m)
15 ut,m =∑

i UserUtility(t, rt ,m, ξi , R)/NetworkUtility(Xt,m )
16 U = U ∪ ut,m
17 end
18 end
19 // Select the step which results in the maximum utility
20 [t̃, m̃, r̃t ] = FindBestStep(U )
21 // Users with higher MCS can join this session if their bit rates are

less than or equal to r̃t
22 Update(X , t̃, m̃)
23 if Bandwidth(X) >B then
24 RollBack(X )
25 break
26 end
27 end

the radio resource capacity of the session (j,k) which is basically
the number of bits that can be transmi�ed per each radio resource
using the MCS modemk .

5.2 Proposed Algorithm
�e formulation in Eq. (1) is a binary integer non-linear program-
ming problem which is NP-hard. It can be solved by dynamic
programming approaches. However, the running time of its worst
cases is exponential. �erefore, we develop a heuristic algorithm,
referred to as MVR (short for Multicast Virtual Reality) streaming
algorithm.

A simple rate adaptation mechanism is to serve all members in
a multicast group with the same data rate. In this case, to make
sure that all members are able to receive the video, the data rate is
determined based on the member with the worst channel condition.
�is approach results in a poor spectral e�ciency [7].

Table 1: Symbols used in this paper.

Symbol Description
L Set of mobile terminals.
V Set of 360-degree videos available at the content server

T
Set of all the video tiles available at the content server. It allows
di�erent number of segments and tiles for each video.

M Set of modulation and coding scheme (MCS) modes.
ξi Viewport of user i at the beginning of the adaptation cycle
Π Total available radio resources.
α j,k Radio resource capacity for multicast session (j,k).

xi, j,k
�e decision variable that determines whether user i receives
video tile tj streamed with modulation and coding schememk .

yj,k
Auxiliary variable to examine whether any users has been as-
signed to multicast session (j,K).

To address this problem, a multicast group is divided into mul-
tiple subgroups and each subgroup is served with a transmission
power and an MCS mode, with which its worst mobile terminal can
decode. �e subgrouping, however, is a challenging task. First, the
channel conditions are not constant. Second, users’ viewports are
dynamically changing over the course of time, even during an adap-
tation cycle. �erefore, the quality of the video tiles should be set
accordingly. Finally, adding more multicast sessions exhaust more
resource blocks while the number of resource blocks is limited.

To tackle the aforementioned issues, we propose the MVR al-
gorithm that divides the incoming video requests into subgroups
and determines the data rate for each one. Algorithm 1 shows
the pseudo code of our algorithm. Once the variables have been
initialized, the algorithm starts with a minimum grouping stage,
which utilizes a minimum number of multicast groups equal to
the number of requested video tiles, each group is served with the
minimum available bitrate, in order to maximize the number of
served terminals in the system (lines 3-7). �e algorithm then in-
crementally increases the data rate for one of the video tiles, which
results in maximum total utility. �e utility of each step is the sum
of all user’s utilities over the network utility (lines 13-14). �e net-
work utility is the average ratio of the total bitrate to the number of
assigned resource blocks. �is increase is only one-step, meaning
that it chooses the immediate next representation. Also, note that
the increase is not for all users who need that video tile. In fact,
it is done only for one of the MCS groups. However, users who
need that video tile and have an equal or greater MCS would also
be able to receive that video tile. �erefore, once the increase with
maximum utility is found, the algorithm updates the status of the
subgroups through the decision variable and examines whether
there are enough resources for the new subgrouping or not (lines
20-24). �is procedure is repeated until the resource block limit is
met.

In the ideal solution for a user, the quality of each video tile
should be the maximum possible quality among the available rep-
resentations multiplied by the ratio of that tile’s weight to the
maximum tile weight. �is way, video tile(s) with maximumweight
would be streamed with the maximum quality representation, while
the quality of the other video tiles would be proportional to their
weights. In practice, when there is not enough resources, we devi-
ate from this ideal solution. In order to measure how much close
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Figure 4: Average bitrate of viewport tiles.

Algorithm 2: User’s utility calculation function
Input :

t ← Current tile
r ← Current tile’s bit rate
m ← Current MCS group
ξ ← Current user’s viewport
R ← Set of available data rates for video tiles

Output :
u ← Current user’s utility

1 // Set next qualities to current qualities
2 Qnext = Qcurrent
3 // Check if the bit rate can be increased for current video tile t
4 rnext = nextBitRate(r )
5 if rnext then
6 // If user’s MCS is greater than or equalm, update tile’s quality
7 if mu >m then
8 Qnext = get�ality(Qcurrent, t, rnext )
9 end

10 end
11 // User’s utility increases as each tile quality increase approaching

Qmax
12 Sful�llment = mean(Qnext/Qmax)
13 // Tile qualities should be proportionate to tile weights
14 F = Qnext ./GetWeights(ξ )
15 Sbalance = 1 −MAEi< j (Fi , Fj )
16 u = mean(Sful�llment, Sbalance)
17 return u

an alternative solution is to the ideal solution, we de�ne a utility
function.

Algorithm 2 shows the pseudo code of calculating this utility
for a single user. �is function considers two key aspects. First,
the quality of video tiles should be close to the quality of video
tiles in the ideal solution. Since the number of representations is
�nite, these values can be normalized and averaged. In the utility
function, this averaged value is referred to as the ful�llment score.
Second, the ful�llment score alone cannot capture the total merit
of the solution, because it is unable to measure the balance of the
quality distribution among tiles. In the ideal solution, the ratios
of video tile qualities to their weights are virtually the same for
all the tiles, meaning that their mean absolute error (MAE) is zero.
�us, the utility function normalizes these ratios and calculates
their MAE. �is value subtracted from one represents the balance
among the video tile qualities and is referred to as the balance score

in the utility function. �e �nal utility is the average value of these
two scores. �e utility of each possible decision made in the main
algorithm’s iterations is the utility summation of all users.

6 EVALUATION
We implemented the proposed MVR algorithm and compared it
against the closest algorithm in the literature [9], referred to as
FO, which exploits the concept of multicast subgrouping to provide
fair and optimal transmission scheduling decisions. �e weighting
function in the FO algorithm can be set to constant (FO-C) or
linear (FO-L). We conduct trace-driven simulations. �e video
requests and head traces are obtained from the dataset. �e channel
conditions are generated as explained in Subsection 6.1. �e tile
sizes and weights are determined as explained in Subsections 4.2
and 4.3, respectively.

6.1 Setup
We simulate an LTE cellular network, with 20 MHz FDD physical
pro�le, using OPNET Modeler and its LTE module [24]. We use the
channel conditions obtained from OPNET as input to the algorithm.
In practical scenarios, mobile operators usually install base stations
in crowded areas to serve most users with strong signals. Accord-
ingly, in our simulations, mobile users are randomly distributed
within each cell such that the majority of users, about 90% of them,
are densely populated within 1/3 of the cell radius and the rest are
sparsely sca�ered around the rest of the cell area. Mobile terminals
move following the random waypoint model in which mobility
speed is randomly chosen between 0 and 18 km/hr. �ey send a
channel quality indicator (CQI) report to the associated base station
every 100 ms. According to the speci�cations, up to 60% of the
radio resources can be dedicated to MBMS transitions [14]. In our
simulations, we use 50% of the radio resources for this purpose.

�ere is a total of 23 videos in our dataset as explained in Subsec-
tion 4.1. �e videos have di�erent bitrates. We consider 12 di�erent
representations from 1 to 10 Mbps, upscaling or downscaling the
videos if necessary. We generate the DASH video tiles for each
video. As discussed in Section 4.2, we choose 4×8 tiling. �e seg-
ments, hence tiles, are one second long. In each scenario, one of the
videos is streamed by an average of 200 users. Each user randomly
chooses a head trace from the existing head traces in the dataset
for the video that is being streamed in the scenario, and switches
his/her viewport based on that. �e length of the simulations de-
pends on the length of the videos, 30 seconds for V1-16, and about
60 seconds for V17-23. We run each scenario �ve times and report
the average of the results.

6.2 Results
We show the performance gain achieved by our proposed algorithm
(MVR) and tile weighting approach (Probabilistic), using three per-
formance metrics: 1) average viewport bitrate, 2) the impact of
viewport change during the scheduling window, and 3) the spectral
e�ciency.

6.2.1 Average Viewport Bitrate. 360-degree videos cover all the
surroundings around the center point of the camera. However, a
user only watches a portion of the entire video at a time. �ere-
fore, the bit rate of the tiles used in the construction of the user’s
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Figure 5: Average bitrate of the whole video.
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Figure 6: Cumulative distribution function of the average
bitrate change in viewport tiles during a schedulingwindow.

viewport has a key role on the user’s perceived quality. Figure 4
shows the average viewport bitrate for each video and across all the
videos. Our algorithm assigns up to 46.81% more bitrate for the tiles
required to construct the viewport (Figure 4(a)). FO-C and FO-L
distribute the bitrate uniformly over the video and therefore pro-
vide the least share of bitrate for the user’s viewport. On average,
MVR-Probabilistic provides 18.19% and 20.68% more bitrates for the
tiles in viewport, compared to FO-L and FO-C, respectively. �e er-
ror bars in Figure 4(b) represent the viewport bitrate variation over
the time which is only 0.007 Mbps for the proposed probabilistic
weighting, compared to 0.057 Mbps for the binary approach.

Figure 5 shows the average bit rate of each streamed video
achieved by di�erent algorithms for three tile weightings. It also
shows the average video bitrate across all the videos. As can be seen,
our algorithm when used with binary and probabilistic weightings,
requires less bandwidth compared to FO-C and FO-L. For example,
MVR-Probabilistic requires 3.7% less bandwdith than FO-L.

6.2.2 Interactivity Impact. In order to adaptively distribute the
available bitrate among the video tiles, changes in users’ viewports
should be reported back to the adaptation algorithm. However, it
cannot happen too frequently, otherwise its overhead cancels out
the gain of the bitrate adaptation. �e adaptation is carried out
based on the reported viewports at the beginning of each sched-
uling window. However, the user’s viewport changes during the
scheduling window. We measure the change in the bitrates of
the viewport tiles during the scheduling window, to evaluate the
success of di�erent weighting approaches in capturing the afore-
mentioned issue. To do so, we used the interpolated view angle
values in each scheduling window that have been provided in the
dataset. Figure 6 shows the cumulative distribution function of
the average bitrate change in viewport tiles during a scheduling
window for 1-second and 2-second scheduling windows. For all
the weighting approaches, the amount of change increases as the
length of scheduling window increases. �e performance of the
probabilistic weighting stands in between the other two approaches.
In Figure 6(a), in 80% of scheduling windows, the viewport bitrate
changes are less than 0.22, 0.24, and 0.27 Mpbs, for the pyrami-
dal, probabilistic, and binary approaches, respectively. Comparing
Figure 4 and 6 indicates that the proposed probabilistic weighting
approach is a compromise between achieving high viewport bitrate
and less viewport bitrate variations.

6.2.3 Spectral E�iciency. �e spectral e�ciency is de�ned as the
transmi�ed data rate (in bits per second) divided by the allocated
bandwidth (in Hertz). According to Figure 7, the proposed algo-
rithm outperforms FO-C and FO-L in terms of spectral e�ciency
for all the weighting approaches. FO-L has the worst performance.
�e spectral e�ciency of MVR-Probabilistic is greater than FO-C
for 66% of the time. For the other 34%, the di�erence is still very
small.

7 CONCLUSIONS
Multicast is a natural choice to live stream popular events in the
form of 360 videos to large-scale user communities. It is, however,
a complex task due to the inherent high interactivity of VR appli-
cations and their high bandwidth requirements. To address these
issues, we proposed a new data-driven probabilistic tile weighting
approach and a new rate adaptation algorithm for mobile multicast
environments. We prepared a comprehensive dataset of VR head
traces and performed detailed analysis to investigate the viewing
behavior of users and develop a new tile weighting. We evalu-
ated the proposed solution and compared it against others in the
literature using trace-driven simulations. Our results show that
it assigns signi�cantly higher video bitrates (up to 46%) for the
video tiles in users’ viewports, allowing them to freely change their
view directions while observing much less video quality degrada-
tion. Moreover, our solution is compatible with DASH and can be
employed in multicast supported mobile networks, such as LTE.
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