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ABSTRACT

With the recent availability of commodity Virtual Reality (VR)
products, immersive video content is receiving a signi�cant inter-
est. However, producing high-quality VR content often requires
upgrading the entire production pipeline, which is costly and time-
consuming. In this work, we propose using video feeds from regular
broadcasting cameras to generate immersive content. We utilize the
motion of the main camera to generate a wide-angle panorama. Us-
ing various techniques, we remove the parallax and align all video
feeds. We then overlay parts from each video feed on the main
panorama using Poisson blending. We examined our technique on
various sports including basketball, ice hockey and volleyball. Sub-
jective studies show that most participants rated their immersive
experience when viewing our generated content between Good to
Excellent. In addition, most participants rated their sense of pres-
ence to be similar to ground-truth content captured using a GoPro
Omni 360 camera rig.

CCS CONCEPTS

• Information systems→Multimedia content creation; •Com-

puting methodologies → Virtual reality;
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1 INTRODUCTION

Virtual reality is currently experiencing a growing interest in the
multimedia industry. Despite large investments from giants such
as Facebook, Google, Microsoft, Samsung, and others, one problem
remains that prevents VR from being adopted on a wider scale;
the lack of real content. The vast majority of current content is
synthetic, generated for the gaming industry. The only approach
for generating real content is by using VR capturing devices. Such
devices, commonly referred to as VR camera rigs, contain multiple
cameras stacked next to each other in a way that maximizes the
�eld of view [2, 11, 33]. Camera outputs are then stitched together
to enhance the overall sense of immersion.

Current solutions for capturing high-quality VR content require
upgrading the entire production pipeline. Such upgrade is expensive
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to set-up and operate, which makes it an unappealing solution. We
propose an alternative approach for VR content generation that
converts the traditional broadcast to VR through post-processing.

Most large sporting stadiums contain multiple high-end cameras,
capturing the �eld from di�erent positions. These cameras are
operated by a professional �lming sta� that can create production
quality content. For instance, broadcasting a FIFA World Cup game
often involves more than 20 cameras [13]. These cameras capture
the �eld from di�erent angles and di�erent positions, including a
few main cameras positioned on the halfway line, a high left and
a high right camera. The report in [34] shows the most common
camera positions for di�erent �eld sports, including basketball,
and ice hockey. In most games, there is at least one main camera
positioned usually in the middle of the �eld. This camera follows
the action with a wide angle covering around 50% of the �eld. With
such setup already in place, we propose a solution for high-quality
VR content generation. Our solution utilizes existing video feeds
in a post-processing step without the need of upgrading the entire
production pipeline.

Producing VR content from the traditional video feeds is a quite
complex task and requires addressing multiple challenges. First,
we need to widen the �eld of view to at least 180 degrees. We
achieve this by utilizing the motion of the main camera to generate
a wide-angle static panorama. The �eld area is then overlaid on
the panorama using Poisson blending to allow seamless blending.
Second, due to the limited coverage of the main camera, players
tend to appear/disappear throughout the recording. Such e�ect
signi�cantly degrades the feeling of immersion. To overcome this
problem, we identify and retrieve the missing players from di�erent
camera feeds. For this, all feeds need to be aligned with respect
to a reference frame, which is challenging because of the large
distance between cameras. This distance causes the position of
objects and the orientation of lines to appear di�erently when
viewed from di�erent cameras. This e�ect is referred to as parallax.
Large amounts of parallax cause state-of-the-art image alignment
techniques, e.g. [41], to fail. To address this problem, we remove
parallax by �rst obtaining camera parameters, and estimating the
3D position of each pixel. We then warp each feed to the position
of the main camera.

To evaluate our method, we captured sports games using 3 regu-
lar cameras and a 360 camera simultaneously. Using our technique,
we generated VR content from the 3 regular video feeds, which
were positioned on the left, middle, and right side of the �eld. We
conducted subjective studies in which participants were asked to
rate their sense of presence and perceived video quality when view-
ing our generated content. In addition, they were asked to compare
our content with content captured using the 360 camera. Our re-
sults show that most participants rated their sense of presence
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between Good to Excellent. Also, our generated content was rated
similar to the captured 360. Analysis on missing players show that
our method retrieves missing players accurately with a maximum
displacement error of around 20 cm.

The rest of this paper is organized as follows. Section 2 provides
a summary of the related work. Section 3 describes our proposed
method in details. Section 4 presents an extensive evaluation of our
technique, and Section 5 concludes the paper.

2 RELATED WORK

Recently, VR has gained strong interest from both the industrial
and research communities. Stengel et al. [35] proposed an a�ord-
able solution for VR headsets which incorporates eye tracking and
tackles motion sickness. Perrin et al. [31] addressed quality assess-
ment of VR content through a multi-modal dataset, while Chang et
al. [9] proposed a methodology for quantifying the performance
of commodity VR systems. Zare et al. [42] presented a streaming
solution for VR that can reduce the bitrate down by 40%. A survey
on VR streaming solutions is presented in [10]. While this line of
research addresses a wide range of VR topics, they do not address
the content generation step.

Capturing VR content requires a camera rig with a �eld of view
of 180 to 360 degrees. A number of such rigs have been recently
introduced, including GoPro’s Omni [19], Samsung’s Beyond [33],
Facebook’s Surround 360 [11] and Google’s Odyssey [2]. These
rigs contain multiple cameras stacked next to each other in a way
that maximizes the �eld of view. Various software tools are used to
allow seamless stitching and blending of the di�erent camera views.
Specialized �lming teams are needed to operate the production
pipeline. Companies o�ering such solutions include NextVR [28]
and Jaunt [23]. However, using any of these solutions requires
upgrading the entire production pipeline. This is often an expensive
and inconvenient process.

VR content generation is based on creating awide-view panorama
of the scene of interest. One approach for panorama generation
is through image stitching . Here, images are aligned in space by
estimating a warping �eld through feature point matching. Many
techniques assume simple camera rotations [4, 27, 39] and/or planar
scenes [1]. Others relax these constraints through dual homogra-
phy [16] or by smoothly varying the a�ne/homography [8, 24, 41].
Zaragoza et al. [41] rely on projective transformation and estimate
local homography for alignment. Chang et al. [8] use a parametric
warp which is a spatial combination of a projective transformation
and a similarity transformation. Perazzi et al. [29] use patch based
error metric similar to optical �ow to estimate warping.

Most current stitching techniques allow only a small parallax
and hence assume images are taken from nearby cameras. Recently,
Zhang et al. [43] proposed an approach that relaxes this assump-
tion. A mesh-based framework is proposed that optimizes for both
alignment and 2D regularity. Interesting results are generated that
can handle moderate parallax and moderate deviation from planar
structures. However, limitations still exist, such as the inability of
handling straight lines across multiple cameras. Line straightness
can only be preserved locally in each image, but not across im-
ages. Such artifacts are problematic for sports content, as it is often
crucial to preserve the straightness of �eld lines.

Another approach for generating panoramic images is through
3D modeling and texture mapping. Multiview techniques perform
3D model reconstruction by estimating point locations via feature
correspondence. VisualSFM [40] provides a GPU based optimized
implementation of such techniques. Generating dense 3D recon-
struction in outdoor environment is still a challenge. While the
technique in [22] produces good results with large datasets, the
reconstruction quality highly depends on good feature point cor-
respondence. Such correspondence is not necessarily available in
sports data due to the low textured nature of playing �elds.

Sports content has special properties. Speci�cally, the presence of
all players and the straightness of the lines are of major importance,
while the background is less of a concern. The main component
of sports VR content is a wide-view panorama with all players
present at every time instant. Fehn et al. [12] use two nearby high
resolution cameras to generate a high resolution (5k) panorama of
a soccer match. The two cameras are planted in a way to have a full
coverage of the �eld. Similarly, Stensland et al. [36] use a camera
array of four nearby cameras to generate a panoramic video as
part of a sport analysis system called Bagadus. These deployments,
however, require a special setup which is di�cult to achieve with
the current broadcast systems.

Inputs from multiple cameras have been used to create free view
point videos (FVV) [3, 17, 20]. In FVV, the task is synthesizing novel
views from the available ones. This process, however, contains a
number of stages such as camera calibration, segmentation, depth
estimation and 3D reconstruction. Multiple works, e.g. [21, 26], pro-
posed a number of FVV approaches for soccer. However, they all
require pre-calibrated static cameras. Such set-up is hard to satisfy
in sporting events with highly dynamic nature. Germann et al. [17]
presented a FVV technique that robustly handles multi-cameras
with wide baselines in an uncontrolled environment. Feature corre-
spondence between cameras are found and back-projection errors
are used to estimate a novel scene reconstruction method. Angehrn
et al. [3] acknowledged that aligning multiple cameras is one of
the most challenging tasks for FVV. To improve the performance
of this step, they introduced the concept of a static master camera.
All cameras are aligned to this camera.

A wide-view panorama can also be generated using di�erent
time instants of a single camera. This requires aligning each video
frame to a reference panorama plane. Ghanem et al. [18] proposed
matching global features such as image patches rather than match-
ing small salient points. Their approach, however, does not consider
the temporal stability of the estimated alignments and hence may
generate shaky results. Carr et al. [7] proposed a gradient-based
alignment to edge images. Due to computational complexity of the
approach, the calibration does not scale well with video.

Summary/Motivation: Despite the rich literature of image
stitching and panorama generation techniques, up to our knowledge
there is no prior work on producing VR content from the traditional
broadcast pipeline. We present a computational approach for doing
so and we tailor our solution for sports. Our solution exploits the
movement of a main camera to generate a wide-view panorama
and utilizes other cameras to estimate missing data such as players.
We optimize the visual quality of our results using careful image
blending and accurate alignment suitable for our problem.
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3 PROPOSED METHOD

3.1 Overview

The output of our proposed technique is a 360 video in equirectan-
gular format that can be viewed on VR headsets or regular displays
using 360 video players. In order to generate this 360 video from
regular camera feeds, one of the cameras is chosen as the user’s
viewing position. We refer to this camera as the main camera. While
the best choice would be a wide-view camera that follows the action,
any rotating camera can be su�cient for our method. Note that
with multiple choices for the main camera, multiple VR videos can
be generated from di�erent positions and angles, providing the user
with multiple options. For any chosen main camera, all cameras
within its 180 degrees �eld of view can be used as complementary
feeds and help in covering the whole �eld.

Our technique consists of three stages (Fig. 1). In the �rst stage,
we use the main video feed to generate a wide-view static panorama
by means of image registration and median �ltering. This panorama
is used as the background of our 360 environment, in which the
�eld and players will be then overlaid on. Although the background
remains static, subjective studies show that it has little impact on
the sense of presence, as it is not the focus of attention. In the second
stage, we remove parallax between all video feeds by warping them
to the position of themain camera. In the third stage, we use Poisson
blending to �rst overlay the main feed on the panorama, and then
copy the missing players from the complementary feeds. In the
following sections, we describe each stage in more detail.

3.2 Generating Static Panorama

The viewing angle in regular sports videos is usually not wide
enough for an immersive experience. In order to improve the sense
of presence, a wider viewing angle is needed. As a result, we increase
the viewing angle by utilizing the camera rotation, and generating
a panorama image which includes the static parts of the scene.
This stage can be performed only once, or periodically during a
long game to capture any changes in the background. Only the
main video feed is used in this stage. It is recommended to use
a shot in which the camera rotates over a large angle and with
minimum zoom. This widens the viewing angle of the generated
panorama. In order to display a viewing angle greater than 180
degrees, we perform a planar to spherical conversion on each frame
prior to any processing. The camera rotation is then transformed to
a wider viewing angle by aligning the spherical frames using image
registration techniques, and applying median �ltering. Fig. 2 shows
an example static panorama generated from a basketball game.

Conversion to Spherical: Aligning planar images using pro-
jective transformation can cause shape and size distortion. This
problem becomes more severe as the angle between the frames
increases. While methods such as [8] try to overcome this problem,
a viewing angle above 180 degrees cannot be achieved in planar
format. In order to produce a panorama image with a viewing angle
above 180 degrees from planar video frames, we convert the frames
to spherical projection. The equirectangular projection is a standard
way of projecting the 3D world onto a �attened sphere. It is an im-
age with size 2πr × πr that will be wrapped around a sphere when
viewed in 360 degree. Note that r is constant, and can be chosen
arbitrarily based on the desired output size (resolution). To map a

Generating	Static	

Panorama	

Conversion	to	Spherical

Image	Registration

Median	Filtering

Removing	Parallax

Obtaining	Relative	

Camera	Parameters

Generating	Object	

Masks

Estimating	3D	Positions

Warping

Overlaying	Using	

Poisson	Blending

Overlaying	each	Frame	

from	the	Main	Feed

Overlaying	Missing	

Players

Main	Video	Feed
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Figure 1: The 3 stages of our immersive content generation

technique, and their main components.

frame to an equirectangular projected image, for each pixel in the
frame (x ,y), the spherical coordinates (θ ,φ) are calculated using
Eq. (1). Here, the origin is taken at the centre of the frame. α is the
camera angle. Zimд is the distance of the frame from the camera
and is a function of the focal length. The pixel is then mapped to
(rφ,rθ ) in the equirectangular image.

φ = arctan(
x

Zimд cos(α ) + y sin(α )
),

θ =
π

2
+ arctan(

Zimд sin(α ) − y cos(α )
√

(Zimд cos(α ) + y sin(α ))2 + x2
).

(1)

Image Registration: By performing image registration on the
equirectangular frames, we transform the camera rotation to a
wider angle of view. We automatically perform registration using
feature based image registration techniques such as [4]. First, we
extract and match SIFT features [25] between consecutive frames.
Using RANSAC (random sample consensus) [14] we select a set
of inliners that are compatible with a homography between the
frames. We then align the frames according to the homography by
applying a similarity transformation.

Median Filtering: The static panorama is extracted from the
aligned frames using median �ltering. We assign the value of each
pixel in the panorama to be the median across all aligned frames.
By applying median �ltering, the moving objects will be removed,
leaving only the static background. Note that applying median �lter
only on key frames can generate sharper results than applying it
to all frames.
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Figure 2: Example of a static panorama generated from a basketball game.

3.3 Removing Parallax

In a regular sports production the cameras are usually placedmeters
away from each other, causing a huge amount of parallax between
them. Fig. 3 shows an example of 3 frames from cameras in di�erent
positions captured at the same time instant. Notice how the parallax
a�ects line orientations and player positionings. In this section, we
describe how we warp the camera feeds to remove such parallax.

Obtaining Relative Camera Parameters: In order to remove
the parallax, we warp all feeds to the position of the main camera.
We do so using relative camera positions and the 3D position of each
pixel in space.While the availability of such information is desirable
and can further improve the results of our technique, it is more
practical not to always assume such information is given. Thus, we
obtain an estimation of the relative camera parameters using the
VisualSFM [40] software, and estimate the 3D position of each pixel
using plane �tting and object masks. VisualSFM performs a sparse
3D model reconstruction using structure from motion techniques
and provides an estimation of the relative camera positions (C ),
relative camera rotation matrixes (R), camera focal lengths ( f ), and
sample 3D points (Xw ,Yw ,Zw ).

Generating Object Masks: Object masks are used throughout
our technique in di�erent stages and formultiple purposes. They are
required for estimating the 3D position of the players, identifying
the missing players, and copying them on the panorama. An object
mask indicates the pixels which are not part of the static background.
For sports, this is mainly the players. To create these masks we
use the background subtraction technique. We �rst apply a median
�lter on every group of frames to get the background. Choosing a
larger group size can better identify slower moving objects, such
as a player that is still for a few seconds, but it may introduce
more noise. The moving objects are then detected by subtracting
each frame from its background. We further enhance the object
masks by applying several morphological �lters. Fig. 4(a) shows
the generated object mask for the frame shown in Fig. 3(c).

Estimating the 3D Position of Pixels:When capturing an im-
age, a 3D point (Xw ,Yw ,Zw ) in world coordinates is �rst projected
to the camera coordinates (Xc ,Yc ,Zc ) through Eq. (2). In this equa-
tion, R is the rotation matrix of the camera, andT is the translation
vector calculated based on the camera positions (T = −RC ). The
3D point is then projected on the 2D image through Eq. (3), where
(xi ,yi ) represent the image coordinates with the origin being at
the image centre. Due to the loss of the third dimension in Eq. (3),
this projection is non-revertible unless Zc is known. As a result, to
�nd the 3D position of a pixel, we should estimate its Zc .



Xc
Yc
Zc


=

[
R |T

]


Xw
Yw
Zw
1



(2)

[
xi
yi

]
=

[
f Xc/Zc
f Yc/Zc

]
(3)

While the camera can have di�erent tilts, its x axis is usually
set parallel to the ground. Thus, in the camera’s coordinate system,
the �eld is a plane parallel to the x axis which can be presented as
bYc + cZc = 1. Since usually a large area of the frame is covered
by the �eld, we estimate the plane parameters b and c by �tting a
plane to sample (Xc ,Yc ,Zc ) points. To obtain such samples, we use
Eq. (2) to project the sample 3D points provided by VisualSFM to
the camera coordinates. With the plane parameters in hand, Zc of
each �eld pixel (xi ,yi ) can be estimated through Eq. (4). From the
non-�eld areas, our main concern is the players, which are indicated
by the object mask. Based on the object mask, we estimate the Zc
of each player pixel to be the Zc of the place where the player’s feet
touch the ground. Note that while sophisticated depth estimation
techniques, such as [6], can be used for estimating Zc , they are not
necessary since, as shown in Sec. 4.4, the current method achieves
a �ne warping accuracy and the error is fairly small.

Zc =
1

byi + c
. (4)

Warping: Using the 3D pixels positions and the relative camera
parameters, we warp each video feed and its corresponding object
mask to the position of the main camera. To do so, for each pixel
(xi ,yi ), we �rst revert the camera projection to �nd the world coor-
dinates. We then project each point back to a 2D image, where the
new coordinates (ximain

,yimain
) are calculated according to the

main camera parameters. This process is shown in Eq. (5) and Eq. (6).
In Eq. (5), an accurate estimation of the relative camera positionsC ,
which manifest itself in the translation vectors T , can successfully
remove all parallax. Note that, as a result of such warping, parts
of the �eld that were originally occluded by the players may now
become visible, causing empty shadow-like holes under each player.
Such holes can be �lled by inpainting techniques. In our experi-
ments, we use an averaging approach for �lling such holes. Fig. 4(b)
shows an example of our warp applied to Fig. 3(c). Notice the simi-
larity between the warped image and the main feed (Fig. 3(b)) in
the �eld lines orientations and positioning of the players.
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(a)	Left	camera (b)	Middle/Main	camera (c)	Right	camera

Figure 3: Sample frames of 3 di�erent video feeds positioned around the �eld. All frames are shot at the same time instant.

(a)	Object	mask	for	right	view (b)	Right	view	warped	to	the	position	 of	the	main	camera

Figure 4: Removing parallax between the right camera frame in Fig.3(c) and the frame from the main camera in Fig.3(b) using

its object mask. The object mask is generated using the background subtraction technique.



Xcmain

Ycmain

Zcmain


= Rmain (R

−1 (
Zc

f



xi
yi
f


−T )) +Tmain (5)

[
ximain

yimain

]
=

[
fmainXcmain/Zcmain

fmainYcmain/Zcmain

]
(6)

3.4 Overlaying Using Poisson Blending

In order to generate our output 360 video, we need to overlay parts
of each video feed on the static panorama. To seamlessly blend the
copied parts with the background, we use Poisson image editing.
Poisson image editing is known as a seamless image cloning algo-
rithm based on gradient �eld [30] and it produces more plausible
results than just simply overlaying the objects on the panorama.
However, a limitation of the Poisson image editing approach is that
the color of the source image gets totally adapted to the background
image. To overcome this problem, we utilize an image cloning al-
gorithm based on a modi�ed Poisson problem [38]. The modi�ed
version has a color preserving parameter. A large color preserving
parameter perfectly preserves the color of the source and back-
ground in the overlaid result.

For each frame, we �rst overlay the main feed. Players missing
from the main feed are then identi�ed and copied from the comple-
mentary feeds. A main feed that follows the action is most likely to
cover the ball and most players, leaving only a few players missing.

Overlaying Frames from the Main Feed: To overlay a frame
from the main feed on the panorama, we �rst convert it to spherical
format using Eq. (1). We then perform image registration by match-
ing SIFT feature points between the frame and the panorama, and
using RANSAC to select a set of inliers. After aligning the frame

with the panorama by applying a similarity transformation, we
seamlessly blend the frame borders by means of Poisson blending.
Note that in order to reduce the e�ect of possible misalignments, if
a player is on the borders of the frame, it is removed and considered
as a missing player. Fig. 5(a) shows a sample frame from the main
feed (Fig. 3(b)) overlaid on the static panorama.

Overlaying Missing Players: Missing players are identi�ed
using our object masks. If an object in the mask is partially or com-
pletely outside the area covered by the main feed, it is considered
missing and is copied. For example, after warping the right view ob-
ject mask in Fig. 4(a) to the position of the main camera (similar to
Fig. 4(b)), 2 of its objects fall into the area covered by the main feed
(Fig. 5(a)). The other 3 objects, however, are identi�ed as missing.

Similar to the main feed, for identifying and copying the missing
players, we should �rst align the warped complementary frames
with the panorama. With the parallax removed, this alignment can
be performed rather accurately. However, for a better alignment,
and to overcome possible errors in estimating the camera parame-
ters (Sec. 3.3), we perform image registration on planar images. To
do so, we keep the warped frames in planar format and convert the
�eld area of the panorama from spherical to planar format using
Eq. (7). We then use SIFT and RANSAC to calculate the homography,
and align images by applying a projective transformation. Missing
players are then identi�ed, copied, and blended seamlessly with
the panorama using Poisson blending.

Finally, after all missing players have been overlaid, the planar
panorama is converted back to spherical projection and placed in
its corresponding location in the 360 panorama. Fig. 5(b) shows
a zoomed-in version of a �nal 360 frame after all missing players
(blue arrows) have been overlaid.
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(a)	Main	view	overlaid	on	the	static	panorama

(b)	Zoomed	version	of	final	panorama	with	all	missing	players	overlaid

Figure 5: Overlaying the main feed on the static panorama, and copying the missing players from the left and right feeds. The

blue arrows indicate that the players are copied from the left or right feeds.

x = tan(φ) (Zimд cos(α ) + y sin(α )),

y = Zimд

sin(α ) −
tan(θ− π2 ) cos(α )

cos (φ )

cos(α ) +
tan(θ− π2 ) sin(α )

cos (φ )

.

(7)

4 EVALUATION

To evaluate our VR content generation technique, we conduct sub-
jective studies to measure the average subject satisfaction when
observing our generated content. We also compare our results
against content captured using 360 camera. In addition, we analyze
the accuracy of our technique in retrieving missing players.

Our technique requires sports video feeds from di�erent cameras
around the �eld. At least one of the cameras needs to be moving.
While such setup is realistic for broadcasting companies [34], we
do not have access to their captured feeds. In addition, to the best
of our knowledge, all available datasets such as [15, 32, 37] only
provide feeds from static cameras. Hence, we captured our own
data, while simulating broadcasting setups.

4.1 Setup

We captured multiple games using a GoPro Omni 360 camera as
well as 3 individual GoPro Hero4-black cameras. All cameras cap-
tured the scene simultaneously. The Omni camera rig consists of
6 GoPro Hero4-black cameras, capturing in di�erent directions.
It was deployed in the middle of the �eld to capture 360 content.
We treat this captured 360 content as ground-truth and compare it

against our own reconstruction. The 3 individual cameras were de-
ployed at the left, right and middle of the �eld, capturing the scene
in 4K resolution. We synced the 3 individual cameras by pairing
them with the GoPro Wi-Fi remote. The synchronization was fur-
ther re�ned manually. The middle camera rotates with the action,
and is considered as the main feed. The left and right cameras are
static. Initially, the middle camera is rotated with a wide angle so
it would capture most of its surrounding and cover around a 360
degrees. GoPro Hero4-black cameras are wide-angled and do not
provide zooming options. Hence, to simulate professional content
more accurately, we zoom on our 3 individual camera feeds in a
post-processing step. For this we use the GoPro Studio software.

While our technique can be used for all �eld sports, we used data
from 3 di�erent games: basketball, ice hockey, and volleyball (Fig. 6).
From each game, we chose a 30-second sequence and converted it
to VR content using our technique. For the same sequence, we also
stitched the GoPro Omni feeds using its recommended software
(Autopano Video) to create what we refer to as the original 360.

In our subjective experiments we assess sense of presence and
video quality for both the original 360 and our generated content.
A high sense of presence means that the participants are fully im-
mersed into the action. For video quality, we focus on the amount of
artifacts. Generating VR content relies heavily on image processing
techniques and is therefore prone to various artifacts. By assessing
the quality we measure the amount and visibility of such artifacts.

4.2 Evaluation of our Technique

We conduct a subjective study to measure the average subject satis-
faction when viewing our generated content. Fifteen participants
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Figure 6: Examples of �nal panoramas generated by our technique for di�erent games: basketball (top), hockey (middle), and

volleyball (bottom). The blue arrows indicate the players that have been copied from the left or right feeds.

took part in our experiments. They were all computer science stu-
dents and researchers. We used Oculus Rift to display the VR con-
tent. We displayed the games in random order. Prior to the actual
experiments, we showed the participants samples of professionally
produced 360 videos from the Rio olympics. This familiarized the
participants with the VR device and the 360 environment and hence
stabilized their expectations. We noticed that participants tend to
move their head more when they �rst wear the device, and focus
more on the games as they get used to the experience.

We used the standard ITU continuous scale [5] to rate both video
quality and sense of presence. The labels marked on the continuous
scale are Excellent, Good, Fair, Poor, and Bad. We asked participants
to mark their scores on the continuous scales. Their marks were
then mapped to integer values between 0-100, and averaged to
calculate the mean opinion score (MOS). Participants were asked
to clarify all their questions and ensure their full understanding of
the experimental procedure.

Fig. 7 shows the MOS for di�erent games. Error bars represent
the standard deviation. Most participants rated both video quality
and sense of presence in the range of Good to Excellent for all games.
This means that they were well immersed in the 360 experience.
Between the three games, hockey has the least score. This is because
the low-textured hockey �eld makes it di�cult to perform accurate
feature matching and alignment.
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Figure 7: Mean opinion scores (MOS) of video quality and

sense of presence for di�erent games.

In addition, after the experiment, we asked the participants
whether they noticed that the background was static. While some
participants didn’t notice it at all, as they were focused on the �eld
and players, the ones that did, stated that it had a�ected their sense
of presence marginally. Note that in our technique the background
can change periodically at the expense of more computational cost.
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4.3 Comparison against Original 360 Content

We compare the results of our technique against original 360 content
captured at the same time instant using a 360 camera. For this
experiment, we use the double stimulus method (DSCQS) [5], where
participants view both content in random order and can re-view
them as many times as they need. Participants were asked to rate
the video quality and sense of presence for both content using the
standard ITU continuous scale. Their marks were then mapped to
integer values between 0-100. We calculated the mean of di�erence
opinion scores (DMOS) by averaging the di�erence opinion scores
(= score for our technique - score for original 360). A DMOS of zero
implies that the results of our technique are judged the same as the
original 360, while a negative DMOS implies that our result has a
lower quality/sense of presence than the original 360.

Fig. 8 shows the DMOS of both video quality and sense of pres-
ence for each game. Error bars represent the standard deviation.
The small DMOS values indicate that most participants found their
immersive experience to be quite the same when comparing our
generated content against the ground-truth content captured using
360 camera. In addition, the only statistically signi�cant di�erence
reported (p-value < 0.05) is the sense of presence for hockey.

4.4 Analysis of Player Placements

Copying themissing players is an important aspect of our technique.
Failing to accurately place the players at their correct locations can
cause sudden player movements that may seem unnatural and dis-
turbing. Fig. 6 shows examples of �nal panoramas generated by our
technique. Note that in these examples some feeds were zoomed
more than usual, in order to have more missing players for demon-
stration purposes. The blue arrows indicate the missing players
that were copied from the left and right feeds. To analyze the e�ec-
tiveness of our technique in retrieving these missing players, we
measure the amount of their displacement. We use the originally
captured wide-angle main feed as reference. We measure the dis-
tance between the position of each copied player and its original
position in the reference frame. We de�ne the position of a player,
as the pixel coordinates of the place where the player’s feet touch
the ground. Fig. 9 shows the average displacement. Error bars rep-
resent the standard deviation. It can be seen that the displacement
is highest for hockey, with a maximum around 10 pixels. This is
because hockey is more prone to misalignment errors due to its
low-textured �eld with high intensity color. However, we should
note that a displacement of 10 pixels in the panorama translates to
a distance around 20 cm in a real �eld, which is fairly small.

5 CONCLUSIONS AND FUTUREWORK

We presented a technique for generating VR content for sports
from common broadcast camera feeds. While current solutions
for producing high-quality VR content require upgrading the en-
tire production pipeline, our technique utilizes the existing camera
setup to generate immersive content. We assume the presence of at
least one camera with rotational movement and two or more com-
plementary cameras which altogether cover the whole �eld. Our
method has three main stages: (1) creating a wide-angle panorama,
(2) removing parallax and aligning all video feeds, and (3) overlay-
ing the �eld and the missing players on the panorama by means of
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Figure 8: Di�erence mean opinion score (DMOS) between

content generated using our technique and original 360 con-

tent captured using 360 camera. A value of zero implies that

the results of our technique are the same as the original 360.
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Figure 9: Average displacement of copied players for di�er-

ent games. Error bars represent the standard deviation.

Poisson blending. Subjective experiments show that our results are
comparable with the original 360 content in terms of both quality
and sense of presence. In addition, MOS ratings indicate that most
participants experienced a strong sense of immersion.

Future work can address better handling of players in cluttered
regions. Current results can be temporally inconsistent in such
cases. The results can be further improved by incorporating depth
information from infrared cameras as well as other auxiliary data,
e.g., ground-truth camera positions. In addition, although the static
background didn’t damage the immersive experience and only
marginally a�ected the sense of presence, exploring ways of cap-
turing some of the fans dynamics and including it in the panorama
without too much complexities may enhance the results.
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