
Structuring Multi-Layer Scalable Streams to
Maximize Client-Perceived Quality

Cheng-Hsin Hsu
School of Computing Science

Simon Fraser University
Surrey, BC, Canada

cha16@cs.sfu.ca

Mohamed Hefeeda
School of Computing Science

Simon Fraser University
Surrey, BC, Canada
mhefeeda@cs.sfu.ca

Abstract— Recent video coders, such as H.264/SVC, can encode
a video stream into multiple layers, each with a different rate.
Moreover, each layer can either be coarse-grained scalable(CGS)
or fine-grained scalable (FGS). FGS layers support wider ranges
of client bandwidth than CGS layers, but suffer from higher
coding inefficiency. Currently there are no systematic waysin
the literature to determine the optimal stream structure that
renders the best average quality for all clients. In this paper,
we formulate an optimization problem to determine the optimal
rate and encoding granularity (CGS or FGS) of each layer in
a scalable video stream that maximizes a system-defined utility
function for a given client distribution. We design an efficient,
yet optimal, algorithm to solve this optimization problem. Our
algorithm is general in the sense that it can employ arbitrary
utility functions for clients. We implement our algorithm a nd
verify its optimality. We show how various structuring of scalable
video streams affect individual client utilities. We compare our
algorithm against a heuristic algorithm that has been used before
in the literature, and we show that our algorithm outperforms
the other one in all cases.

I. I NTRODUCTION

Video streaming over the Internet is increasingly getting
very popular as higher bandwidth links and more powerful
machines are becoming more affordable for end users. Users
typically seek the highest possible video quality. Users, how-
ever, are quite heterogeneous in terms of network bandwidth
and processing capacity. A conventional nonscalable coded
stream supports only one decoding rate, which is insufficient in
such a heterogeneous environment. This is because supporting
clients with different bandwidth requires storing and serving
multiple versions of each video stream. To cope with this
heterogeneity, various scalable coding techniques have been
proposed in the literature. A scalable coded stream consists of
various representations of the original video sequence, with
different resolutions, frame rates, or quality levels.

Scalable coders compress video data into a base layer that
provides basic quality, and multiple enhancement layers that
add incremental quality refinements. Current video coders,
e.g., H.264/SVC [1], allow the enhancement layers to be
either coarse-grained scalable or fine-grained scalable. Fig. 1
shows the general structure of a scalable video stream that
can be produced by the H.264 reference software [2]. Coarse-
grained scalable (CGS) layers provide limited rate scalability:
clients receiving incomplete CGS layers cannot use them to

enhance quality. In contrast, fine-grained scalable (FGS) layers
provide quality refinements proportional to the number of
bits received [1], [3], [4]. FGS layers, thus, support wider
ranges of client bandwidth and it can fully utilize available
bandwidth of individual clients, which results in better video
playback quality and ultimately higher user satisfaction.The
fine rate scalability of FGS, however, comes at an expense
of coding efficiency. That is, an FGS coded layer results in
lower quality compared to a CGS coded layer at the same
bit rate [1], [5]. Hence, there is a trade-off between coding
efficiency and supported rate range, which can be gauged by
the scalable stream structure. More importantly, the average
perceived quality for all clients depends on this trade-off, and
thus depends on the choice of stream structure.

Although modern video coders can encode a video stream
into multiple CGS and FGS layers, currently there are no
systematic ways in the literature to determine the optimal
stream structure that renders the best average quality for all
clients.

In this paper, we address the problem of structuring scalable
video streams. We formulate an optimization problem to
determine the optimal rate and encoding granularity (CGS or
FGS) of each layer in a scalable video stream that maximizes a
system-defined utility function for a given client distribution.
We design an efficient, yet optimal, algorithm to solve this
optimization problem. Our algorithm is general in the sense
that it can employ arbitrary utility functions for clients.We
implement our algorithm , and show how various structuring
of scalable video streams affect the client utilities. To demon-
strate the generality of our algorithm, we consider three utility
functions in our experiments, which model various aspects
including effective rate received by clients, the mismatch
between client bandwidth and received stream rate, and client
perceived quality in terms of PSNR. We also compare our
algorithm against another algorithm that has been used before
in the literature, and we show that our algorithm outperforms
the other one in all cases.

The rest of this paper is organized as follows. In Section II,
we summarize the related works. In Section III, we discuss and
model the overhead associated with scalable streams. Then,we
formulate the optimization problem, and present our algorithm
to solve it. We evaluate our algorithm in Section IV, and we

layer 1 layer l

gL =FGSg1 =CGS gl =FGS

layer L

rL−1rlrl−1r1r0 = 0 rL

Fig. 1. General structuring of a scalable video stream withL layers. Each
layer l has a coding raterl and a scalability typegl which can be either
coarse grain (CGS) or fine grain (FGS). This structure can be produced by
H.264/SVC coders.

conclude the paper in Section V.

II. RELATED WORK

Streaming systems [6]–[9] account for the coding efficiency
using a layering overhead function, which represents the
bit rate that does not contribute toward the video quality.
Similarly, in our formulation we use an overhead function that
depends on the rate of the layer being coded as well as the
cumulative rate of preceding layers.

The performance of multi-layer versus multi-version
streams is studied in [10]. The authors formulate an opti-
mization problem to compute the rate of each layer such that
the average perceived video quality is maximized. The square
root rate-distortion model [11] is used to estimate the coding
efficiency of the layered coding. In [9], the authors consider
broadcasting multi-layer video streams in a wireless cellular
system with a given number of channels and client capacity
distribution. They determine the optimal rate of each layer
to maximize the average perceived quality. Unlike our work,
these works target coarse grained scalable video streams, and
do not consider fine grained scalable streams.

The authors of [12] study multicast streaming systems with
many receivers. They partition receivers into several groups
to maximize a system-wide utility function. Their algorithm
uses a general utility functionu(rc, bc) of the bandwidthbc and
the streaming raterc. Two utility functions are employed in
their experiments: (i)min(rc, bc) as the received rate, and (ii)
min(rc, bc)/ max(rc, bc) as the inter-receiver-fairness index.
We use similar utility functions in our work. A video stream
used in such systems can be encoded into multiple layers.
Multiple versions with different rates of the same stream can
also be created. This work does not consider fine-grained
streams, nor does it account for the layering overhead.

Finally, in our previous work [13], we considered structuring
MPEG-4 streams which can have one base layer and one
fine-grained enhancement layer. The problem in [13] was to
compute the optimal width of the base layer. In the current
paper, we consider multiple-layer streams and each layer can
have different scalability granularity.

III. PROBLEM FORMULATION AND SOLUTION

In this section, we discuss and model the overhead associ-
ated with scalable streams. Then, we formulate the optimiza-
tion problem, and present our algorithm to solve it.

A. Modeling Scalability Overhead

We consider scalable streams that can be structured intoL
layers, as shown in Fig. 1. Compared to nonscalable coders, a
scalable coder imposes more overhead on streaming systems.
This overhead includes reduced compression efficiency, and
added protocol headers. We collectively call these overheads
as the scalability overhead. We capture the effect of the
scalability overhead by using an overhead functiona and the
effective rater̄ notion, which is formalized in the following
definition.

Definition 1 (Effective Rate of a Scalabe Stream):
Consider a scalable stream encoded at rater. The effective
rate r̄ of that stream is equal to the rate of the nonscalable
stream that produces the same quality. Furthermore,r̄ is
given by r/(1 + a), wherea is a function that accounts for
the scalability overhead.

In the above definition, thea function specifies the fraction
of the total stream rate that does not contribute to the video
playback quality. Defining the effective rate in this way enables
us to compare various scalability methods, i.e., CGS and FGS,
against each other and against nonscalable encoding.

The scalability overhead function is an input to our stream
structuring algorithm, and it can be estimated using either
experimental or analytical methods. Some guidelines on es-
timating this function are in order though. In general, the
scalability overhead functiona depends on three factors: (i)
characteristics of the video sequence, (ii) granularity ofthe
scalable coding, and (iii) rate of the layer being encoded as
well as the rates of its preceding layers. We discuss each of
these factors in the following. First, the experimental study
in [5] indicates that video sequences with more temporal re-
dundancy incur higher scalability overhead. In addition, video
sequences with similar amount of temporal redundancy have
similar scalability overheads. This suggests categorizing video
sequences based on temporal redundancy and computing an
overhead function for each category. Second, as indicated by
previous studies [1], [5], fine-grained scalable coding imposes
more overhead than coarse-grained scalable coding. To model
this difference, we use two overhead functions:a0 and a1

for CGS and FGS layers, respectively. Finally, the authors of
[5] observe that encoding the base layer of MPEG-4 FGS
sequences at higher rates yields lower scalability overhead
for the enhancement layer. This indicates that the overhead
function of a layer will depend on the cumulative rates of the
preceding layers, in addition to the rate of that layer itself. To
model this dependence, we define the effective rater̄l of layer
l (1 ≤ l ≤ L) as follows:

r̄l =

{

r1, l = 1

r̄l−1 + rl−rl−1

1+a(rl)
, 2 ≤ l ≤ L

(1)

In the above equation, we userl to denote the encoding
rate of layerl. Layer 1 (base layer) does not incur scalability
overhead (i.e.,̄r1 = r1), because it is typically encoded using
a nonscalable method. For successive (enhancement) layers,
the effective rate of layerl is computed recursively from the
effective rate of layerl−1 and the width of layerl scaled down
by the overhead functiona(rl). We scale down the width of
layer l to account for the scalability overhead. We use the
effective rate defined in (1) in our problem formulation.

B. Problem Formulation

Our goal in this paper is to find the optimal structure of a
multi-layer scalable video stream. That is, we want to compute
the coding method (CGS or FGS) and the coding rate of each
layer to maximize a system-wide utility function. We elaborate
on the utility function later in this section.

We consider heterogeneous client populations by dividing
clients intoC classes. All clients belonging to the same class
c (1 ≤ c ≤ C) have the same bandwidthbc. We assume that
b1 < b2 < · · · < bC without loss of generality. The fraction of
clients in each classc is given by a probability mass function
f(c), where

∑C

c=1 f(c) = 1. No assumptions are made on
the number of client classes or on the probability function.
Without loss of generality, we assume thatbC ≤ rmax , which
is a pre-determined maximum rate of the stream. If otherwise,
we combine clients with bandwidth larger thanrmax in a class
with bandwidth equal tormax . We can do that because no
matter how large the client bandwidth is, it cannot receive
more than the maximum ratermax .

For client classc, its actual received rate is no larger than
bc. To account for scalability overhead, we defineb̄c to be
the effective rate of client classc, where1 ≤ c ≤ C. b̄c is
a function of the adopted structuring policy, which is defined
as S = {(ri, gi), i = 1, 2, . . . , L}, where ri determines the
encoding rate, andgi decides the granularity for layeri. We set
gi = 0 if layer i is CGS-coded, andgi = 1 if it is FGS-coded.
We assumeg1 = 0, because the base (first) layer is typically
coded with nonscalable coders, which do not incur scalability
overhead. We usel to denote the highest layer that can be
transferred to clientc in its entirety (i.e.,rl ≤ bc ≤ rl+1), we
write the effective ratēbc as:

b̄c =

{

r̄l, gi = 0

r̄l + bc−rl

1+a1(rl+1)
, gi = 1

(2)

The effective rate of classc is equal to that of layerl, if
layer l + 1 is CGS-coded. If layerl + 1 is FGS-coded, the
additional ratebc − rl can be received on top of̄rl, which
contributes to the effective rate of classc after being scaled
down by the FGS overhead functiona1(rl+1).

Our problem can formally be stated as follows. Given a
scalable stream that can be structured into up toL layers, and
a large number of clients divided intoC classes with their
distribution given by the probability mass functionf(c), find
the optimal structuring policyS∗ = {(r∗i , g∗i), i = 1, 2, . . . , L}
that yields the maximum system-wide utilityY ∗

0 , which is

defined as the average client utility over all classes. Mathe-
matically, we write our problem as:

P0 : Y ∗
0 = max

S

C
∑

k=1

f(k)u(b̄k, bk) (3a)

s.t. r1 < r2 < · · · < rL; (3b)

g1 = 0; (3c)

gi ∈ {0, 1}, ∀i = 2, 3, . . . , L. (3d)

In the above formulation, the utility functionu(b̄c, bc) is
a non-decreasing function of the effective rate achieved by
client c. We use the effective rate in the utility function to
account for the scalability overhead. We do not impose any
restrictions on the utility function: It can be any arbitrary
function that may, for example, describe utilization of system
resources, satisfaction of clients, or a combination of both. Our
algorithm, presented in the next section, works with any user-
defined utility function. In the evaluation section, we use three
types of utility functions. These utility functions have been
used before in the literature, and they model various aspects
such as the effective rate received by clients, the mismatch
between client bandwidth and received stream rate, and client
perceived quality in terms of PSNR.

The optimization problem in (3) has an exponential number
of feasible solutions, and exhaustively trying all of them to find
the optimal one is extremely expensive. In the next subsection,
we propose an efficient, yet optimal, algorithm to solve it. Our
algorithm uses a dynamic programming approach.

C. Efficient Algorithm

We first develop two lemmas to reduce the search space
size of our optimization problemP0. We define a subproblem
for (3) calledP (c, l), where1 ≤ c ≤ C, and1 ≤ l ≤ L. For
this subproblem, we find the optimal structuring policyS∗ =
{(r∗i , g∗i), i = 1, 2, . . . , l} that yields the maximum system-
wide utility Y ∗(c, l). We then solve this problem iteratively
by utilizing solutions of smaller subproblems. In subproblem
P (c, l), we assume that the rate of layer1 is higher than the
bandwidth of client classc − 1, and is no larger than the
bandwidth of client classc. We also assume that the layer1 is
CGS-coded. Therefore, clients in classc−1 and below receive
nothing and contribute zero system utility. We can write the
subproblemP (c, l) as:

Y ∗(c, l) = max
S

C
∑

k=c

f(k)u(b̄k, bk) (4a)

s.t. r1 < r2 < · · · < rl; (4b)

g1 = 0; (4c)

gi ∈ {0, 1}, ∀i = 2, 3, . . . , l; (4d)

bc−1 < r1 ≤ bc. (4e)

In the above subproblem, constraint (4e) enables us to
reduce the search space. We incrementally relax this limitation
to derive the optimal solution for the original problemP0.
Solving subproblemP (c, l) is still hard. For instance, there are

too many possible solutions to consider in order to determine
the optimal coding rate for layer1 alone. We present the
following lemma to reduce the search space of the optimal
structure policy. The proof is given in [14].

Lemma 1:There exists at least one optimal solution for the
subproblemP (c, l) that has following property:bc−1 < r∗1 ≤
bc < r∗2 .

This lemma states that if there is an optimal solution that
has two or more layers between two adjacent classesbc−1

and bc, we can find another optimal solution with only one
layer between these two classes. Therefore, we do not need to
allocate two layers between adjacent classes, which reduces
the search space. The following lemma further reduces the
search space. Its proof is given in [14].

Lemma 2:There exists at least one optimal solution for the
subproblemP (c, l) with layer 1 coded at ratebc. That is, at
least one optimal solution has the following property:bc−1 <
r∗1 = bc.

These two lemmas state that to determiner∗1 for an optimal
solution of subproblemP (c, l), we only need to considerr1 =
bc. Next, we consider rates and granularity for other layers
for an optimal solution of subproblemP (c, l). We do so by
recursively solving subproblemP (i, l−1), wherec+1 ≤ i ≤
C − l + 1. That is, we sequentially solve subproblems with1
layer,2 layers, untilL layers.

We solve a general subproblemP (c, l), where1 ≤ c ≤ C
and1 ≤ l ≤ L as follows. We first solve subproblemP (c, 1)
for 1 ≤ c ≤ C. Previous lemmas tell us that settingr1 = bc

in P (c, 1) leads to an optimal solution. As layer 1 is CGS-
encoded, clients in classc− 1 and below receive nothing, and
clients in classc and above receive layer 1. Therefore, the
optimal system utilityY ∗(c, 1) can be easily computed.

We then solve subproblemP (c, l), wherel > 1 and1 ≤ c ≤
C. Again, following previous lemmas, we know that setting
r1 = bc leads to an optimal solution. To determine the rates
and granularity of other layers, we consider optimal solutions
for P (i, l−1), wherec+1 ≤ i ≤ C−l+1. We do not consider
subproblems withi > C − l + 1, because solutions of these
problems have at least one bandwidth interval(bc−1, bc] that
contains rates for two or more layers. Previous lemmas tell us
that considering stream structures with only one layer between
any adjacent client classes is sufficient to find an optimal
solution, which enables us to ignore these subproblems.

We can use the following formulation to solve subproblem
P (c, l) by utilizing optimal solutions for smaller subproblems:

Y ∗(c, l) = max
c+1≤i≤C−l+1,

g2∈{1,0}

{Y ∗(i, l − 1) − DIFF(c, l, i)} , (5)

whereY ∗(c, l) represents the optimal system utility for sub-
problemP (c, l), and DIFF(c, l, i) denotes the system utility
difference caused by adding a CGS-coded layer atbc to the
optimal solution of subproblemP (i, l − 1). The details on
derivations ofDIFF(c, l, i) are given in [14]. This formulation
finds the subproblemP (i, l − 1) and the granularityg2 that
maximize system-wide utility for subproblemP (c, l). Notice
that, g2 represents the granularity of the lowest layer for

subproblemP (i, l − 1). g2 was assumed to be CGS-coded in
subproblemP (i, l − 1), and its optimal setting is determined
when solving subproblemP (c, l) using (5). An important
property of (5) is that we effectively consider all possible
combinations ofr1 and g2. Therefore, we can use dynamic
programming technique to optimally solve subproblemP (c, l)
for its optimal structure. The following theorem shows how to
construct an optimal solution for problemP0 based on optimal
solutions for subproblemsP (c, l). Due to space limitations, we
give the proof in [14].

Theorem 1 (Optimality):Let S∗(c, l) denote the optimal
l-layer structure for subproblemP (c, l) that achieves the
maximal system utilityY ∗(c, l). The optimal structureS∗ for
the original problemP0 is the one that achieves maximum
system utility:Y ∗

0 = max1≤c≤C−L+1{Y
∗(c, L)}.

The above theorem illustrates that the optimal structure for
problemP0 can be derived by finding the maximal system-
wide utility among all optimal solutions for subproblems
P (c, L), where1 ≤ c ≤ C−L+1, while the optimal solutions
for subproblemsP (c, L) can be found by iteratively solving
smaller subproblems. We present the details and pseudo code
of our algorithm are given in [14].

The following theorem gives the time and space complexi-
ties of our algorithm. We prove it in [14].

Theorem 2 (Complexity):The time complexity of our algo-
rithm isO(C3L) and its space complexity isO(CL), whereC
is the number of client classes andL is the number of layers
in the video stream.

IV. EVALUATION

In this section, we first describe our experimental setup.
We then demonstrate that our algorithm allows various utility
functions and produces optimal stream structures. Next, we
compare our algorithm with a widely used heuristic stream
structuring algorithm. Only sample results are shown here
due to space limitations. Interested readers are referred to
the extended version of this paper [14] for the complete
experimental results and a study on the impact of choosing
different utility functions.

A. Setup

Our algorithm allows user-specified scalability overhead
functions. Previous studies [1], [5] reveal that FGS coded
layers results in higher scalability overhead compared to CGS
coded layers. Therefore, we definea0(rl) anda1(rl) for CGS
and FGS overhead function, wherea0(rl) ≤ a1(rl) at any
layer raterl. In our experiments, we leta0(0) = 5% and
a1(0) = 20%. We let both CGS and FGS overhead reach zero
whenrl ≥ 5000 kbps. That is, we have the following scalabil-
ity overhead functions:a0(rl) = max{0.05 − 0.00001rl, 0},
anda1(rl) = max{0.20− 0.00004rl, 0}.

Our algorithm works with any utility functionu(b̄c, bc),
where b̄c is the effective rate of the received stream, andbc

is the available bandwidth of clientc. Three utility functions
are employed in our experiments:urate(b̄c, bc) = b̄c, which
assumes that the higher the effective rate that a client receives,

the more satisfied that client will be; (ii)uutilization (b̄c, bc) =
b̄c/bc, which tries to match the rate received by a client with
its bandwidth; and (iii)upsnr which maximizes the client-
perceived quality (in PSNR) by using a rate-distortion (R-D)
model to map the effective rate to perceived quality.

For upsnr , we adopt a recent H.264/AVC R-D function
which assumes that the transform coefficients are Cauchy
distributed [15]. The R-D function is given as:D = cR−γ ,
where the distortionD is in mean-square error (MSE) and
rateR is in bits per pixel. The model parametersc andγ are
sequence dependents. The authors of [15] show that this model
is more accurate than Laplacian and Gaussian based R-D mod-
els. We useupsnr (b̄c, bc) = −10 log10[15.3787(0.1184b̄c)

−4]
in our experiments with CIF video sequences. We note that
this R-D model is proposed for nonscalable H.264/AVC coded
streams. It is, however, applicable in our experiments because
we convert actual rates to effective rates, which are equivalent
to the rates of nonscalable stream.

We have implemented our algorithm in Java. We denote
our algorithm by ScsOpt in plots. We use a commodity Linux
desktop for our experiments. We consider100, 000 clients with
network bandwidth distributed according to four representative
distributions. The first distribution is uniform between35
and 3005 kbps. The second is a bi-model distribution that
consists of two normally-distributed peaks with means at250
kbps and1000 kbps, and standard deviations of25 and100.
This bi-model distribution is skewed to the right:80% of
client classes are from the normal distribution with mean
1000 kbps. The third is a bi-model distribution with the same
setting, except that it is skewed to the left:80% of client
classes are from the normal distribution with mean250 kbps.
The fourth is a multi-model distribution with three normal
distributions, which represents a typical client distribution in
today’s Internet:50% of clients are equipped with dial-up
connections, which have a normal distribution with mean40
kbps and standard deviation of25 kbps; 35% of clients use
DSL services, where the average bandwidth is1000 kbps with
standard deviation of100 kbps; and15% of clients have high-
speed connections with average bandwidth2000 kbps and
standard deviation of200 kbps.

B. Optimal Stream Structuring

Our algorithm takes client bandwidth distribution as input.
It produces a stream structure that results in the highest utility.
As mentioned above, we use three different utility functions
in our experiments. These utility functions lead to different
optimal stream structures. Fig. 2 shows the optimal stream
structuring policies computed by our algorithm for 5-layer
scalable stream in scenario IV with different utility functions.
We see that the resulted stream structure is influenced by
the chosen utility function. Specifically, the following stream
structures are determined to be the optimal stream structure
for each of the utility functions: (i)urate : {(735, CGS),
(805, CGS), (855, CGS), (885, CGS), (2745, FGS)}, (ii)
uutilization : {(5, CGS), (15, CGS), (25, CGS), (35, CGS),
(2745, FGS)}, and (iii) upsnr : {(35, CGS), (45, CGS),

0 500 1000 1500 2000 2500
0

0.05

0.1

Client class bandwidth (kbps)

D
is
tr

ib
u
ti
o
n

urate

uutilization

upsnr

Fig. 2. Optimal structuring of a scalable video stream with5 layers for
scenario IV produced by our optimal algorithm with different utility functions.

(95, FGS), (685, CGS), (2745, FGS)}. Elements in each 2-
tuple represent coding rate in kbps and granularity, respec-
tively.

These results show that our algorithm is general and can be
used with various utility functions in different environments.

C. Comparison with Previous Structuring Algorithm

We compare the stream structures resulted by our algorithm
against the heuristic structuring algorithm used in [9], [16].
This heuristic algorithm takes two rates for minimum and
maximum supported decoding rates. It uses these two rates
to code the first and the last layers, and then exponentially
allocates rates for intermediate layers. That is, a layerl
is assigned raterminρl−1, where rmin and rmax are the
minimum and maximum supported rates. The factorρ is given
by L−1

√

rmax/rmin , where L is the total number of layers.
We use rmin = 50 kbps andrmax = 1500 kbps in our
experiments. This covers a wide range of clients, from dial-
up to broadband access links. We denote this algorithm by
Expo in the plots. Fig. 3 illustrate the achieved system-wide
utility by ScsOpt and Expo algorithms. Only sample results are
shown due to the space limitation. More results are given in
[14]. Our algorithm outperforms the heuristic algorithm with
significant margins in all cases.

We note that Expo is the only algorithm we could find in
the literature that may be applied to our stream structuring
problem. Moreover, if there were other algorithms, the best
they can do is to achieve results similar to our algorithm,
because our algorithm is optimal as shown in Sec. III-C and
experimentally verified in the extended version of this paper
[14].

V. CONCLUSION

We have formulated an optimization problem to determine
the optimal rate and encoding granularity (CGS or FGS) of
each layer in a scalable video stream that maximizes a system-
defined utility function for a given client distribution. Wehave

1 2 3 4 5 6 7 8
0

500

1000

1500

Number of layers

A
ve

ra
g
e

eff
ec

ti
ve

ra
te

(k
b
p
s)

ScsOpt
Expo

(a) Scenario I withurate

1 2 3 4 5 6 7 8
0

5

10

15

20

25

Number of layers

A
ve

ra
g
e

q
u
a
li
ty

in
P
S
N

R
(d

B
)

ScsOpt
Expo

(b) Scenario IV withupsnr

Fig. 3. Comparison between our algorithm (ScsOpt) and the heuristic algorithm (Expo) that exponentially allocates rates to layers. Sample data shown here
due to space limitations.

proposed an optimal algorithm to solve this problem. Our
algorithm is efficient and runs inO(C3L), whereL is the
number of layers in the video stream andC is the number
of client classes. SinceL andC are typically small integers,
our algorithm is computationally efficient. Our algorithm can
employ arbitrary utility functions for clients. To demonstrate
the generality of our algorithm, we used three utility functions
in our experimental study. These utility functions have been
used before in the literature, and they model various perfor-
mance metrics such as the effective rate received by clients,
the mismatch between client bandwidth and received stream
rate, and the client-perceived quality in terms of PSNR. We
also compared our algorithm against another algorithm that
has been used before in the literature, and we showed that our
algorithm outperforms the other one in all cases.

In the extended version of this paper [14], we experimen-
tally verified that our algorithm produces the optimal results
and runs in a few seconds on a commodity PC. We studied the
effect of various structuring of scalable video streams on client
utilities for different utility functions. By analyzing various
utility functions, we provided guidelines for content providers
to choose the appropriate utility function that suits theirneeds.

ACKNOWLEDGMENT

This work is partially supported by the Natural Sciences
and Engineering Research Council (NSERC) of Canada under
Discovery Grant #313083 and RTI Grant #344619.

REFERENCES

[1] H. Schwarz, D. Marpe, and T. Wiegand, “The scalable H.264/MPEG4-
AVC extension: Technology and applications,” inEuropean Symposium
on Mobile Media Delivery (EuMob’06), Sardinia, Italy, September 2006.

[2] Joint Video Team, “Joint scalable video model referencesoftware,”
JSVM 8.0, February 2007.

[3] H. Radha, M. van der Schaar, and Y. Chen, “The MPEG-4 fine-grained
scalable video coding method for multimedia streaming overIP,” IEEE
Transactions on Multimedia, vol. 3, no. 1, pp. 53–68, March 2001.

[4] W. Li, “Overview of fine granularity scalability in MPEG-4 video stan-
dard,” IEEE Transactions on Circuits and Systems for Video Technology,
vol. 11, no. 3, pp. 301–317, March 2001.

[5] M. van der Schaar and H. Radha, “Adaptive motion-compensation fine-
granular-scalability (AMC-FGS) for wireless video,”IEEE Transactions
on Circuits and Systems for Video Technology, vol. 12, no. 6, pp. 32–51,
June 2002.

[6] P. de Cuetos, D. Saparilla, and K. Ross, “Adaptive streaming of stored
video in a TCP-friendly context: Multiple versions or multiple layers?”
in Proc. of International Packet Video Workshop (PV’01), Kyongju,
Korea, April 2001.

[7] T. Kim and M. Ammar, “A comparison of layering and stream replication
video multicast schemes,” inProc. of ACM International Workshop on
Network and Operating Systems Support for Digital Audio andVideo
(NOSSDAV’01), Port Jefferson, NY, June 2001, pp. 63–72.

[8] ——, “A comparison of heterogeneous video multicast schemes: layered
encoding or stream replication,”IEEE Transactions on Multimedia,
vol. 7, no. 6, pp. 1123–1130, December 2005.

[9] J. Liu, B. Li, Y. Hou, and I. Chlamtac, “Dynamic layering and bandwidth
allocation for multi-session video broadcasting with general utility
functions,” in Proc. of IEEE INFOCOM’03, San Francisco, CA, March
2003, pp. 630–640.

[10] I. Radulovic, P. Frossard, and O. Verscheure, “Adaptive video streaming
in lossy networks: versions or layers?” inProc. of IEEE International
Conference on Multimedia and Expo (ICME’04), Taipei, Taiwan, June
2004, pp. 1915–1918.

[11] M. Dai, D. Loguinov, and H. Radha, “Rate-distortion analysis and
quality control in scalable Internet streaming,”IEEE Transactions on
Multimedia, vol. 8, no. 6, pp. 1135–1146, December 2006.

[12] Y. Yang, M. Kim, and S. Lam, “Optimal partitioning of multicast
receivers,” in Proc. of IEEE International Conference on Network
Protocols (ICNP’00), Osaka, Japan, November 2000, pp. 129–140.

[13] C. Hsu and M. Hefeeda, “Optimal partitioning of fine-grained scalable
video streams,” inProc. of ACM International Workshop on Network and
Operating Systems Support for Digital Audio and Video (NOSSDAV’07),
Urbana-Champaign, IL, June 2007.

[14] ——, “Optimal coding of multi-layer and multi-version video streams,”
Simon Fraser University, Tech. Rep. TR 2007-13, May 2007, available
online at http://www.cs.sfu.ca/∼mhefeeda/publications.html.

[15] N. Kamaci, Y. Altunbasak, and R. Mersereau, “Frame bit allocation
for the H.264/AVC video coder via Cauchy-density-based rate and
distortion models,”IEEE Transactions on Circuits and Systems for Video
Technology, vol. 15, no. 8, pp. 994–1006, August 2005.

[16] J. Liu, B. Li, and Y. Zhang, “Optimal stream replicationfor video
simulcasting,”IEEE Transactions on Multimedia, vol. 8, no. 1, pp. 162–
169, February 2006.

