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Abstract— Recent video coders, such as H.264/SVC, can encodeenhance quality. In contrast, fine-grained scalable (F&grk

a video stream into multiple layers, each with a different réde.
Moreover, each layer can either be coarse-grained scalab{€GS)
or fine-grained scalable (FGS). FGS layers support wider rages
of client bandwidth than CGS layers, but suffer from higher
coding inefficiency. Currently there are no systematic waysn
the literature to determine the optimal stream structure that
renders the best average quality for all clients. In this pager,
we formulate an optimization problem to determine the optinal
rate and encoding granularity (CGS or FGS) of each layer in
a scalable video stream that maximizes a system-defined Lyl
function for a given client distribution. We design an efficent,
yet optimal, algorithm to solve this optimization problem. Our
algorithm is general in the sense that it can employ arbitray
utility functions for clients. We implement our algorithm and
verify its optimality. We show how various structuring of scalable
video streams affect individual client utilities. We compae our
algorithm against a heuristic algorithm that has been used bfore
in the literature, and we show that our algorithm outperforms
the other one in all cases.

I. INTRODUCTION

provide quality refinements proportional to the number of
bits received [1], [3], [4]- FGS layers, thus, support wider
ranges of client bandwidth and it can fully utilize availabl
bandwidth of individual clients, which results in betteded
playback quality and ultimately higher user satisfactidhe

fine rate scalability of FGS, however, comes at an expense
of coding efficiency. That is, an FGS coded layer results in
lower quality compared to a CGS coded layer at the same
bit rate [1], [5]. Hence, there is a trade-off between coding
efficiency and supported rate range, which can be gauged by
the scalable stream structure. More importantly, the @eera
perceived quality for all clients depends on this trade-aifid
thus depends on the choice of stream structure.

Although modern video coders can encode a video stream
into multiple CGS and FGS layers, currently there are no
systematic ways in the literature to determine the optimal
stream structure that renders the best average qualitylifor a
clients.

Video streaming over the Internet is increasingly getting In this paper, we address the problem of structuring scalabl

very popular as higher bandwidth links and more powerfuideo streams. We formulate an optimization problem to
machines are becoming more affordable for end users. Usdetsermine the optimal rate and encoding granularity (CGS or
typically seek the highest possible video quality. Usemsy-h FGS) of each layer in a scalable video stream that maximizes a
ever, are quite heterogeneous in terms of network bandwidtystem-defined utility function for a given client distrtmn.
and processing capacity. A conventional nonscalable codé@ design an efficient, yet optimal, algorithm to solve this
stream supports only one decoding rate, which is insuffiégien optimization problem. Our algorithm is general in the sense
such a heterogeneous environment. This is because sugportat it can employ arbitrary utility functions for clientsVe
clients with different bandwidth requires storing and &gv implement our algorithm , and show how various structuring
multiple versions of each video stream. To cope with thisf scalable video streams affect the client utilities. Tonde-
heterogeneity, various scalable coding techniques haee bstrate the generality of our algorithm, we consider thréeyut
proposed in the literature. A scalable coded stream cansist functions in our experiments, which model various aspects
various representations of the original video sequencth wincluding effective rate received by clients, the mismatch
different resolutions, frame rates, or quality levels. between client bandwidth and received stream rate, anndtclie
Scalable coders compress video data into a base layer fhatceived quality in terms of PSNR. We also compare our
provides basic quality, and multiple enhancement layea$ thalgorithm against another algorithm that has been usedéefo
add incremental quality refinements. Current video codeis,the literature, and we show that our algorithm outperform
e.g., H.264/SVC [1], allow the enhancement layers to like other one in all cases.
either coarse-grained scalable or fine-grained scalaide.lF  The rest of this paper is organized as follows. In Section II,
shows the general structure of a scalable video stream that summarize the related works. In Section I, we discusk an
can be produced by the H.264 reference software [2]. Coarseedel the overhead associated with scalable streams. Ween,
grained scalable (CGS) layers provide limited rate schigbi formulate the optimization problem, and present our atbaori
clients receiving incomplete CGS layers cannot use themttwsolve it. We evaluate our algorithm in Section IV, and we



g1 =CGS 91 =FGS g1 =FGS I1l. PROBLEM FORMULATION AND SOLUTION

In this section, we discuss and model the overhead associ-
ated with scalable streams. Then, we formulate the optimiza
layerl | e o o | layer! e o o | |ayerL tion problem, and present our algorithm to solve it.

A. Modeling Scalability Overhead

We consider scalable streams that can be structuredZinto
ro=0 1 T1—1 T rr—1 rL layers, as shown in Fig. 1. Compared to nonscalable coders, a
scalable coder imposes more overhead on streaming systems.
Fig. 1. General structuring of a scalable video stream Jiittayers. Each - 1hjg gyerhead includes reduced compression efficiency, and
layer [ has a coding rate; and a scalability typey; which can be either .
coarse grain (CGS) or fine grain (FGS). This structure canrbdused by added protocol headers. We collectively call these ovelhiea
H.264/SVC coders. as the scalability overhead We capture the effect of the
scalability overhead by using an overhead functioand the
effective rater notion, which is formalized in the following
conclude the paper in Section V. definition.
Definition 1 (Effective Rate of a Scalabe Stream):
Consider a scalable stream encoded at rat&he effective
Il. RELATED WORK rate 7 of that stream is equal to the rate of the nonscalable
stream that produces the same quality. Furthermorés
Streaming systems [6]-[9] account for the coding efficienayiven by r/(1 + a), wherea is a function that accounts for
using a layering overhead function, which represents thige scalability overhead.
bit rate that does not contribute toward the video quality. In the above definition, the function specifies the fraction
Similarly, in our formulation we use an overhead functioatth of the total stream rate that does not contribute to the video
depends on the rate of the layer being coded as well as fllayback quality. Defining the effective rate in this way leles
cumulative rate of preceding layers. us to compare various scalability methods, i.e., CGS and, FGS
The performance of multi-layer versus multi-versio@gainst each other and against nonscalable encoding.
streams is studied in [10]. The authors formulate an opti- The scalability overhead function is an input to our stream
mization problem to compute the rate of each layer such ttgitucturing algorithm, and it can be estimated using either
the average perceived video quality is maximized. The sgu&xperimental or analytical methods. Some guidelines on es-
root rate-distortion model [11] is used to estimate the igdi timating this function are in order though. In general, the
efficiency of the layered coding. In [9], the authors considecalability overhead function depends on three factors: (i)
broadcasting multi-layer video streams in a wireless tallu characteristics of the video sequence, (ii) granularitythef
system with a given number of channels and client capacigalable coding, and (iii) rate of the layer being encoded as
distribution. They determine the optimal rate of each layavell as the rates of its preceding layers. We discuss each of
to maximize the average perceived quality. Unlike our workhese factors in the following. First, the experimentaldgtu
these works target coarse grained scalable video streamis, i@ [5] indicates that video sequences with more temporal re-
do not consider fine grained scalable streams. dundancy incur higher scalability overhead. In additiodge
The authors of [12] study multicast streaming systems wifigquences with similar amount of temporal redundancy have
many receivers. They partition receivers into several gsouSimilar scalability overheads. This suggests categagizideo
to maximize a system-wide utility function. Their algorith Sequences based on temporal redundancy and computing an
uses a general utility function(r., b.) of the bandwidttb, and ©Overhead function for each category. Second, as indicated b
the streaming rate.. Two utility functions are employed in Previous studies [1], 5], fine-grained scalable coding oswgs
their experiments: (ijnin(r., b.) as the received rate, and (ijymore pverhead than coarse-grained scalable_codlng. Tolmode
min(re, b.)/ max(re, b.) as the inter-receiver-faimess indexthis difference, we use two overhead functions: and a;
We use similar utility functions in our work. A video streanfor CGS and FGS layers, respectively. Finally, the authérs o
used in such systems can be encoded into multiple laydf observe that encoding the base layer of MPEG-4 FGS
Multiple versions with different rates of the same stream c#€quences at higher rates yields lower scalability ovethea
also be created. This work does not consider fine-grainE the enhancement layer. This indicates that the overhead
streams, nor does it account for the layering overhead. ~ function of a layer will depend on the cumulative rates of the

Finally, in our previous work [13], we considered struchgyi preceding layers, in addition to the rate of that layer ftsSEd

MPEG-4 streams which can have one base layer and cmgdel this dependence, we define the effective ratd layer
fine-grained enhancement layer. The problem in [13] was Itél <1< L) as follows:

compute the optimal width of the base layer. In the current . I—1

paper, we consider multiple-layer streams and each layer ca F = b - (1)
. age . — TI—7Ti—1

have different scalability granularity. M1+ Ty, 2SI



In the above equation, we use to denote the encodingdefined as the average client utility over all classes. Mathe
rate of layerl. Layer 1 (base layer) does not incur scalabilitynatically, we write our problem as:
overhead (i.e.f; = r1), because it is typically encoded using

a nonscalable method. For successive (enhancement),layers Py Yy = max Zf (b, by) (3a)
the effective rate of layel is computed recursively from the '
effective rate of layef—1 and the width of layet scaled down st 7 < Po < e < TL: (3b)

by the overhead function(r;). We scale down the width of
layer [ to account for the scalability overhead. We use the _
effective rate defined in (1) in our problem formulation. 9:€{0,1}, Vi =2,3,..., L. (3d)

In the above formulation, the utility function(b.,b.) is
a non-decreasing function of the effective rate achieved by

Our goal in this paper is to find the optimal structure of glient ¢. We use the effective rate in the utility function to
multi-layer scalable video stream. That is, we want to co®puaccount for the scalability overhead. We do not impose any
the coding method (CGS or FGS) and the coding rate of ea@strictions on the utility function: It can be any arbitrar
layer to maximize a system-wide utility function. We eladt@r function that may, for example, describe utilization ofteys
on the utility function later in this section. resources, satisfaction of clients, or a combination ofibour

We consider heterogeneous client populations by dividirggorithm, presented in the next section, works with any-use
clients intoC' classes. All clients belonging to the same clasgefined utility function. In the evaluation section, we useee
c(l<c< C) have the same bandwidth. We assume that types of utility functions. These utility functions haveee
by < by < --- < bc without loss of generality. The fraction of used before in the literature, and they model various aspect
clients in each C|355|S given by a probability mass functionsuch as the effective rate received by clients, the mismatch
f(c), where X%, f(c) = 1. No assumptions are made orbetween client bandwidth and received stream rate, andtclie
the number of client classes or on the probability functioperceived quality in terms of PSNR.
Without loss of generality, we assume that < r,,.., which  The optimization problem in (3) has an exponential number
is a pre-determined maximum rate of the stream. If otherwissf feasible solutions, and exhaustively trying all of thenfind
we combine clients with bandwidth larger than, in a class the optimal one is extremely expensive. In the next subsecti
with bandwidth equal ta,,.... We can do that because naye propose an efficient, yet optimal, algorithm to solve iirO
matter how large the client bandwidth is, it cannot receivgigorithm uses a dynamic programming approach.
more than the maximum rate,, ...

For client class, its actual received rate is no larger thafe- Efficient Algorithm
be. To account for scalability overhead, we defiheto be  We first develop two lemmas to reduce the search space
the effective rate of client class wherel < ¢ < C. b. is size of our optimization problen®,. We define a subproblem
a function of the adopted structuring policy, which is dedinefor (3) called P(c, 1), wherel < ¢ < C, and1 <[ < L. For
asS = {(ri,9:),i = 1,2,..., L}, wherer; determines the this subproblem, we find the optimal structuring poli§y =
encoding rate, ang; decides the granularity for layérWe set  {(r?, g*),i = 1,2,...,1} that yields the maximum system-
gi = 0 if layer i is CGS-coded, ang; = 1 if it is FGS-coded. wide utility Y*(c,1). We then solve this problem iteratively
We assumey; = 0, because the base (first) layer is typicallpy utilizing solutions of smaller subproblems. In subpeshl
coded with nonscalable coders, which do not incur scatgbiliP(c, 1), we assume that the rate of laykiis higher than the
overhead. We usé to denote the highest layer that can beandwidth of client class: — 1, and is no larger than the
transferred to client in its entirety (i.e.;,; < b. < r41), we bandwidth of client class. We also assume that the laykeis

g1 =0; (3¢)

B. Problem Formulation

write the effective raté. as: CGS-coded. Therefore, clients in class1 and below receive
_ _ nothing and contribute zero system utility. We can write the
_ T, 9i=0
be =4 _ . (2) subproblemP(c,!l) as:
it ey 9= 1
The effective rate of class is equal to that of layet, if Yi(e,l) = max Zf u(by, br) (42)
layer ! + 1 is CGS-coded. If layefl + 1 is FGS-coded, the
additional rateb, — 7; can be received on top of, which st. m < T2 < <TG (4b)
contributes to the effective rate of classafter being scaled g1 =0; (4c)
down by the FGS overhead functi@n(r;1). gi€{0,1}, Vi=2,3,....1; (4d)
Our problem can formally be stated as follows. Given a beq1 <11 < bg. (4e)

scalable stream that can be structured into up tayers, and

a large number of clients divided int6' classes with their In the above subproblem, constraint (4e) enables us to
distribution given by the probability mass functigiic), find reduce the search space. We incrementally relax this limita
the optimal structuring policy™* = {(r},¢;),i =1,2,...,L} to derive the optimal solution for the original problefy.

that yields the maximum system-wide utilifif;", which is Solving subproblen®(c, 1) is still hard. For instance, there are



too many possible solutions to consider in order to deteemisubproblemP (i, — 1). go was assumed to be CGS-coded in
the optimal coding rate for layet alone. We present the subproblemP(:,l — 1), and its optimal setting is determined
following lemma to reduce the search space of the optimahen solving subproblenP(c,l) using (5). An important
structure policy. The proof is given in [14]. property of (5) is that we effectively consider all possible
Lemma 1:There exists at least one optimal solution for theombinations ofr; and g,. Therefore, we can use dynamic
subproblemP(c, ) that has following propertyb.—1 < r; < programming technique to optimally solve subproblE(a, )
be < r3. for its optimal structure. The following theorem shows haw t
This lemma states that if there is an optimal solution thabnstruct an optimal solution for probleRy based on optimal
has two or more layers between two adjacent clagses solutions for subproblemB(c, ). Due to space limitations, we
and b., we can find another optimal solution with only onegive the proof in [14].
layer between these two classes. Therefore, we do not need t®heorem 1 (Optimality)Let S*(¢,l) denote the optimal
allocate two layers between adjacent classes, which redutéayer structure for subproblen®(c,!) that achieves the
the search space. The following lemma further reduces thmaximal system utilityy™*(c, 7). The optimal structures™* for
search space. Its proof is given in [14]. the original problemP, is the one that achieves maximum
Lemma 2:There exists at least one optimal solution for theystem utility: Y;* = maxi<.<c—r+1{Y*(¢,L)}.
subproblemP(c, 1) with layer 1 coded at raté.. That is, at  The above theorem illustrates that the optimal structure fo
least one optimal solution has the following propetty:; < problem P, can be derived by finding the maximal system-

r] = be. wide utility among all optimal solutions for subproblems
These two lemmas state that to determiiidor an optimal P(c, L), wherel < ¢ < C'— L+1, while the optimal solutions
solution of subproblen®(c, 1), we only need to considef = for subproblemsP(c, L) can be found by iteratively solving

b.. Next, we consider rates and granularity for other layegsnaller subproblems. We present the details and pseudo code
for an optimal solution of subproblet®(c,!). We do so by of our algorithm are given in [14].
recursively solving subproble (i, — 1), wherec+1 < i < The following theorem gives the time and space complexi-
C —1+1. That is, we sequentially solve subproblems wiith ties of our algorithm. We prove it in [14].
layer, 2 layers, untilL layers. Theorem 2 (Complexity)The time complexity of our algo-
We solve a general subproblefc,l), wherel < ¢ < C  rithmisO(C?L) and its space complexity 8(CL), whereC
and1 <! < L as follows. We first solve subproblef(c,1) is the number of client classes aiidis the number of layers
for 1 < ¢ < C. Previous lemmas tell us that setting = b. in the video stream.
in P(c,1) leads to an optimal solution. As layer 1 is CGS-

encoded, clients in class- 1 and below receive nothing, and IV. EVALUATION
clients in classc and above receive layer 1. Therefore, the In this section, we first describe our experimental setup.
optimal system utilityY*(¢, 1) can be easily computed. We then demonstrate that our algorithm allows varioustytili

We then solve subproblef(c, /), wherel > 1andl < c < functions and produces optimal stream structures. Next, we
C. Again, following previous lemmas, we know that settingompare our algorithm with a widely used heuristic stream
r1 = b. leads to an optimal solution. To determine the ratesructuring algorithm. Only sample results are shown here
and granularity of other layers, we consider optimal sohgi due to space limitations. Interested readers are refeoed t
for P(i,1—1), wherec+1 < i < C'—[+1. We do not consider the extended version of this paper [14] for the complete
subproblems withi > C' — [ + 1, because solutions of theseexperimental results and a study on the impact of choosing
problems have at least one bandwidth interiial 1, b.] that different utility functions.
contains rates for two or more layers. Previous lemmas ¢ell u
that considering stream structures with only one layer betw A- Setup
any adjacent client classes is sufficient to find an optimal Our algorithm allows user-specified scalability overhead
solution, which enables us to ignore these subproblems. functions. Previous studies [1], [5] reveal that FGS coded

We can use the following formulation to solve subproblenayers results in higher scalability overhead compared@&sC
P(c,1) by utilizing optimal solutions for smaller subproblemscoded layers. Therefore, we defing(r;) anda, (r;) for CGS
and FGS overhead function, wheag(r;) < a1(r;) at any

Yiel) = c+1§1%‘%giz+1,{y (1,1 = 1) = DIFF(c, 1)}, (5) layer rater;. In our experiments, we leto(0) = 5% and
92€{1,0} a1(0) = 20%. We let both CGS and FGS overhead reach zero

whereY*(c, 1) represents the optimal system utility for subwhenr; > 5000 kbps. That is, we have the following scalabil-
problem P(c, 1), and DIFF(c,[,7) denotes the system utility ity overhead functionsug(r;) = max{0.05 — 0.00001r;,0},
difference caused by adding a CGS-coded layei.ab the anda;(r;) = max{0.20 — 0.00004r;,0}.

optimal solution of subproblenP(i,! — 1). The details on  Our algorithm works with any utility function(b., b.),
derivations oDIFF (¢, [, i) are given in [14]. This formulation whereb, is the effective rate of the received stream, @pd
finds the subproblen®(i,l — 1) and the granularity, that is the available bandwidth of client Three utility functions
maximize system-wide utility for subproble®(c,). Notice are employed in our experiments; . (b., b.) = b., which
that, go represents the granularity of the lowest layer foassumes that the higher the effective rate that a clienives;e



the more satisfied that client will be; (i)usitization (be, be) =
b./b., which tries to match the rate received by a client with
its bandwidth; and (iii)ups,,- Which maximizes the client-
perceived quality (in PSNR) by using a rate-distortion (R-D
model to map the effective rate to perceived quality. o~

For upsnr, we adopt a recent H.264/AVC R-D function 5(‘)0 10‘00 15‘00 2000 25‘00
which assumes that the transform coefficients are Cauch Client class bandwidth (kbps)
distributed [15]. The R-D function is given a&? = cR™7,
where the distortionD is in mean-square error (MSE) and trte | | | || |
rate R is in bits per pixel. The model parametersind-~y are
sequence dependents. The authors of [15] show that thisimod, . m” |
is more accurate than Laplacian and Gaussian based R-D mo
els. We useuysn (be, be) = —101log([15.3787(0.1184b.) 4] o UJJ | |
in our experiments with CIF video sequences. We note tha
this R-D model is proposed for nonscalable H.264/AVC coded
streams. It is, however, applicable in our experiments i®&a Fig. 2. Optimal structuring of a scalable video stream wthayers for
we convert actual rates to effective rates, which are etﬂm]a scenario IV produced by our optimal algorithm with differenility functions.
to the rates of nonscalable stream.

We have implemented our algorithm in Java. We denote )
our algorithm by ScsOpt in plots. We use a commodity Linu¥’?: FGS, (685, CGS), (2745, FGS}. Elements in each 2-
desktop for our experiments. We considéf, 000 clients with  [UPIe represent coding rate in kbps and granularity, respec

network bandwidth distributed according to four repreate  t1VelY: o
distributions. The first distribution is uniform betweed These results show that our algorithm is general and can be

and 3005 kbps. The second is a bi-model distribution tha¢sed with various utility functions in different environnts.
consists of two normally-distributed peaks with meang&it
kbps and1000 kbps, and standard deviations 2iF and 100.
This bi-model distribution is skewed to the righ&0% of We compare the stream structures resulted by our algorithm
client classes are from the normal distribution with mea@gainst the heuristic structuring algorithm used in [9B][1
1000 kbps. The third is a bi-model distribution with the samdhis heuristic algorithm takes two rates for minimum and
setting, except that it is skewed to the le$0% of client maximum supported decoding rates. It uses these two rates
classes are from the normal distribution with mes0 kbps. to code the first and the last layers, and then exponentially
The fourth is a multi-model distribution with three normagllocates rates for intermediate layers. That is, a layer
distributions, which represents a typical client disttibn in is assigned rate,,i,p' ', where ri, and rp.. are the
today’s Internet:50% of clients are equipped with dial-upMinimum and maximum supported rates. The fagtes given
connections, which have a normal distribution with me@n BY “"\/7maz /Tmin, Where L is the total number of layers.
kbps and standard deviation 86 kbps;35% of clients use We user;, = 50 kbps andr;,., = 1500 kbps in our
DSL services, where the average bandwidthigd kbps with experiments. This covers a wide range of clients, from dial-
standard deviation af00 kbps; andl5% of clients have high- Up to broadband access links. We denote this algorithm by
speed connections with average bandwidtit0 kbps and EXpo in the plots. Fig. 3 illustrate the achieved systemewid

©
[N

Distribution
o
o
a1

C. Comparison with Previous Structuring Algorithm

standard deviation o200 kbps. utility by ScsOpt and Expo algorithms. Only sample resulés a
_ _ shown due to the space limitation. More results are given in
B. Optimal Stream Structuring [14]. Our algorithm outperforms the heuristic algorithmttwi

Our algorithm takes client bandwidth distribution as inpufignificant margins in all cases.
It produces a stream structure that results in the highéisyut ~ We note that Expo is the only algorithm we could find in
As mentioned above, we use three different utility funcsiorthe literature that may be applied to our stream structuring
in our experiments. These utility functions lead to differe problem. Moreover, if there were other algorithms, the best
optimal stream structures. Fig. 2 shows the optimal stredffy can do is to achieve results similar to our algorithm,
structuring policies computed by our algorithm for 5-layepecause our algorithm is optimal as shown in Sec. IlI-C and
scalable stream in scenario IV with different utility furmcts.  €xperimentally verified in the extended version of this pape
We see that the resulted stream structure is influenced [B¢]-
the chosen utility function. Specifically, the followingresam
structures are determined to be the optimal stream steictur
for each of the utility functions: (i)u,e.: {(735,CGS), We have formulated an optimization problem to determine
(805,CGS), (855,CGY, (885,CGS), (2745,FGS}, (i) the optimal rate and encoding granularity (CGS or FGS) of
Uutitization: 1(5,CGY), (15,CGY, (25,CGY), (35,CGS, each layerin a scalable video stream that maximizes a system
(2745,FGS}, and (i) wpenr: {(35,CGY, (45,CGY), defined utility function for a given client distribution. Weave

V. CONCLUSION
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Fig. 3. Comparison between our algorithm (ScsOpt) and theidte algorithm (Expo) that exponentially allocatesesato layers. Sample data shown here

due to space limitations.

proposed an optimal algorithm to solve this problem. Ouf4] w. Li, “Overview of fine granularity scalability in MPE@-video stan-

algorithm is efficient and runs i®(C3L), where L is the

number of layers in the video stream a6tlis the number

of cl

ient classes. Sincé and C are typically small integers,

our algorithm is computationally efficient. Our algorithrarc

employ arbitrary utility functions for clients. To demorete
the generality of our algorithm, we used three utility fuoos

(5]

[6

in our experimental study. These utility functions haverbee
used before in the literature, and they model various perfom
mance metrics such as the effective rate received by clients
the mismatch between client bandwidth and received stream
rate, and the client-perceived quality in terms of PSNR. W
also compared our algorithm against another algorithm that

has been used before in the literature, and we showed that o

toff

algorithm outperforms the other one in all cases.

In the extended version of this paper [14], we experimen-

tally verified that our algorithm produces the optimal résul

and runs in a few seconds on a commodity PC. We studied {ﬁ%]

effect of various structuring of scalable video streamslant
utilities for different utility functions. By analyzing vaus
utility functions, we provided guidelines for content piders

to choose the appropriate utility function that suits tmeieds.
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