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Abstract— We propose new algorithms to achieves-coverage set of sensors such that all locations areovered. Achieving
in dense sensor networks. In such networks, covering sensora minimal set of sensors is critical, because it reducesferte
locations approximates covering the whole area. Howevert has ence among active sensors, reduces total energy consmmptio

been shown before that selecting the minimum set of sensors t d th | the lifeti fth hol twork
activate from an already deployed set of sensors is NP-hardVe an us prolongs the fiteime ot the whole Network.

propose an efficient approximation algorithm which achieve a ~ The problem of selecting the minimum number of sensors,
solution of size within a logarithmic factor of the optimal. We  however, is NP-hard [4]].We propose an efficient approxima-
\p;\;ov_e trl‘at 0“; algorilthm_ﬂif corrgct and an;;lyze _itstiomp"t?rfiy- tion algorithm for it, which achieves a solution of size viith
e implement our algorithm and compare it against two others . ; : . .

in the FI)iterature. Ourgresults show thgt the Io%arithmic factor a logarithmic factor of.the optimal and terminates qU|-cIdy (.

is only a worst-case upper bound and the solution size is cles the order of seconds in most cases). We show by simulation
to the optimal in most cases. A key feature of our algorithm that although the approximation factor is logarithmic, st i

is that it can be implemented in a distributed manner with only a worst-case upper bound and the solution size is close
local information and low message complexity. We design and g the optimal in most cases. We take a novel approach in

implement a fully distributed version of our algorithm. Our : B :
distributed algorithm does not require that sensors know their solving thek-coverage problem. In particular, we model the

locations. Comparison with two other distributed algorithms in Problem as a set system for which an optinteiting set
the literature indicates that our algorithm: (i) converges much corresponds to an optimal solution for coverage. Findirgy th
faster than the others, (ii) activates near-optimal numberof optimal hitting set is NP-hard [6], but there is an efficient
sensors, and (iii) significantly prolongs (almost doublesihe  approximation algorithm for it [7]. Ouk-coverage algorithm
network Ilfgtlme because it consumes much less energy thahe is inspired by the approximation algorithm for the optimal
other algorithms. . ) .
hitting set problem. We prove that our algorithm is correct
and analyze its complexity. We implement our algorithm
and compare it against other centralized algorithms in the
Mass production of sensor devices with low cost enabl@grature. Our comparison reveals that our algorithm isuab
the deployment of large-scale sensor networks for real-lifour orders of magnitude faster than the currently-kndwn
applications such as forest fire detection and vehicle traféoverage algorithms.
monitoring. A fundamental issue in such applications is the A key feature of our centralize&-algorithm is that it can
quality of monitoring provided by the network. This quali$y pe implemented in a distributed manner with local informiati
usually measured by how well deployed sensirgera target  and low message complexity. We design and implement a fully
area. In its simplest form, coverage means that every pointdistributed version of our algorithm. Our distributed aitjom
the target area is monitored by, i.e., within the sensingi€andoes not require sensors to know their locations. Compariso
of, at least one sensor. This is calledoverage. In this paper, with two other distributed algorithms in the literature icates
we consider the more generkicoverage K > 1) problem, that our algorithm: (i) converges much faster than the sther
where each point should be within the sensing range: of (jj) activates near-optimal number of sensors, and (iini-
or more sensors. Covering each point by multiple sensorscigntly prolongs (almost doubles) the network lifetime hesea
desired for many applications, because it provides redurydait consumes much less energy than the other algorithms.
and fault tolerance. Furthermork;coverage is necessary for The rest of the paper is organized as follows. In Section
the proper functioning of many other applications, such §s e review previous works. In Section Ill, we present an
intrusion detection [1], data gathering [2], and objectkiag oyerview of the k-coverage problem and our solution ap-
[3]. proach. The details and analysis of ducoverage algorithms
When deployed sensors are dense, area coverage cary&yresented in Sections IV and V. We evaluate our algosithm
approximated by point coverage. That s, if all sensor ioc&t and compare them against others in Section VI. We conclude
are covered by the set of activated sensors, the entire area i

CO_V_ered' In this paper, we addr_ess the prOblem of seled’tmg t INote that this problem is different from the problempbécing sensors in
minimum set of sensors to activate from an already deployedlarea to cover it, which can be solved efficiently [5].

|. INTRODUCTION



the paper in Section VII. For k-coverage, elements in the hitting set are not locations

for individual sensors. Rather, each element in the hittieg

is a center of what we call &-flower, which is a set ofk
The closest work to ours are [4] and [8]. In [4], thesensors that all intersect at that center point. Fig. 1(dysh

authors address the problem of selecting the minimum nuwome3-flower centered at pointthat 3-covers poinps. Details

ber of sensors to activate from a set of already deployeflconstructingk-flowers are discussed in Section IV. The

sensors fork-coverage. They prove that the problem is NPeoverage problem now reduces to finding a minimum hitting

hard since it is an extension of the dominating set probleset where elements in that set are the centers-fiéwers.

[6]. They formulate the problem and provide a centralize8ince finding the minimum hitting set is NP-hard, we try to

approximation solution based on integer linear prograngminfind a near optimal hitting set. We propose an approximation

The algorithm works by relaxing the problem to ordinargplgorithm that uses the concept@hets [9], which is defined

linear programming, where the variables may take real galuas follows.

They also design a distributed algorithms, PKA, which usesDefinition 2 ¢-Net): Let 0 < e < 1 be a constant. The set

pruning to reduce the number of active sensors. The work % C X is called are-net for the set systerfiX, R) if N has a

[8] presents a centralized algorithm that works by iteed$iv non-empty intersection with every elementifof size greater

adding a set of nodes which maximizes a measure caledthan or equal te|X]|, that is,VR € R such that R| > ¢|X]|

benefitto an initially empty set of nodes. The authors alsae haveR N N # ().

present a distributed algorithms, DPA, that works by prgnin The definition ofe-net is similar to that of the hitting set,

unnecessary nodes. We compare our algorithms against éleept that thes-net is required to hit onlyarge elements

algorithms in [4], [8]. of R (ones that are greater than or equalet&|), while

the hitting set must hit every element &. This similarity

is exploited by our approximation algorithm to find a near

optimal hitting by finding e-nets of increasing sizes (i.e.,
Problem 1 g-Coverage Problem)Given n already de- decreasing) till one of them hits all elements oR. For

ployed sensors in a target area, and a desired coverage=detitie to work, we clearly need to efficiently: (i) compute

k > 1, select a minimal subset of sensors to cover all sengugts, and (ii) verify coverage. We use a simple verifier that

locations such that every location is within the sensingesof  checks all points inO(n) steps. Computing-nets can be

at leask different sensors. It is assumed that the sensing randene efficiently for set systems with finite VC-dimensions

of each sensor is a disk with radiusand sensor deployment(defined in [9]). Specifically, Haussler and Welzl [9] show

II. RELATED WORK

IIl. THE K-COVERAGE PROBLEM AND OUR SOLUTION
APPROACH

can follow any distribution. that for any set systertiX, R) with a finite VC-dimensiord,
The abovek-coverage problem is proved to be NP-hard bsandomly samplingn > max (% log %, %d log S?d) points of

reduction to the minimum dominating set problem in [4]. WEX constitutes ar-net with a probability at least — ¢, where
propose an efficient approximation algorithm for solving th0 < ¢ < 1. Notice thatm does not depend on the size of
k-coverage problem. We start describing our solution apgroaX, which allows X to be arbitrarily large with no effect on
with the following definition [7]. the size of thee-net. Bronnimann and Goodrich [7] further
Definition 1 (Set System and Hitting Sef): set system extend the concept afnet by assigningveightsto elements
(X, R) is composed of a seX and a collectiorR of subsets of X. Weights accelerate the process of finding a near optimal
of X. We say thatd C X is a hitting set if H has a non- hitting set, and help in establishing an upper bound on s, si
empty intersection with every element &f, that is,VR € R  as we discuss in Section IV.
we haveR N H # (). The VC-dimension of our set system is proved to3bly
Our solution does not require a grid deployment, and atlye following lemma. Due to space limitation, the proof is
node deployment such as uniform or Poisson distribution cgiven in [10].
be used. We defin& to be the set of all sensor locations. Lemma 1:Consider the set syste(X, R), whereX is the
Thus, we havéX| = n. We define the collectio® as follows. set of points, an@R contains a disk of radius for each point
For each poinp in X, we draw a circle of radius centered at in X. This set system has a VC-dimension of 3.
p. All points in X that fall within that circle constitute one set To summarize, we model the-coverage problem as a set
in R. Fig. 1(b) shows only three elementsRfthat correspond system(X, R) whereX is the set of sensor locations aRdis
to the three highlighted points;, p2,p3 in Fig. 1(a). Now the collection of subsets of created by intersecting disks of
the minimum hitting set problem oX,R) is to find the radiusr with points ofX. This set system has a VC-dimension
minimum set of points inX that hit (intersect) all elementsof 3, therefore, we can efficiently implement reet-finder
(disks) of R. Fig. 1(c) shows a possible hitting set for thelgorithm to finde-nets of various sizes. Our approximation
three disks ofR shown in Fig. 1(b). The hitting set has twoalgorithm for thek-coverage problem employs the net-finder
pointsc; andc,. If we considerc; ande; to be locations of to computee-nets of increasing sizes, and for eachet it
sensors, we will ensure that pointg p2 andps arel-covered, verifies the coverage until all points are sufficiently cader
because each of them is within the sensing range of at le¥¢ assign weights to points of to guarantee termination
one of the sensors located@atandc,, as shown in Fig. 1(c). and to bound the approximation factor of the output solution
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Fig. 1. Modeling thek-coverage problem as a set systéM, R). (a) shows the set of points which constitute (b) shows only three subsets Bf that
are associated with the three highlighted points in (a).st@ws a hitting se{ci, c2} that 1-covers the three subsets in (b). (d) shows 8flower that
3-covers only one subset iR.

Finally, each element in the output represents the centerhalps us to establish the following bound on the number of
what we call ak-flower, which is a set ok sensors that all sensors required to achie¥ecoverage.
intersect at that center point and should be activatedifor Lemma 2:The solution returned by th&-coverage algo-

coverage. rithm is no more than a logarithmic factor of the optimal
number of sensors required tecover all sensor locations.
IV. CENTRALIZED K-COVERAGE ALGORITHM Proof: Suppose that the algorithm terminates witand

The pseudo code of tHecoverage algorithm, which we call the optimal number of nodes required focoverage isV < c.
RKC (Randomized:-Coverage algorithm), is given in Fig. 2. This means that the algorithm has failed to find a solution for
The algorithm takes as input the set of sensor locatifins ¢/2. Since the algorithm iteratedi(c/2) log(n/(c/2)) times,
sensing range of sensors and required degree of coveragéloubling weights of uncovered points in each iterationnthe
k. If the algorithm succeeds, it will return a subset of noddsy Lemma 3.4 in [7], there is no hitting set of sizg2. That
to activate in order to ensurecoverage. The algorithm mayis, we must haveV > c/2. Therefore, we have < 2N. Since
only fail if activating all sensors is not enough feicoverage the size of thel-net isO(clogc), the size of the solution is
because of low density. The minimum required density can liI.{N log N) |
calculated as follows. If every point is to ldecovered, it has  Notice that the analysis in the above lemma is not tight.
to be in the sensing range of at leastensors. Thus, for eachOur simulation results (Section VI) show that the upper ltbun
nodep, there should be at leastother nodes inside a disk ofin this lemma is indeed very conservative, and our algorithm
radiusr centered ap. produces solution sizes that are a constant factor from the

In every single iteration of the while loop, the algorithnoptimal in most cases.
tries up to4clog(n/c) %—nets one at a time (the for loop in Next, we prove the time complexity of the algorithm in the
lines 5-11). Eacl%—net is computed by the net-finder (Sectiofollowing lemma, the proof is given in [10].

IV-A), and hits all disks with weight greater than or equal to Lemma 3:The k-coverage algorithm terminates in time
11X|. For each net, the verifier checks whether this net @(nlogn(Tr+Tv)), whereTr andTy are the running times
a hitting set, i.e., it completely:-covers all points. We use of the net-finder and verifier algorithms, respectively.
a simple verifier that checks all points (n) steps? If a
net is a hitting set, the algorithm returns it and terminated- The Net-Finder Algorithm
Otherwise, the algorithm doubles the weight of a point that The idea of the net-finder algorithm is based on Corollary
was under covered by that net. Then, the algorithm choos8 in [9], which states that randomly selecting at least
anotherl—net. Points with increased weights will have higheinax (£ log 2, 2 log ) points of the setX yields ane-net
probability of being included in the new net. The size of eachith a probability at least — §, where0 < J < 1. Selecting
returnedl-net isO(clog c) (see the description of the net-an arbitrary smalb yields ane-net with probability almost.
finder algorithm for details). The reason behind trying up to Let the termnet-sizef) denote the number df-flowers in
4clog(n/c) nets is that a result (Lemma 3.4) in [7] states thahec-net. The net-finder algorithm iterates foet-sizef) steps,
if there is a hitting set of size, the weight doubling processand in every iteration, selects a random pgibiased based on
cannot iterate more thatclog(n/c) times. This also meansthe weights. Then it finds &flower centered aj and adds it to
if we iterate beyondiclog(n/c) without finding a hitting set, the net Any pointq is selected with probabilityy(q) /w(X),
it is guaranteed that there is no hitting set of sizg]. This wherew is a function which assigns weights to points. The
weight of a set is the summation of weights of all points in
2Asy_mptotically more efficient verifiers are possible to desiising ordes  that set. After the center poigtof the k-flower is selectedk
Voronoi diagrams [11]. However, these verifiers are compeknplement in . . L .
other pointsy, . .., pi are selected uniformly inside a disk of

practice, and the performance gain is not significant dubddarge constants : ) . g
in the time complexity. radiusr centered at. The location of each of these points is



p is k-covered by sensors of thisflower. Hence, all points

Randomized K-Coverage: RKQ X, r, k) are k-covered by sensors ifi.

The time complexity follows from Lemmas 3, and 4, and
1. ¢=1; /I sets the initial size oé-net by using a simple verifier that checks all points in O(n)
2. while (net—size%) <n) do steps. The bound on the solutions size follows from Lemma
3. set weights of all points to; 2. [ |
g For il/:c,l to 4clog ™ V. DRKC: DISTRIBUTED RANDOMIZED K-COVERAGE
6. N = net-findet X, k, ¢, ): ALGORITHM
7. u = verifier (X, N, k,r); In the previous section, we presented a centralized algorit
8. if (uw==null) for the k-coverage problem. A key feature of this algorithm is
9. returnN; that it does not rely heavily on global information. Themefo
10. else it can be implemented in a distributed manner.
11. double weight ofi; Our centralizedk-coverage algorithm (shown in Fig. 2)
12. c=2Xc maintains two global variables: the size of the curremtt,
13. return §; and weights of all points. At every iteration of the outergpo

the size of thec-net is doubled, and at every iteration of the
inner loop, the weight of one under-covered node is doubled.
The basic idea of our distributed algorithm, which we call
given by:p; = (x4 + d; cos;, y, + d; sin6;), wherex, and DRKC (Distributed Randomized-Coverage algorithm), is to

y, are coordinates of, and¢; andd; are selected at randomemulate the centralized algorithm by keepingal estimates
from [0, 27] and [0, 7], respectively. for these two global variables. o
The following lemma provides the time complexity of the Estimating the current-net size and the total weight in the

net-finder algorithm and the size of the net returned [10]. network allows a node to decide (locally) whether it should
Lemma 4:The algorithm net-finder terminates inPe & member of the-net.If a node decides to be part of the

O(nlogn) steps and returns annet of sizeO(L log 1). e-net, it will activate & other nodes to create /aflower as
Remark: A more efficient net-finder algorithm, i.e., onein the centralized algorithm by broadcasting an ACTIVATE
that returns ar-net of sizeO(1), is possible to design [12]. Message to its neighbors_. When a node receives an ACTIVATE
However, the constant in this linear bound is quite higtnessage, it becomes active and broadcasts a NOTIFY message

Moreover, the algorithm involves triangulation which regs informing all its neighbors that it has become active.

sensors to be aware of their locations, and more importantlyFinaHy, k-coverage verification in the centralized algorithm

it is not clear how the algorithm can be implemented in i done by checking all nodes one by one. In the distributed
distributed manner. Therefore, although the efficientfimeter ~algorithm, each node independently checks its own coverage
in [12] would make our RKC algorithm produce a solutioy listening to NOTIFY messages exchanged in its neighbor-
that is a constant factor from the optimal, we opt to use thwod, and counting number of active nodes. A node terminates
simpler net-finder algorithm because it can be implementedthe algorithm if it is sufficiently covered. Otherwise, itulies

a distributed manner, and it produces near-optimal resuits its weight, and starts another loop iteration. A node mag als

the average, as shown by our simulations in Section VI. terminate the algorithm if it has been looping fog . steps
without getting sufficiently covered, which can occur bessau

B. Algorithm Correctness and Complexity of low node density.

The following theorem proves that our algorithm is correct, In the following theorem, we provide the average- and
provides its time complexity, and proves the upper bound evorst-case communication complexities of the DRKC proto-
the solution. col. The proof as well as detailed description of DRKC are

Theorem 1:The k-coverage algorithm (RKC) in Fig. 2 given in [10].
ensures that every point in the areakisovered, terminates Theorem 2:The number of messages sent by a node in any
in O(n? 19g2 n) steps, and returns a solution of size at mosbund of the DRKC protocol ig)(logn) in the worst case,
O(Nlog N), where N is the minimum number of sensorsandO(1) on average.
required fork-coverage.

Proof: Suppose that the algorithm terminates by provid-
ing a setS of sensor locations. By construction, this set of Due to space limitation, we present only a sample of our
points is guaranteed to hit every disk of radiusSince for results. More details and plots are given in [10]. We first
our set system X, R), we put a disk inR for each point compare the output size of our RKC algorithm against the
p € X, there should be at least one element (i.ek;flower) asymptotic necessary and sufficient conditionsifaroverage
in S that hits the disk centered at In addition, the center of proved in [2] for uniformly deployed sensors. We use a large
each sensor in the-flower is within a distance from p (see area of sizel000m x 1000m with 30,000 deployed sensors
Section IV-A for details on constructingflowers). Therefore, and vary the sensing range The results fork = 4 are

Fig. 2. A centralized approximation algorithm for tthecoverage problem.

VI. PERFORMANCEEVALUATION
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Fig. 3. Efficiency of our centralize#i-coverage algorithm (RKC). The figure Fig. 4. Comparing the network lifetime under different dimited k-coverage
compares the number of active sensors produced by our RKJOtalgp versus algorithms.
the necessary (Newond) and sufficient (Suond) conditions proved in [2].

o and the solution is typically close to the optimal in most
shown in Fig. 3, where Necond and Suftond denote the c5ses. We compared our algorithm against the currentlyvkno
necessary and sufficie_nt conditions, respectively. _Theréig'%-coverage algorithms and showed that it runs up to four
shows that our algorithm does not unnecessarily activajgyers of magnitude faster, while producing same or better
too many sensors, because its output is very close to &gytion sizes than the other algorithms. We also designdd a
necessary condition. _The _results of this experiment sha ”jh‘lplemented a fully distributed version of our algorithnath
the worst-case logarithmic factor proved in Theorem 1 iges only local information. Our distributed algorithm has

very conservative, and on average our centralized algorithnessage complexity and it does not require sensors to know
produces near-optimal number of active sensors. their locations.
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