
Randomized k-Coverage Algorithms For Dense
Sensor Networks

Mohamed Hefeeda
School of Computing Science

Simon Fraser University
Surrey, BC, Canada

Majid Bagheri
School of Computing Science

Simon Fraser University
Surrey, BC, Canada

Abstract— We propose new algorithms to achievek-coverage
in dense sensor networks. In such networks, covering sensor
locations approximates covering the whole area. However, it has
been shown before that selecting the minimum set of sensors to
activate from an already deployed set of sensors is NP-hard.We
propose an efficient approximation algorithm which achieves a
solution of size within a logarithmic factor of the optimal. We
prove that our algorithm is correct and analyze its complexity.
We implement our algorithm and compare it against two others
in the literature. Our results show that the logarithmic factor
is only a worst-case upper bound and the solution size is close
to the optimal in most cases. A key feature of our algorithm
is that it can be implemented in a distributed manner with
local information and low message complexity. We design and
implement a fully distributed version of our algorithm. Our
distributed algorithm does not require that sensors know their
locations. Comparison with two other distributed algorithms in
the literature indicates that our algorithm: (i) converges much
faster than the others, (ii) activates near-optimal number of
sensors, and (iii) significantly prolongs (almost doubles)the
network lifetime because it consumes much less energy than the
other algorithms.

I. I NTRODUCTION

Mass production of sensor devices with low cost enables
the deployment of large-scale sensor networks for real-life
applications such as forest fire detection and vehicle traffic
monitoring. A fundamental issue in such applications is the
quality of monitoring provided by the network. This qualityis
usually measured by how well deployed sensorscovera target
area. In its simplest form, coverage means that every point in
the target area is monitored by, i.e., within the sensing range
of, at least one sensor. This is called1-coverage. In this paper,
we consider the more generalk-coverage (k ≥ 1) problem,
where each point should be within the sensing range ofk
or more sensors. Covering each point by multiple sensors is
desired for many applications, because it provides redundancy
and fault tolerance. Furthermore,k-coverage is necessary for
the proper functioning of many other applications, such as
intrusion detection [1], data gathering [2], and object tracking
[3].

When deployed sensors are dense, area coverage can be
approximated by point coverage. That is, if all sensor locations
are covered by the set of activated sensors, the entire area is
covered. In this paper, we address the problem of selecting the
minimum set of sensors to activate from an already deployed

set of sensors such that all locations arek-covered. Achieving
a minimal set of sensors is critical, because it reduces interfer-
ence among active sensors, reduces total energy consumption,
and thus prolongs the lifetime of the whole network.

The problem of selecting the minimum number of sensors,
however, is NP-hard [4].1 We propose an efficient approxima-
tion algorithm for it, which achieves a solution of size within
a logarithmic factor of the optimal and terminates quickly (in
the order of seconds in most cases). We show by simulation
that although the approximation factor is logarithmic, it is
only a worst-case upper bound and the solution size is close
to the optimal in most cases. We take a novel approach in
solving thek-coverage problem. In particular, we model the
problem as a set system for which an optimalhitting set
corresponds to an optimal solution for coverage. Finding the
optimal hitting set is NP-hard [6], but there is an efficient
approximation algorithm for it [7]. Ourk-coverage algorithm
is inspired by the approximation algorithm for the optimal
hitting set problem. We prove that our algorithm is correct
and analyze its complexity. We implement our algorithm
and compare it against other centralized algorithms in the
literature. Our comparison reveals that our algorithm is about
four orders of magnitude faster than the currently-knownk-
coverage algorithms.

A key feature of our centralizedk-algorithm is that it can
be implemented in a distributed manner with local information
and low message complexity. We design and implement a fully
distributed version of our algorithm. Our distributed algorithm
does not require sensors to know their locations. Comparison
with two other distributed algorithms in the literature indicates
that our algorithm: (i) converges much faster than the others,
(ii) activates near-optimal number of sensors, and (iii) signifi-
cantly prolongs (almost doubles) the network lifetime because
it consumes much less energy than the other algorithms.

The rest of the paper is organized as follows. In Section
II, we review previous works. In Section III, we present an
overview of thek-coverage problem and our solution ap-
proach. The details and analysis of ourk-coverage algorithms
are presented in Sections IV and V. We evaluate our algorithms
and compare them against others in Section VI. We conclude

1Note that this problem is different from the problem ofplacing sensors in
an area to cover it, which can be solved efficiently [5].

the paper in Section VII.

II. RELATED WORK

The closest work to ours are [4] and [8]. In [4], the
authors address the problem of selecting the minimum num-
ber of sensors to activate from a set of already deployed
sensors fork-coverage. They prove that the problem is NP-
hard since it is an extension of the dominating set problem
[6]. They formulate the problem and provide a centralized
approximation solution based on integer linear programming.
The algorithm works by relaxing the problem to ordinary
linear programming, where the variables may take real values.
They also design a distributed algorithms, PKA, which uses
pruning to reduce the number of active sensors. The work in
[8] presents a centralized algorithm that works by iteratively
adding a set of nodes which maximizes a measure calledk-
benefit to an initially empty set of nodes. The authors also
present a distributed algorithms, DPA, that works by pruning
unnecessary nodes. We compare our algorithms against the
algorithms in [4], [8].

III. T HE K-COVERAGE PROBLEM AND OUR SOLUTION

APPROACH

Problem 1 (k-Coverage Problem):Given n already de-
ployed sensors in a target area, and a desired coverage degree
k ≥ 1, select a minimal subset of sensors to cover all sensor
locations such that every location is within the sensing range of
at leask different sensors. It is assumed that the sensing range
of each sensor is a disk with radiusr, and sensor deployment
can follow any distribution.

The abovek-coverage problem is proved to be NP-hard by
reduction to the minimum dominating set problem in [4]. We
propose an efficient approximation algorithm for solving the
k-coverage problem. We start describing our solution approach
with the following definition [7].

Definition 1 (Set System and Hitting Set):A set system
(X,R) is composed of a setX and a collectionR of subsets
of X . We say thatH ⊆ X is a hitting set ifH has a non-
empty intersection with every element ofR, that is,∀R ∈ R
we haveR ∩ H 6= ∅.

Our solution does not require a grid deployment, and any
node deployment such as uniform or Poisson distribution can
be used. We defineX to be the set of all sensor locations.
Thus, we have|X | = n. We define the collectionR as follows.
For each pointp in X , we draw a circle of radiusr centered at
p. All points in X that fall within that circle constitute one set
in R. Fig. 1(b) shows only three elements ofR that correspond
to the three highlighted pointsp1, p2, p3 in Fig. 1(a). Now
the minimum hitting set problem on(X,R) is to find the
minimum set of points inX that hit (intersect) all elements
(disks) of R. Fig. 1(c) shows a possible hitting set for the
three disks ofR shown in Fig. 1(b). The hitting set has two
pointsc1 and c2. If we considerc1 and c2 to be locations of
sensors, we will ensure that pointsp1, p2 andp3 are1-covered,
because each of them is within the sensing range of at least
one of the sensors located atc1 andc2, as shown in Fig. 1(c).

For k-coverage, elements in the hitting set are not locations
for individual sensors. Rather, each element in the hittingset
is a center of what we call ak-flower, which is a set ofk
sensors that all intersect at that center point. Fig. 1(d) shows
one3-flower centered at pointc that 3-covers pointp3. Details
of constructingk-flowers are discussed in Section IV. Thek-
coverage problem now reduces to finding a minimum hitting
set where elements in that set are the centers ofk-flowers.
Since finding the minimum hitting set is NP-hard, we try to
find a near optimal hitting set. We propose an approximation
algorithm that uses the concept ofǫ-nets [9], which is defined
as follows.

Definition 2 (ǫ-Net): Let 0 < ǫ ≤ 1 be a constant. The set
N ⊆ X is called anǫ-net for the set system(X,R) if N has a
non-empty intersection with every element ofR of size greater
than or equal toǫ|X |, that is,∀R ∈ R such that|R| ≥ ǫ|X |
we haveR ∩ N 6= ∅.

The definition ofǫ-net is similar to that of the hitting set,
except that theǫ-net is required to hit onlylarge elements
of R (ones that are greater than or equal toǫ|X |), while
the hitting set must hit every element ofR. This similarity
is exploited by our approximation algorithm to find a near
optimal hitting by finding ǫ-nets of increasing sizes (i.e.,
decreasingǫ) till one of them hits all elements ofR. For
this to work, we clearly need to efficiently: (i) computeǫ-
nets, and (ii) verify coverage. We use a simple verifier that
checks all points inO(n) steps. Computingǫ-nets can be
done efficiently for set systems with finite VC-dimensions
(defined in [9]). Specifically, Haussler and Welzl [9] show
that for any set system(X,R) with a finite VC-dimensiond,
randomly samplingm ≥ max

(
4

ǫ
log 2

δ
, 8d

ǫ
log 8d

ǫ

)
points of

X constitutes anǫ-net with a probability at least1− δ, where
0 < δ < 1. Notice thatm does not depend on the size of
X , which allowsX to be arbitrarily large with no effect on
the size of theǫ-net. Brönnimann and Goodrich [7] further
extend the concept ofǫ-net by assigningweightsto elements
of X . Weights accelerate the process of finding a near optimal
hitting set, and help in establishing an upper bound on its size,
as we discuss in Section IV.

The VC-dimension of our set system is proved to be3 by
the following lemma. Due to space limitation, the proof is
given in [10].

Lemma 1:Consider the set system(X,R), whereX is the
set of points, andR contains a disk of radiusr for each point
in X . This set system has a VC-dimension of 3.

To summarize, we model thek-coverage problem as a set
system(X,R) whereX is the set of sensor locations andR is
the collection of subsets ofX created by intersecting disks of
radiusr with points ofX . This set system has a VC-dimension
of 3, therefore, we can efficiently implement anet-finder
algorithm to findǫ-nets of various sizes. Our approximation
algorithm for thek-coverage problem employs the net-finder
to computeǫ-nets of increasing sizes, and for eachǫ-net it
verifies the coverage until all points are sufficiently covered.
We assign weights to points ofX to guarantee termination
and to bound the approximation factor of the output solution.

p3

p2

p1

(a)

p2

p1

p3

(b)

p3

p2

p1

c1

c2

(c)

c

p3

(d)

Fig. 1. Modeling thek-coverage problem as a set system(X,R). (a) shows the set of points which constituteX. (b) shows only three subsets ofR that
are associated with the three highlighted points in (a). (c)shows a hitting set{c1, c2} that 1-covers the three subsets in (b). (d) shows one3-flower that
3-covers only one subset inR.

Finally, each element in the output represents the center of
what we call ak-flower, which is a set ofk sensors that all
intersect at that center point and should be activated fork-
coverage.

IV. CENTRALIZED K-COVERAGE ALGORITHM

The pseudo code of thek-coverage algorithm, which we call
RKC (Randomizedk-Coverage algorithm), is given in Fig. 2.
The algorithm takes as input the set of sensor locationsX ,
sensing range of sensorsr, and required degree of coverage
k. If the algorithm succeeds, it will return a subset of nodes
to activate in order to ensurek-coverage. The algorithm may
only fail if activating all sensors is not enough fork-coverage
because of low density. The minimum required density can be
calculated as follows. If every point is to bek-covered, it has
to be in the sensing range of at leastk sensors. Thus, for each
nodep, there should be at leastk other nodes inside a disk of
radiusr centered atp.

In every single iteration of the while loop, the algorithm
tries up to4c log(n/c) 1

c
–nets one at a time (the for loop in

lines 5–11). Each1
c
–net is computed by the net-finder (Section

IV-A), and hits all disks with weight greater than or equal to
1

c
|X |. For each net, the verifier checks whether this net is

a hitting set, i.e., it completelyk-covers all points. We use
a simple verifier that checks all points inO(n) steps.2 If a
net is a hitting set, the algorithm returns it and terminates.
Otherwise, the algorithm doubles the weight of a point that
was under covered by that net. Then, the algorithm chooses
another1

c
–net. Points with increased weights will have higher

probability of being included in the new net. The size of each
returned 1

c
–net is O(c log c) (see the description of the net-

finder algorithm for details). The reason behind trying up to
4c log(n/c) nets is that a result (Lemma 3.4) in [7] states that
if there is a hitting set of sizec, the weight doubling process
cannot iterate more than4c log(n/c) times. This also means
if we iterate beyond4c log(n/c) without finding a hitting set,
it is guaranteed that there is no hitting set of sizec [7]. This

2Asymptotically more efficient verifiers are possible to design using order-k
Voronoi diagrams [11]. However, these verifiers are complexto implement in
practice, and the performance gain is not significant due to the large constants
in the time complexity.

helps us to establish the following bound on the number of
sensors required to achievek-coverage.

Lemma 2:The solution returned by thek-coverage algo-
rithm is no more than a logarithmic factor of the optimal
number of sensors required tok-cover all sensor locations.

Proof: Suppose that the algorithm terminates withc and
the optimal number of nodes required fork-coverage isN̂ ≤ c.
This means that the algorithm has failed to find a solution for
c/2. Since the algorithm iterated4(c/2) log(n/(c/2)) times,
doubling weights of uncovered points in each iteration, then
by Lemma 3.4 in [7], there is no hitting set of sizec/2. That
is, we must havêN > c/2. Therefore, we havec < 2N̂ . Since
the size of the1

c
-net isO(c log c), the size of the solution is

O(N̂ log N̂).
Notice that the analysis in the above lemma is not tight.

Our simulation results (Section VI) show that the upper bound
in this lemma is indeed very conservative, and our algorithm
produces solution sizes that are a constant factor from the
optimal in most cases.

Next, we prove the time complexity of the algorithm in the
following lemma, the proof is given in [10].

Lemma 3:The k-coverage algorithm terminates in time
O(n log n(TF +TV)), whereTF andTV are the running times
of the net-finder and verifier algorithms, respectively.

A. The Net-Finder Algorithm

The idea of the net-finder algorithm is based on Corollary
3.8 in [9], which states that randomly selecting at least
max

(
4

ǫ
log 2

δ
, 24

ǫ
log 24

ǫ

)
points of the setX yields anǫ-net

with a probability at least1 − δ, where0 < δ < 1. Selecting
an arbitrary smallδ yields anǫ-net with probability almost1.

Let the termnet-size(ǫ) denote the number ofk-flowers in
theǫ-net. The net-finder algorithm iterates fornet-size(ǫ) steps,
and in every iteration, selects a random pointq biased based on
the weights. Then it finds ak-flower centered atq and adds it to
the net. Any point q is selected with probabilityw(q)/w(X),
wherew is a function which assigns weights to points. The
weight of a set is the summation of weights of all points in
that set. After the center pointq of thek-flower is selected,k
other pointsp1, . . . , pk are selected uniformly inside a disk of
radiusr centered atq. The location of each of these points is

Randomized K-Coverage: RKC(X, r, k)

1. c = 1; // sets the initial size ofǫ-net
2. while (net-size(1

c
) ≤ n) do

3. set weights of all points to1;
4. ǫ = 1/c;
5. for i = 1 to 4c log n

c

6. N = net-finder(X, k, ǫ, r);
7. u = verifier (X, N, k, r);
8. if (u == null)
9. returnN ;
10. else
11. double weight ofu;
12. c = 2 × c;
13. return ∅;

Fig. 2. A centralized approximation algorithm for thek-coverage problem.

given by:pi = (xq + di cos θi, yq + di sin θi), wherexq and
yq are coordinates ofq, andθi anddi are selected at random
from [0, 2π] and [0, r], respectively.

The following lemma provides the time complexity of the
net-finder algorithm and the size of the net returned [10].

Lemma 4:The algorithm net-finder terminates in
O(n log n) steps and returns anǫ-net of sizeO(1

ǫ
log 1

ǫ
).

Remark: A more efficient net-finder algorithm, i.e., one
that returns anǫ-net of sizeO(1

ǫ
), is possible to design [12].

However, the constant in this linear bound is quite high.
Moreover, the algorithm involves triangulation which requires
sensors to be aware of their locations, and more importantly,
it is not clear how the algorithm can be implemented in a
distributed manner. Therefore, although the efficient net-finder
in [12] would make our RKC algorithm produce a solution
that is a constant factor from the optimal, we opt to use the
simpler net-finder algorithm because it can be implemented in
a distributed manner, and it produces near-optimal resultson
the average, as shown by our simulations in Section VI.

B. Algorithm Correctness and Complexity

The following theorem proves that our algorithm is correct,
provides its time complexity, and proves the upper bound on
the solution.

Theorem 1:The k-coverage algorithm (RKC) in Fig. 2
ensures that every point in the area isk-covered, terminates
in O(n2 log2 n) steps, and returns a solution of size at most
O(N̂ log N̂), where N̂ is the minimum number of sensors
required fork-coverage.

Proof: Suppose that the algorithm terminates by provid-
ing a setS of sensor locations. By construction, this set of
points is guaranteed to hit every disk of radiusr. Since for
our set system(X,R), we put a disk inR for each point
p ∈ X , there should be at least one element (i.e., ak-flower)
in S that hits the disk centered atp. In addition, the center of
each sensor in thek-flower is within a distancer from p (see
Section IV-A for details on constructingk-flowers). Therefore,

p is k-covered by sensors of thisk-flower. Hence, all points
arek-covered by sensors inS.

The time complexity follows from Lemmas 3, and 4, and
by using a simple verifier that checks alln points in O(n)
steps. The bound on the solutions size follows from Lemma
2.

V. DRKC: DISTRIBUTED RANDOMIZED K-COVERAGE

ALGORITHM

In the previous section, we presented a centralized algorithm
for thek-coverage problem. A key feature of this algorithm is
that it does not rely heavily on global information. Therefore,
it can be implemented in a distributed manner.

Our centralizedk-coverage algorithm (shown in Fig. 2)
maintains two global variables: the size of the currentǫ-net,
and weights of all points. At every iteration of the outer loop,
the size of theǫ-net is doubled, and at every iteration of the
inner loop, the weight of one under-covered node is doubled.
The basic idea of our distributed algorithm, which we call
DRKC (Distributed Randomizedk-Coverage algorithm), is to
emulate the centralized algorithm by keepinglocal estimates
for these two global variables.

Estimating the currentǫ-net size and the total weight in the
network allows a node to decide (locally) whether it should
be a member of theǫ-net.If a node decides to be part of the
ǫ-net, it will activatek other nodes to create ak-flower as
in the centralized algorithm by broadcasting an ACTIVATE
message to its neighbors. When a node receives an ACTIVATE
message, it becomes active and broadcasts a NOTIFY message
informing all its neighbors that it has become active.

Finally, k-coverage verification in the centralized algorithm
is done by checking all nodes one by one. In the distributed
algorithm, each node independently checks its own coverage
by listening to NOTIFY messages exchanged in its neighbor-
hood, and counting number of active nodes. A node terminates
the algorithm if it is sufficiently covered. Otherwise, it doubles
its weight, and starts another loop iteration. A node may also
terminate the algorithm if it has been looping forlog n steps
without getting sufficiently covered, which can occur because
of low node density.

In the following theorem, we provide the average- and
worst-case communication complexities of the DRKC proto-
col. The proof as well as detailed description of DRKC are
given in [10].

Theorem 2:The number of messages sent by a node in any
round of the DRKC protocol isO(log n) in the worst case,
andO(1) on average.

VI. PERFORMANCEEVALUATION

Due to space limitation, we present only a sample of our
results. More details and plots are given in [10]. We first
compare the output size of our RKC algorithm against the
asymptotic necessary and sufficient conditions fork-coverage
proved in [2] for uniformly deployed sensors. We use a large
area of size1000m × 1000m with 30, 000 deployed sensors
and vary the sensing ranger. The results fork = 4 are

30 40 50 60 70
0

2000

4000

6000

8000

10000

Sensing range, r (meters)

N
um

be
r

of
 a

ct
iv

e
se

ns
or

s

Nec_cond
RKC
Suf_cond

Fig. 3. Efficiency of our centralizedk-coverage algorithm (RKC). The figure
compares the number of active sensors produced by our RKC algorithm versus
the necessary (Neccond) and sufficient (Sufcond) conditions proved in [2].

shown in Fig. 3, where Neccond and Suffcond denote the
necessary and sufficient conditions, respectively. The figure
shows that our algorithm does not unnecessarily activate
too many sensors, because its output is very close to the
necessary condition. The results of this experiment show that
the worst-case logarithmic factor proved in Theorem 1 is
very conservative, and on average our centralized algorithm
produces near-optimal number of active sensors.

Next, we compare our centralized RKC algorithm against
two other centralizedk-coverage algorithms: CKC [8] and
LPA [4]. Simulation results show that our centralized RKC
algorithm runs up to four orders of magnitude faster, while
producing same or better solution sizes than the other algo-
rithms [10].

Now, we compare our distributed DRKC algorithm against
two other distributedk-coverage algorithms: DPA [8] and PKA
[4] along various performance metrics. The results indicate
that the DRKC algorithm converges much faster than the other
two algorithms and always results in much smaller numbers
of activated sensors [10].

Finally, we look at the lifetime of the sensor network under
different distributed algorithms. we compare the percentage of
alive sensors as the time progresses for the three algorithms.
As Fig. 4 indicates, our algorithm prolongs (almost doubles)
the lifetime of the network, because it consumes much smaller
amount of energy than the other two algorithms [10].

VII. CONCLUSIONS

In this paper, we presented a novel approach to solve thek-
coverage problem in large-scale sensor networks. We modeled
the k-coverage problem as a set system for which an optimal
hitting set corresponds to an optimal solution fork-coverage.
We proposed an approximation algorithm for computing near-
optimal hitting sets efficiently. We proved that our algorithm
produces a solution that is at most a logarithmic factor from
the optimal. Furthermore, we showed through simulation that
the logarithmic factor is only a conservative upper bound,

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

0

20

40

60

80

100

Time (sec)

P
er

ce
nt

ga
e

of
 a

liv
e

se
ns

or
s

DRKC
DPA
PKA

Fig. 4. Comparing the network lifetime under different distributedk-coverage
algorithms.

and the solution is typically close to the optimal in most
cases. We compared our algorithm against the currently-known
k-coverage algorithms and showed that it runs up to four
orders of magnitude faster, while producing same or better
solution sizes than the other algorithms. We also designed and
implemented a fully distributed version of our algorithm that
uses only local information. Our distributed algorithm haslow
message complexity and it does not require sensors to know
their locations.

REFERENCES

[1] D. Mehta, M. Lopez, and L. Lin, “Optimal coverage paths inad-
hoc sensor networks,” inProc. of IEEE International Conference on
Communications (ICC’03), May 2003.

[2] S. Kumar, T. H. Lai, and J. Balogh, “On k-coverage in a mostly
sleeping sensor network,” inProc. of ACM International Conference
on Mobile Computing and Networking (MOBICOM’04), Philadelphia,
PA, September 2004, pp. 144–158.

[3] D. Hall and J. Llinas,Handbook of Multisensor Data Fusion. CRC
Press, 2001.

[4] S. Yang, F. Dai, M. Cardei, and J. Wu, “On connected multiple point
coverage in wireless sensor networks,”Journal of Wireless Information
Networks, May 2006.

[5] R. Iyengar, K. Kar, and S. Banerjee, “Low-coordination topologies for
redundancy in sensor networks,” inProc. of ACM Mobihoc’05, Urbana-
Champaign, IL, May 2005.

[6] M. Garey and D. Johnson,Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman, 1979.

[7] H. Bronnimann and M. Goodrich, “Almost optimal set covers in finite
VC-dimension,”Discrete and Computational Geometry, vol. 14, no. 4,
April 1995.

[8] Z. Zhou, S. Das, and H. Gupta, “Connected k-coverage problem in
sensor networks,” inProc. of International Conference on Computer
Communications and Networks (ICCCN’04), Chicago, IL, October 2004.

[9] D. Haussler and E. Welzl, “Epsilon-nets and simplex range queries,”
Discrete and Computational Geometry, vol. 2, no. 1, December 1987.

[10] M. Hefeeda and M. Bagheri, “Efficient k-coverage algorithms for
wireless sensor networks,” School of Computing Science, Simon Fraser
University, Tech. Rep. TR 2006-22, September 2006.

[11] A. So and Y. Ye, “On solving coverage problems in a wireless sensor
network using voronoi diagrams,” inProc. of Workshop on Internet and
Network Economics (WINE’05), Hong Kong, December 2005.

[12] J. Matousek, R. Seidel, and E. Welzl, “How to net a lot with little:
Small ǫ-nets for disks and halfspaces,” inProc. of the 6th Annual ACM
Symposium on Computational Geometry (SoCG’90), Berkeley, CA, June
1990.

