
Modeling and Caching of Peer-to-Peer Traffic
Osama Saleh

School of Computing Science
Simon Fraser University

Surrey, BC, Canada

Mohamed Hefeeda
School of Computing Science

Simon Fraser University
Surrey, BC, Canada

Abstract— Peer-to-peer (P2P) file sharing systems generate
a major portion of the Internet traffic, and this portion is
expected to increase in the future. We explore the potentialof
deploying proxy caches in different Autonomous Systems (ASes)
with the goal of reducing the cost incurred by Internet service
providers and alleviating the load on the Internet backbone. We
conduct a measurement study to model the popularity of P2P
objects in different ASes. Our study shows that the popularity of
P2P objects can be modeled by a Mandelbrot-Zipf distribution,
regardless of the AS. Guided by our findings, we develop a
novel caching algorithm for P2P traffic that is based on object
segmentation, and partial admission and eviction of objects. Our
trace-based simulations show that with a relatively small cache
size, less than 10% of the total traffic, a byte hit rate of up
to 35% can be achieved by our algorithm, which is close to
the byte hit rate achieved by an off-line optimal algorithm with
complete knowledge of future requests. Our results also show
that our algorithm achieves a byte hit rate that is at least 40%
more, and at most triple, the byte hit rate of the common web
caching algorithms. Furthermore, our algorithm is robust in face
of aborted downloads, which is a common case in P2P systems.

I. I NTRODUCTION

Peer-to-peer (P2P) file-sharing systems have gained tremen-
dous popularity in the past few years. More users are contin-
ually joining such systems and more objects are being made
available, enticing even more users to join. Currently, traffic
generated by P2P systems accounts for a major fraction of the
Internet traffic [1], and it is expected to increase [2]. The sheer
volume and expected high growth of P2P traffic have negative
consequences, including: (i) significantly increased loadon the
Internet backbone, hence, higher chances of congestion; and
(ii) increased cost on Internet Service Providers (ISPs) [3],
hence, higher service charges for all Internet users. A potential
solution for alleviating those negative impacts is tocachea
fraction of the P2P traffic such that future requests for the
same objects could be served from a cache in the requestor’s
autonomous system (AS).

Caching in the Internet has mainly been considered for web
and video streaming traffic, with little attention to the P2P
traffic. Many caching algorithms for web traffic [4] and for
video streaming systems [5] have been proposed and analyzed.
Directly applying such algorithms to cache P2P traffic may
not yield the best cache performance, because of the different
traffic characteristics and caching objectives. For instance,
reducing user-perceived access latency is a key objective for
web caches. Consequently, web caching algorithms often in-
corporate information about the cost (latency) of a cache miss

when deciding which object to cache/evict. Although latency
is important to P2P users, the goal of a P2P cache is often
focused on the ISP’s primary concern; namely, the amount
of bandwidth consumed by large P2P transfers. Consequently,
byte hit rate, i.e., minimizing the number of bytes transfered, is
more important than latency. Moreover, P2P objects tend to be
larger than web objects [1] reducing the number of complete
objects that can be held in a cache.

Furthermore, although objects in P2P and video streaming
systems share some characteristics, e.g., immutability and
large size, streaming systems impose stringent timing require-
ments. These requirements limit the flexibility of caching
algorithms in choosing which segments to store in the cache.
Therefore, new caching algorithms that consider the new traffic
characteristics and system objectives need to be designed and
evaluated.

In this paper, we first develop a deeper understanding of the
P2P traffic characteristics that arerelevant to caching, such as
object popularity. We do that via a three-month measurement
study on a popular file-sharing system. Then, we design and
evaluate a novel P2P caching algorithm for object admission,
segmentation and replacement.

Specifically, our contributions can be summarized as fol-
lows. First, we develop new models for P2P traffic based on
our measurement study. We show that the popularity of P2P
objects can be modeled by a Mandelbrot-Zipf distribution,
which is a generalized form of Zipf-like distributions with
an extra parameter. This extra parameter captures the flattened
head nature of the popularity distribution observed near the
lowest ranked objects in our traces. The flattened head nature
has also been observed by a previous study [1], but no specific
distribution was given. Second, we analyze the impact of the
Mandelbrot-Zipf popularity model on caching and show that
relying on object popularity alone may not yield high hit
rates/byte hit rates. Third, we design a new caching algorithm
for P2P traffic that is based on segmentation, partial admission
and eviction of objects.

We perform trace-based simulations to evaluate the perfor-
mance of our algorithm and compare it against common web
caching algorithms, such as LRU, LFU and GDS [6], and a
recent caching algorithm proposed for P2P systems [7]. Our
results show that with a relatively small cache size, less than
10% of the total traffic, a byte hit rate of up to 35% can
be achieved by our algorithm, which is close to the byte hit
rate achieved by an off-line optimal algorithm with complete

2491-4244-0593-9/06/$20.00 ©2006 IEEE

knowledge of future requests. Our results also show that our
algorithm achieves a byte hit rate that is at least 40% more,
and at most triple, the byte hit rate of the common web caching
algorithms.

The rest of this paper is organized as follows. In Section II,
we summarize the related work. Section III describes our mea-
surement study, presents a new model for object popularity,
and analyzes the effect of this model on cache performance.
Our P2P caching algorithm is described in Section IV. We
evaluate the performance of our algorithm using trace-based
simulation in Section V. Section VI concludes the paper.

II. RELATED WORK

We first summarize previous P2P measurement studies,
justifying the need for a new study. Then, we contrast our
caching algorithm with other P2P, web and multimedia caching
algorithms.

Several measurement studies have analyzed various as-
pects of P2P systems. Gummadi et al. [1] study the object
characteristics of P2P traffic in Kazaa and show that P2P
objects are mainly immutable, multimedia, large objects that
are downloaded at most once. The study demonstrates that the
popularity of P2P objects does not follow Zipf distribution,
which is usually used to model the popularity of web objects
[8]. The study provides a simulation method for generating
P2P traffic that mimics the observed popularity curve, but it
does not provide any closed-form models for it. Sen and Wang
[9] study the aggregate properties of P2P traffic in a large-
scale ISP, and confirm that P2P traffic does not obey Zipf
distribution. Their observations also show that few clients are
responsible for most of the traffic. Klemm et al. [10] use two
Zipf-like distributions to model query popularity in Gnutella.
Because the authors are mainly interested in query popularity,
they do not measure object popularity as defined by actual
object transfers.

While these measurement studies provide useful insights
on P2P systems, they were not explicitly designed to study
caching P2P traffic. Therefore, they did not focus on analyzing
the impact of P2P traffic characteristics on caching. The study
in [1] highlighted the potential of caching and briefly studied
the impact of traffic characteristics on caching. But the study
was performed in only one network domain.

The importance and feasibility of caching P2P traffic have
been shown in [11] and [3]. The study in [11] indicates that
P2P traffic is highly repetitive and responds well to caching.
Whereas the authors of [3] show that current P2P protocols
are not ISP-friendly, because they impose unnecessary traffic
on ISPs. The authors suggest deploying caches or making P2P
protocols locality-aware. Both [11] and [3] do not provide any
algorithm for caching.

The closest work to ours is [7], where two cache replace-
ment policies for P2P traffic are proposed. These two policies
are: MINRS (Minimum Relative Size), which evicts the object
with the least cached fraction, and LSB (Least Sent Byte),
which evicts the object which has served the least number
of bytes from the cache. Our simulation results show that

our algorithm outperforms LSB, which is better than MINRS
according to the results in [7].

Partial and popularity-based caching schemes for web
caching, e.g., [12], and video streaming, e.g., [13], [14]
have been proposed before. [12] proposes a popularity-aware
greedy-dual size algorithm for caching web traffic. Becausethe
algorithm focuses on web objects, it does not consider partial
caching, which is critical for P2P caching due to large sizes
of objects. Jin et al. [13] consider partial caching based on
object popularity, encoding bit rate, and available bandwidth
between clients and servers. Their objectives are to minimize
average start-up delays and to enhance stream quality. In
contrast, our partial caching approach is based on the number
of bytes served from each object normalized by its cached size.
This achieves our objective of maximizing the byte hit rate
without paying much attention to latency. A partial caching
algorithm for video-on-demand systems is proposed in [14],
where the cached fraction of a stream is proportional to the
number of bytes played back by all clients from that stream
in a time slot. Unlike our algorithm, the algorithm in [14]
periodically updates the fractions ofall cached streams, which
adds significant overhead on the cache.

Finally, our caching algorithm is designed for P2P systems,
which contain multiple workloads corresponding to various
types of objects. This is in contrast to the previous web and
streaming caching algorithms which are typically optimized
for only one workload.

III. M ODELING P2P TRAFFIC

We are interested in deploying caches in different au-
tonomous systems (ASes) to reduce the WAN traffic imposed
by P2P systems. Thus, our measurement study focuses on
measuring the characteristics of P2P traffic that would be
observed by theseindividual caches, and would impact their
performance. Such characteristics include object popularity,
and number of P2P clients per AS. We measure such char-
acteristics in several ASes of various sizes. In this section,
we describe our measurement methodology and present our
findings.

A. Measurement Methodology

We conduct apassivemeasurement study of the Gnutella
file-sharing network [15]. For the purposes of our measure-
ment, we modify a popular Gnutella client called Limewire
[16]. We choose to conduct our measurement on Gnutella
because (i) it supports the super-peer architecture which facil-
itates non-intrusive passive measurements by observing traffic
passing through super peers; and (ii) it is easier to modify
since it is an open source protocol.

Previous studies show that Gnutella is similar to other P2P
systems. For example, early studies on the fully-distributed
Gnutella and the index-based Napster systems found that
clients and objects in both systems exhibit very similar
characteristics such as the number of files shared, session
duration, availability and host uptime [17]. Another studyon
BitTorrent [18] made similar observations regarding object

250

characteristics and host uptime. Also the non-Zipf behavior
of object popularity in Gnutella (as we show later) has been
observed before in Kazaa [1]. Therefore, we believe that
the Gnutella traffic collected and analyzed in our study is
representative of P2P traffic in general.

According to the Gnutella protocol specifications peers
exchange several types of messages including PING, PONG,
QUERY and QUERYHIT. A QUERY message contains search
keywords, a TTL field and the address of the immediate
neighbor which forwarded the message to the current peer.
Query messages are propagated to all neighbors in the overlay
for a hop distance specified by the TTL field. A typical
value for TTL is seven hops. If a peer has one or more of
the requested files, it replies with a QUERYHIT message.
A QUERYHIT message is routed on the reverse path of the
QUERY message it is responding to, and it contains the name
and the URN (uniform resource name) of the file, the IP
address of the responding peer, and file size. Upon receiving
replies from several peers, the querying peer chooses a set of
peers and establishes direct connections with them to retrieve
the requested file.

Limewire has two kinds of peers:ultra-peers, characterized
by high bandwidth and long connection periods, andleaf-
peers which are ordinary peers that only connect to ultra-
peers. We run our measurement node in an ultra-peer mode
and allow it to maintain up to 500 simultaneous connections
to other Gnutella peers. On average, our measurement node
was connected to 279 nodes, 63% of which were ultra peers.
Our measurement node passively recorded the contents of all
QUERY and QUERYHIT messages passing through it without
injecting any traffic into the network.

The measurement study was conducted between 16 January
2006 and 16 April 2006. Our measurement peer was located
at Simon Fraser University, Canada. But since the Gnutella
protocol does not favor nodes based on their geographic
locations [10], we were able to observe peers from many ASes
across the globe. During the three months of the measurement,
we recorded more than 214 million QUERY messages and
107 million QUERYHIT messages issued from more than
20 million peers distributed over more than 16 thousand
different ASes. Table I shows the number of objects and
hosts discovered in several ASes. The large scale of our
measurement study enables us to draw solid conclusions about
P2P traffic. The measurement data is stored in several trace
files with a total size of approximately 20 giga bytes. The trace
files are available to the research community at [19].

B. Measuring and Modeling Object Popularity

In this subsection, we explain how we measure object
popularity in different ASes. Then, we present and validate
a simple, and fairly accurate, popularity model for objectsin
P2P systems.

The relative popularity of an object is defined as the
probability of requesting that object relative to other objects.
Object popularity is critical for the performance of the cache.
Intuitively, storing the most popular objects in the cache is

expected to yield higher hit rates than storing any other setof
objects.

Since we are primarily interested in the performance of
individual caches, we measure the popularity of objects in
eachAS. To measure the popularity of an object in a specific
AS, we count the number of replicas of that object in the
AS considered. Number of replicas indicates the number of
downloads that were completed in the past. This means that if
a cache were deployed, it would have seen a similar number
of requests. This assumes that most of the downloads were
supplied by peers from outside the AS, which is actually the
case because peers in most current P2P networks have no sense
of network proximity and thus do not favor local peers over
non-local peers. In fact, previous studies [1] have shown that
up to 86% of the requested P2P objects were downloaded from
peers outside the local network even though they were locally
available.

To count the number of replicas of a given object, we extract
from our trace all QUERYHIT messages which contain the
unique ID (URN) of that object. QUERYHIT messages contain
the IP addresses of the responding nodes that have copies of
the requested object. We can determine the number of replicas
by counting the number of unique IP addresses. Then, we map
these unique IP addresses to their corresponding ASes by using
the GeoIP database [20].

We compute the popularity of each object in each of the
top 16 ASes (in terms of sending and receiving messages).
These top 16 ASes contribute around 38% of the total traffic
seen by our study. We also compute the popularity across all
ASes combined. We rank objects based on their popularity,
and we plot popularity versus rank. Fig. 1 shows a sample of
our results. Results for other ASes are similar and are given
in the technical report [21]. As shown in the figure, there is
a flattenedhead in the popularity curve of P2P objects. This
flattened head indicates that objects at the lowest ranks are
not as popular as Zipf-like distributions would predict. This
flattened head phenomenon could be attributed to two main
characteristics of objects in P2P systems: immutability and
large sizes. The immutability of P2P objects eliminates the
need for a user to download an object more than once. This
download at most once behavior has also been observed in
previous studies [1]. The large size of objects, and therefore
the long time to download, may make users download only
objects that they are really interested in. This is in contrast to
web objects, which take much shorter times to download, and
therefore, users may download web objects even if they are
of marginal interest to them. These two characteristics reduce
the total number of requests for popular objects.

Fig. 1 also shows that, unlike the case for web objects [8],
using a Zipf-like distribution to model the popularity of P2P
objects would result in a significant error. In log-log scale,
the Zipf-like distribution appears as a straight line, which can
reasonably fit most of the popularity distribution except the
left-most part, i.e., the flattened head. A Zipf-like distribution
would greatly overestimate the popularity of objects at the
lowest ranks. These objects are the most important to caching

251

(a) AS 11803 (b) AS 1403 (c) AS 1161

(d) AS 95 (e) AS 14832 (f) All ASes

Fig. 1. Object popularity in P2P traffic can be modeled by Mandelbrot-Zipf Distribution.

mechanisms, because they are the good candidates to be stored
in the cache.

We propose a new model that captures the flattened head
of the popularity distribution of objects in P2P systems. Our
model uses the Mandelbrot-Zipf distribution [22], which isthe
general form of Zipf-like distributions. The Mandelbrot-Zipf
distribution defines the probability of accessing an objectat
rank i out of N available objects as:

p(i) =
K

(i + q)α
, (1)

whereK =
∑N

i=1
1/(i + q)α, α is the skewness factor, and

q ≥ 0 is a parameter which we call theplateau factor. q is
so called because it is the reason behind the plateau shape
near to the left-most part of the distribution. Notice that the
higher the value ofq, the more flattened the head of the
distribution will be. Whenq = 0, Mandelbrot-Zipf distribution
degenerates to a Zipf-like distribution with a skewness factor
α. Fig. 2 compares Zipf distribution versus Mandelbrot-Zipf
distribution for differentq values. Notice that, there is about
an order of magnitude difference in frequency between the
two distributions at the lowest ranks.

To validate this popularity model, we fit the popularity dis-
tributions of objects in each of the top 16 ASes to Mandelbrot-
Zipf distribution using the Matlab distribution fitting tool.
Our results, some of them are shown in Fig. 1, indicate that
Mandelbrot-Zipf distribution models the popularity of P2P
objects reasonably well. Table I summarizesα andq values for
eight representative ASes. We observe that a typical value for

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

Rank

F
re

qu
en

cy

Zipf (1)
MZipf(1, 20)
MZipf(1, 50)
MZipf(1, 100)

Fig. 2. Zipf versus Mandelbrot-Zipf for differentq (plateau factor) values.

α is between 0.4 and 0.70, and a typical value forq is between
5 and60. By inspecting our traces, we found that ASes with
higher number of clients usually have smaller values forq. For
example, in Table I, AS 9548 has 464,511 seen in our trace
and it has a smallq value (q = 5). On the other hand, AS 95
has much smaller number of clients, 6,121, and a higher value
of q (q = 50). This is intuitive because the number of clients
is an upper bound on the number of times an object could be
downloaded.

C. The Effect of Mandelbrot-Zipf Popularity on Caching

In this subsection, we analyze the impact of the Mandelbrot-
Zipf popularity model on the cache hit rate and byte hit rate
using simple analysis and simulation.

252

20 40 60 80 100
0

5

10

15

20

25

30

35

40

Relative Cache Size (%)

R
e

la
ti
v
e

 B
y
te

 H
it
 R

a
te

 L
o

s
s
 (

%
)

q = 100
q = 60
q = 25
q = 5

(a) Hit rate loss under LFU (analytic).

0 10 20 30 40 50 60 70
0

20

40

60

80

100

Relative Cache Size (%)

H

it
 R

a
te

 (
%

)

Zipf(1.0)
MZipf(1,25)
MZipf(1,60)

(b) Hit rate under LRU (simulation).

0 200 400 600 800 1000
0

5

10

15

20

25

30

35

Cache Size (GB)

B
y
te

 H
it
 R

a
te

 (
%

)

AS397
AS14832

MZipf(0.62,8)

MZipf(0.6,55)

(c) Byte hit rate under optimal (trace-based).

Fig. 3. Effect of Mandelbrot-Zipf popularity distributionon the cache performance.

TABLE I

OBJECT POPULARITY AND TRAFFIC CACHEABILITY IN SEVERALAS

DOMAINS.

AS No. number of number of MZipf % of cache-
unique IPs unique objects (α, q) able traffic

9548 464, 551 570, 122 (0.65, 5) 42.30
95 6, 121 87, 730 (0.6, 50) 54.47

2609 13, 958 181, 184 (0.55, 25) 54.75
397 368, 604 418, 263 (0.62, 8) 48.72
1161 1000 135, 921 (0.60, 40) 16.67
1859 437, 901 767, 890 (0.53, 10) 46.16
14832 515 46, 704 (0.60, 55) 95.34
18538 337 33, 198 (0.62, 60) 93.74

We start with a simple analysis of an LFU (Least Frequently
Used) policy. Under LFU, theC most popular objects are
stored in the cache. For simplicity, we assume that all objects
have the same size and the skewness parameterα is 1. We are
mainly interested in exploring the impact of the plateau factor
q on the hit rate. The hit rateH of an LFU cache is given by:

H =

C∑

i=1

p(i) =

C∑

i=1

K

(i + q)

≈

∫ C

i=1

K

(i + q)
= K ln

(
1 + C/q

1 + 1/q

)

. (2)

Eq. (2) implies that increasingq results in a decrease in hit rate.
Whenq → ∞, i.e., the head is very flat, the hit rate approaches
zero. In contrast, for a Zipf-like popularity distribution(q =
0), the hit rate isH = K ln C. To further illustrate the
impact of Mandelbrot-Zipf on the cache performance, we plot
in Fig. 3(a) therelative loss in hit rate between Zipf and
Mandelbrot-Zipf distributions. The relative loss in hit rate is
computed as(HZipf − HMZipf)/HZipf , whereHZipf and
HMZipf are the hit rates achieved by an LFU cache if the
popularity follows Zipf and Mandelbrot Zipf distributions,
respectively. As the figure shows, significant loss in hit rate
could be incurred because of the flattened-head nature of the
Mandelbrot-Zipf popularity distribution. The loss in hit rate is
higher for smaller relative cache sizes and larger values ofq.

Next, we consider an LRU (Least Recently Used) cache.
We use simulation to study the impact of the popularity model

on the hit rate. We generate synthetic traces as follows. We
consider4, 000 equal-sized objects. We randomly generate re-
quests for these objects according to the Zipf and Mandelbrot-
Zipf distributions. We run the traces through an LRU cache
with a relative cache size that varies between 0 and 100%. We
compute the hit rate in each case. The results are shown in
Fig. 3(b). As the figure indicates, the situation is even worse
under LRU: higher drops in hit rates are observed.

Finally we use traces from our measurement study and
compute the maximum achievable byte hit rate in two different
ASes. We pick two ASes from our traces with similarα values
but differentq values: AS 397 withq = 8 and AS 14832 with
q = 55. We use an optimal off-line algorithm which looks
at the trace of each AS and stores in the cache the objects
which will serve the most number of bytes, hence, achieves
the highest byte hit rate. We perform trace-based simulation
and compute the byte hit rate under various cache sizes for
both ASes. As can be seen from Fig. 3(c), with a cache size
of 400 GB, a byte hit rate of 24% is achieved under AS 397,
while only 9% byte hit rate is achieved under AS 14832 using
the same cache size. This means that the top popular objects
which can fit in a cache size of 400 GB receive 24% of the
total outgoing requests in AS 397, in comparison to 9% of the
total outgoing requests in AS 14832.

These observations and experiments imply that caching
schemes that capitalize on object popularityalone may not
yield high hit rates/byte hit rates and may not be very effective
in reducing the ever-growing P2P traffic.

IV. P2P CACHING ALGORITHM

With the understanding of the P2P traffic we developed, we
design and evaluate a novel P2P caching scheme based on
segmentation and partial caching. Partial caching is necessary
because objects in P2P systems are large, ranging from 20 KB
to 10 GB. Furthermore, P2P objects are composed of multiple
workloads, each workload corresponds to a different content
type (e.g., audio, video, documents), and occupies a subrange
of the total object size range. A detailed discussion on the
characteristics of P2P objects is given in the accompanying
technical report [21]. Moreover, because of the Mandelbrot-
Zipf popularity model, the most popular objects may not

253

receive too many requests. Thus storing an entire object upon
a request may waste cache space. P2P caching should take
a conservative approach towards admitting new objects into
the cache to reduce the cost of storing unpopular objects.
To achieve this objective, our algorithm divides objects into
smaller segments and incrementally admits more segments of
an object to the cache as the object receives more requests.

We use different segment sizes for different workloads,
because using the same segment size for all workloads may
favor some objects over others and introduce additional cache
management overhead. For example, if we use a small segment
size for all workloads, large objects will have large number
of segments. This introduces a high overhead of managing
large number of segments within each object. Such overhead
includes locating which segments of an object are cached,
and deciding which segments to evict. On the other hand,
using a large segment size for all workloads will favor smaller
objects since they will have smaller number of segments and
get cached quicker. Making segment size relative to object size
has the same two problems. This is because the range of P2P
object sizes extends to several gigabytes. Thus using relative
segmentation, as a percentage of an object size, may result
in large objects having segments that are orders of magnitude
larger than unsegmented smaller object.

Consistent with our observations of multiple workloads, we
use four different segment sizes. For objects with sizes less
than 10 MB, we use a segment size of 512 KB, for objects
between 10 MB and 100 MB, a segment size of 1 MB, and for
objects between 100 MB and 800 MB a segment size of 2 MB.
Objects whose size exceeds 800 MB are divided into segments
of 10 MB in size. We call this segmentation scheme variable
segmentation scheme. Note that our segmentation procedure
is inline with most segmentation schemes used by real P2P
systems. Our analysis of more than 50,000 unique torrent
files shows that the vast majority of BitTorrent objects are
segmented into 256 KB, 512 KB, 1 MB and 2 MB segments.
E-Donkey uses segments of size 9.28 MB [23]. Depending on
the client implementation, segment size in Gnutella can either
be a percentage of object size, as in BearShare [24], or fixed at
few hundred KBs [15]. We opt not to follow protocol-specific
segmentation scheme so as to make our algorithm independent
of the underlying P2P protocol. In addition, protocol-specific
segmentation scheme might not always be inline with the
objective of maximizing byte hit rate. This is confirmed by
our evaluation in Section V.

The basic idea of our algorithm is to cache of each object a
portion that is proportional to its popularity. That way popular
objects will be incrementally given more cache space than
unpopular objects. To achieve this goal, our algorithm caches
a constant portion of an object when it first sees that object.
As the object receives more hits, its cached size increases.The
rate at which the cached size increases grows with the number
of hits an object receives. The unit of admission into the cache
is one segment; that is the smallest granularity our algorithm
caches/evicts is one segment.

For each workload, the cache keeps the average object size

in that workload. Denote the average object size in workload
w as µw. Further letγi be the number of bytes served from
object i normalized by its cached size. That is,γi can be
considered as number of times each byte in this object has
been served from the cache. The cache ranks objects according
to their γ value, such that for objects ranked from1 to n,
γ1 ≥ γ2 ≥ γ3 ≥ · · · ≥ γn. We refer to an object at ranki
simply as objecti. When an object is seen for the first time,
only one segment of it is stored in the cache. If a request
arrives for an object of which at least one segment is cached,
the cache computes the number of segments to be added to this
object’s segments as(γi/γ1)µw, whereµw is the mean of the
object size in workloadw which objecti belongs to. Notice
that this is only the number of segments the cache could store
of object i. But since downloads can be aborted at any point
during the session, the number of segmentsactually cached
upon a request, denoted byk, is given by

k = min[missed, max(1,
γi

γ1

µw)] , (3)

wheremissed is the number of requested segments not in the
cache. This means that the cache will stop storing uncached
segments if the client fails or aborts the download, and that
the cache stores at least one segment of an object.

The pseudo-code of our P2P caching algorithm appears in
Fig. 4. At a high level, the algorithm works as follows. The
cache intercepts client requests and extracts the object IDand
the requested range. If no segments of the requested range
are in the cache, the cache stores at least one segment of
the requested range. If the entire requested range is cached,
the cache will serve it to the client. If the requested range is
partially available in the cache, the cache serves the cached
segments to the client, and decides how many of the missing
segments to be cached using Eq. (3). In all cases, the cache
updates the average object size of the workload to which the
object belongs and theγ values of the requested object.

request(object i, requested range)

1. if object i is not in the cache
2. add one segment of i to cache, evicting if necessary
3. else
4. hit = cached range ∩ requested range
5. γi += hit / cached size of i

6. missed = (requested range - hit)/segment size
7. k = min[missed , max(1,

γi

γ1

µw)]

8. if cache does not have space for k segments
9. evict k segments from the least valued object(s)
10. add k segments of object i to the cache
11. return

Fig. 4. P2P caching algorithm.

The algorithm uses a priority queue data structure to store
objects according to theirγi values. When performing eviction,
segments are deleted from the least valued objects. Currently,

254

our algorithm evicts contiguous segments without favoring
any segments over others. This is because P2P downloads are
likely to start from anywhere in the file [7]. Our algorithm
needs to performO(log N) comparisons with every hit or
miss, whereN is the number of objects in the cache. But
since objects are large, this is a reasonable cost considering
the small number of objects the cache will contain.

V. EVALUATION

In this section, we use trace-driven simulation to study the
performance of our P2P caching algorithm, and compare it
against three common web caching algorithms (LRU, LFU
and GDS) and a recent caching algorithm proposed for P2P
systems.

A. Experimental Setup

We use traces obtained from our measurement study to
conduct our experiments. Our objective is to study the ef-
fectiveness of deploying caches in several ASes. Thus, we
collect information about objects found in a certain AS and
measure the byte hit rate that could be achieved if a cache
were to be deployed in that AS. We use the byte hit rate as
the performance metric because we are mainly interested in
reducing the WAN traffic.

We run several AS traces through the cache and compare
the byte hit rate achieved using several caching algorithms. In
addition to our algorithm, we implement the Least Recently
Used (LRU), Least Frequently Used (LFU), Greedy-Dual Size
(GDS) [6] and Least Sent Bytes (LSB) [7] algorithms. We also
implement the off-line optimal (OPT) algorithm and use it as
a benchmark for the performance of other algorithms. LRU
capitalizes on the temporal correlation in requests, and thus
replaces the oldest object in the cache. LFU sorts objects based
on their access frequency and evicts the object with the least
frequency. GDS sorts objects based on a cost function and
recency of requests, and evicts the one with the least value.
We used object size as the cost function to allow GDS to
maximize byte hit rate as indicated by [6]. LSB is designed for
P2P traffic caching and it uses the number of transmitted bytes
of an object as a sorting key. Objects which have transmitted
the least amount of bytes will be evicted next. OPT looks at
the entire stream of requests off-line and caches the objects
that will serve the most number of bytes from the cache.

We measure the byte hit rate under several scenarios. First,
we consider the case when objects requested by peers are
downloaded entirely, that is, there are no aborted transactions.
Then, we consider the case when the downloading peers pre-
maturely terminate the downloads during the session, whichis
not uncommon in P2P systems. We also run our experiments
under the independent reference model, where entries of the
trace file are randomly shuffled to eliminate the effect of
temporal correlation. We do that to isolate and study the
effect of object popularity on caching. Finally, we run our
experiments on the original trace with preserved temporal
correlation between requests to study the combined effect of
temporal correlation and popularity.

In all experiments, we use the ASes which have the most
amount of traffic seen by our measurement node. This ensures
that we have enough traffic from an AS to evaluate the
effectiveness of deploying a cache for it.

B. Caching under Full Downloads

One of the main advantages of our caching policy is that
it effectively minimizes the impact of unpopular traffic by
admitting objects incrementally. Traditional policies usually
cache an entire object upon a miss, evicting other, perhaps
more popular, objects if necessary. This may waste cache space
by storing unpopular objects in the cache. To investigate the
impact of partial versus full caching, we, first, assume thatwe
have a no-failure scenario where peers download the object
entirely. We look at all objects found in an AS, line them up in
a randomly shuffled stream of requests and run them through
the cache. We vary the cache size between 0 and 1000 GB.

Fig. 5 shows the byte hit rate for two representative ASes
with different characteristics. These two ASes have different
maximum achievable byte hit rates, which is defined as the
fraction of traffic downloaded more than once, i.e., cacheable
traffic, over the total amount of traffic. As shown in the
figure, our policy outperforms other policies by as much as
200%. For instance, in AS397 (Fig. 5(a)) with a cache of
600 GB, our policy achieves a byte hit rate of 24%, which is
almost double the rate achieved by LRU, LFU, GDS, and LSB
policies. Moreover, the byte hit rate achieved by our algorithm
is about 3% less than that of the optimal algorithm. Our trace
shows that the amount of traffic seen in AS397 is around 24.9
tera bytes. This means that a reasonable cache of size 600
GB would have served about 6 tera bytes locally using our
algorithm.

The reason traditional policies perform poorly for P2P traffic
is because of the effect of unpopular objects. For example, one-
timer objects are stored entirely under traditional policies on
a miss. Under our policy, however, only one segment of each
one-timer will find its way into the cache, thus minimizing
their effect. The same could be said about 2nd-timers, 3rd
timers and so on. Thus, our algorithm strives to discover the
best objects to store in the cache by incrementally admitting
them. Similar results were obtained for the other top ten ASes
[21]. Our policy consistently preforms better than traditional
policies. Fig. 5(c) summarizes the relative improvement inbyte
hit rate that our policy achieves over LRU, LFU, and LSB for
the top ten ASes. The relative improvement is computed as the
difference between the byte hit rate achieved by our policy and
the byte hit rate achieved by another policy normalized by the
byte hit rate of the other policy. For instance the improvement
over LRU would be(P2P −LRU)/LRU . The figure shows a
relative improvement of at least 40% and up to 180% can be
achieved by using our algorithm. That is a significant gain
given the large volume of the P2P traffic. We notice that
the relative gain our policy achieves is larger in ASes with
a substantial fraction of one-timers. We also observe that the
achievable byte hit rate is around 15% to 40% with reasonable
cache sizes. This is similar to the achievable byte hit rate for

255

0 200 400 600 800 1000
0

5

10

15

20

25

30

35

Cache Size (GB)

B
yt

e
H

it
R

at
e

OPT
P2P
LSB
LFU
LRU
GDS

(a) AS397, 48% of traffic is cacheable

0 200 400 600 800 1000
0

5

10

15

20

25

30

Cache Size(GB)

B
yt

e
H

it
R

at
e

(%
)

OPT

P2P

LSB

LFU

LRU

GDS

(b) AS95, 54% of traffic is cacheable

1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

AS rank

R
e
la

tiv
e
 in

cr
e
a
se

 in
 b

yt
e
 h

it
ra

te

(P2P − LRU)/LRU

(P2P − LSB)/LSB

(P2P − LFU)/LFU

(c) Top ten ASes

Fig. 5. Byte hit rate for different caching algorithms. No aborted downloads.

web caching, which is practically in the range 20%—35%
(CISCO technical paper [25]), or as other sources indicate
30%—60% [26]. But due to the large size of P2P objects, a
small byte hit rate amounts to savings of tera bytes of data.

As a final comment on Fig. 5, consider the absolute byte
hit rate archived under our algorithm as well as the optimal
byte hit rate in the two different ASes. Notice that although
the percentage of cacheable traffic in AS397 is less than
that of AS95, the absolute byte hit rate is higher in AS397.
This is because popular objects in AS95 do not get as many
requests as their counterparts in AS397. That is, the popularity
distribution of AS95 has a more flattened head than that of
AS397. We computed the skewness factorα and the plateau
factor q of the Mandelbrot-Zipf distribution that best fits the
popularity distributions of these two ASes. We found that
AS95 hasα = 0.6 and q = 50, while AS397 hasα = 0.55
and q = 25. Smallerq values mean less flattened heads, and
yield higher byte hit rates. Section V-C elaborates more on the
impact ofα andq on the byte hit rate.

Next, we study the effect of temporal correlations on P2P
caching by using the original unshuffled traces with preserved
temporal correlations. Fig. 8 shows the byte hit rate under
AS397. LRU and GDS perform slightly better than LSB
and LFU because they make use of the temporal correlation
between requests. However, the achieved byte hit rate under
the four algorithms is still low compared to the byte hit rate
achieved by our algorithm. Note that the absolute byte hit rate
under our algorithm is slightly smaller than in the previous
experiment where we used the independent reference model.
This is because our algorithm does not consider temporal
correlation. However, this reduction is small, less than 3%.
The fact that the performance of our algorithm does not
suffer much under temporal correlation and still outperforms
other algorithms (e.g., LRU and GDS) could be explained as
follows. We believe that object size is the dominant factor in
caching for P2P systems, because the maximum cache size
we used (1000 GB) is still small compared to the total size of
objects, less than 5%—10% in most cases. As a consequence,
object admission strategy is a key element in determining
the byte hit rate, which our algorithm capitalizes on. Similar
results for other ASes were obtained [21].

Due to the nature of P2P systems, peers could fail during a

download, or abort a download. We run experiments to study
the effect of aborted downloads on caching, and how robust
our caching policy is. Following observations from [1], we
allow 66% of downloads to abort anywhere in the download
session. While our policy is designed to deal with aborted
downloads, web replacement policies usually download the
entire object upon a miss, and at times perform pre-fetching
of popular objects. This is reasonable in the web since web
objects are usually small, which means they take less cache
space. But in P2P systems, objects are larger, and partial
downloads constitute a significant number of the total num-
ber of downloads. Fig. 6 compares the byte hit rate with
aborted downloads using several algorithms. Compared to the
scenario of caching under full downloads (Section V-B), the
performance of our algorithm improves slightly while the
performance of other algorithms declines. The improvement
in our policy could be explained by the fact that fewer bytes
are missed in case of a failure. The performance of LRU, LFU,
and LSB declines because they store an object upon a miss
regardless of how much of it the client actually downloads.
Hence, under aborted download scenarios, the byte hit rates
for traditional policies suffers even more than it does under
full download scenario. Similar results were obtained for the
other top ten ASes. Our policy consistently outperforms LSB,
LRU and LFU with a significant improvement margin in all
top ten ASes. Fig. 7 shows that the relative improvement in
byte hit rate is at least 50% and up to 200%.

C. Effect ofα and q on P2P Caching

As we mention in Section III, P2P traffic can be modeled
by a Mandelbrot-Zipf distribution with a skewness factorα

between 0.4 and 0.70, and a plateau factorq between between
5 and 60 In this section, we study the effect ofα and q on
the byte hit rate of our algorithm via simulation. We did not
use our traces because they may not capture the performance
of our algorithm for all possible values ofα and q. We
randomly pick100, 000 objects from our traces and generate
their frequencies using Mandelbrot-Zipf with various values
for α andq. We fix the cache size at 1,000 GB and we assume
a no-failure model where peers download objects entirely.

To study the effect of differentα values, we fixq and change
α between 0.4 and 1. As shown in Fig. 9, the byte hit rate

256

0 200 400 600 800 1000
0

5

10

15

20

25

30

35

Cache Size (GB)

B
yt

e
H

it
R

at
e

P2P
LSB
LFU
LRU
GDS

Fig. 6. Byte hit rate for different caching algo-
rithms using traces with aborted downloads.

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120

140

160

180

200

AS rank

R
el

at
iv

e
in

cr
ea

se
 in

 b
yt

e
hi

t r
at

e

(P2P − LRU)/LRU

(P2P − LSB)/LSB

(P2P − LFU)/LFU

Fig. 7. Relative byte hit rate improvement.

0 200 400 600 800 1000
0

5

10

15

20

25

30

35

Cache Size (GB)

B
yt

e
H

it
R

at
e

(%
)

OPT
P2P
LSB
LFU
LRU
GDS

Fig. 8. Byte hit rate for different caching algo-
rithms using traces with temporal correlations.

0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

B
yt

e
H

it
R

at
e

q = 20

q = 50

Fig. 9. The impact ofα on caching.

0 10 20 30 40 50 60 70
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

q

B
yt

e
H

it
R

at
e

α = 0.6
 α = 0.4

Fig. 10. The impact ofq on caching.

0 200 400 600 800 1000
0

5

10

15

20

25

30

35

Cache Size (GB)

B
yt

e
H

it
R

at
e

variable seg.
1 MB
50 MB
100 MB

Fig. 11. The effect of segmentation on caching.

increases as the skewness factorα increases. This is intuitive
since higher values ofα mean that objects at the lowest ranks
are more popular and caching them yields higher byte hit rate.
Thus ASes whose popularity distribution is characterized with
high α values would benefit more from caching than those
with low α values.

Another parameter that determines the achievable byte hit
rate is the plateau factorq of the popularity distribution.q
reflects the flattened head we observed in Section III. Fig.
10 shows that the byte hit rate decreases asq increases. The
reason for this is that a higher value ofq means popular
objects are requested less often. This has a negative impact
on a cache that stores those popular objects, because they
receive less downloads resulting in a decreased byte hit rate.
Notice, though, that we are only exploring how changing the
Mandelbrot-Zipf parameters impacts the caching performance
and not suggesting using specific values forq and α. This
means that there exists some ASes for which Mandelbrot-Zipf
accurately captures the popularity model by a small value of
α and a large value ofq resulting in popularity being spread
out among objects more evenly, i.e., approaching a uniform
distribution. But in such model all caching algorithms will
suffer since the portion of requests received by popular objects
decreases drastically.

D. Effect of Segmentation on P2P Caching

Our algorithm uses a variable segmentation scheme whereby
objects belonging to the same workload have the same segment
size. As we discuss in Section IV, variable segmentation has
several advantages over fixed segmentation. Using different
segment size for different workloads helps reduce the overhead

of managing too many segments if large objects were to have
the same segment size as small objects. It also helps increase
byte hit rate because larger segments for larger objects means
that they will be available in the cache after relatively few
requests. For example, if we use 1 MB segmentation, then an
object of 4 GB will have 4000 segments to manage. On the
other hand, using 10 MB segment size for would reduce the
number of segments to 400 and still give a higher byte hit
rate.

To measure the impact of segmentation on byte hit rate,
we repeat the experiment of aborted downloads under AS397.
Using different segment sizes, we, first, evaluate the byte
hit rate when all objects have the same segment size (1
MB, 50 MB, and 100 MB) regardless of their size. Then
we evaluate our variable segmentation scheme which we
described in Section IV. As can be seen from Fig. 11, as
the segment size increases, the byte hit rate degrades. Thisis
because the cache evicts and admits segments only, and when a
download aborts in the middle of downloading a segment, the
rest of it will be unnecessarily stored. Similarly, under large
segment sizes, we may admit more unpopular objects since
admitting one segment of a one-timer amounts to admitting a
substantial part of the object. The figure also shows that our
variable segmentation scheme achieves similar byte hit rate as
a uniform 1 MB segmentation, which imposes higher cache
management overhead as discussed above.

VI. CONCLUSION AND FUTURE WORK

In this paper, we conducted a three-month measurement
study on the Gnutella P2P system. Using real-world traces,
we studied and modeled characteristics of P2P traffic that are

257

relevant to caching. We found that the popularity distribution
of P2P objects cannot be captured accurately using Zipf-like
distributions. We proposed a new Mandelbrot-Zipf model for
P2P popularity and showed that it closely models object popu-
larity in several AS domains. Our measurement study indicates
that: (i) The Mandelbrot-Zipf popularity has a negative effect
on hit rates of caches that use LRU or LFU policies, and (ii)
Object admission strategies in P2P caching are as critical to
cache performance as object replacement strategies.

We designed and evaluated a new P2P caching algorithm
that is based on segmentation and incremental admission
of objects according to their popularity. Using trace-driven
simulations, we showed that our algorithm outperforms tra-
ditional algorithms by a significant margin and achieves a
byte hit rate that is up to triple the byte hit rate achieved
by other algorithms. Finally, because of aborted downloads, a
caching policy should not perform pre-fetching of objects if
its objective is to maximize byte hit rate, which is the strategy
taken by our algorithm.

We are currently implementing our algorithm in the Squid
[27] proxy cache and testing it using our traces. In the future,
we intend to investigate preferential segment eviction, whereby
segments of the same object carry different values.

ACKNOWLEDGMENTS

We thank James Griffioen, the shepherd of our paper, and
the anonymous reviewers for their constructive comments and
suggestions. This research is partially supported by an NSERC
Discovery Grant and by a President’s Research Grant from
Simon Fraser University .

REFERENCES

[1] K. Gummadi, R. Dunn, S. Saroiu, S. Gribble, H. Levy, and J.Zahorjan,
“Measurement, modeling, and analysis of a peer-to-peer file-sharing
workload,” in Proc. of the 19th ACM Symposium on Operating Systems
Principles (SOSP’03), Bolton Landing, NY, USA, Oct. 2003, pp. 314–
329.

[2] T. Karagiannis, A. Broido, N. Brownlee, K. C. Claffy, andM. Faloutsos,
“Is P2P dying or just hiding?” inProc. of IEEE Global Telecommunica-
tions Conference (GLOBECOM’04), Dallas, TX, USA, Nov. 2004, pp.
1532–1538.

[3] T. Karagiannis, P. Rodriguez, and K. Papagiannaki, “Should internet
service providers fear peer-assisted content distribution?” in Proc. of the
5th ACM SIGCOMM Conference on Internet Measurement (IMC’05),
Berkeley, CA, USA, Oct. 2005, pp. 63–76.

[4] S. Podlipnig and L. Bszrmenyi, “A survey of web cache replacement
strategies,”ACM Computing Surveys, vol. 35, no. 4, pp. 347–398, Dec.
2003.

[5] J. Liu and J. Xu, “Proxy caching for media streaming over the Internet,”
IEEE Communications Magazine, vol. 42, no. 8, pp. 88–94, Aug. 2004.

[6] P. Cao and S. Irani, “Cost-aware WWW proxy caching algorithms,”
in Proc. of USENIX Symposium on Internet Technologies and Systems,
Monterey, CA, USA, Dec 1997, pp. 193–206.

[7] A. Wierzbicki, N. Leibowitz, M. Ripeanu, and R. Wozniak,“Cache
replacement policies revisited: The case of P2P traffic,” inProc. of
the 4th International Workshop on Global and Peer-to-Peer Computing
(GP2P’04), Chicago, IL, USA, Apr. 2004, pp. 182–189.

[8] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web caching
and Zipf-like distributions: Evidence and implications,”in Proc. of
INFOCOM’99, New York, NY, USA, Mar. 1999, pp. 126–134.

[9] S. Sen and J. Wang, “Analyzing peer-to-peer traffic across large net-
works,” IEEE/ACM Transactions on Networking, vol. 12, no. 2, pp.
219–232, Apr. 2004.

[10] A. Klemm, C. Lindemann, M. K. Vernon, and O. P. Waldhorst, “Char-
acterizing the query behavior in peer-to-peer file sharing systems,” in
Proc. of ACM/SIGCOMM Internet Measurement Conference (IMC’04),
Taormina, Sicily, Italy, Oct. 2004, pp. 55–67.

[11] N. Leibowitz, A. Bergman, R. Ben-Shaul, and A. Shavit, “Are file swap-
ping networks cacheable? Characterizing P2P traffic,” inProc. of the
7th International Workshop on Web Content Caching and Distribution
(WCW’02), Boulder, CO, USA, Aug. 2002.

[12] S. Jin and A. Bestavros, “Popularity-Aware GreedyDual-Size Web Proxy
Caching Algorithms,” inProc. of the IEEE International Conference on
Distributed Computing Systems (ICDCS’00), Taiwan, May 2000.

[13] S. Jin, A. Bestavros, and A. Iyengar, “Network-Aware Partial Caching
For Internet Streaming Media,”ACM Multimedia Systems Journal,
vol. 9, no. 4, pp. 386–396, Oct. 2003.

[14] S. Park, E. Lim, and K. Chung, “Popularity-based Partial Caching for
VOD Systems using a Proxy Server.” inProc. of the 15th International
Parallel & Distributed Processing Symposium (IPDPS’01), San Fran-
cisco, CA, USA, Apr. 2001.

[15] “Gnutella Home Page,” http://www.gnutella.com.
[16] “Limewire Home Page,” http://www.limewire.com/.
[17] S. Saroiu, P. K. Gummadi, and S. D. Gribble, “Measuring and analyz-

ing the characteristics of Napster and Gnutella hosts,”ACM/Springer
Multimedia Systems Journal, vol. 9, no. 2, pp. 170–184, Aug. 2003.

[18] J. Pouwelse, P. Garbacki, D. Epema, and H. Sips, “The BitTorrent P2P
file-sharing system: Measurements and analysis,” inProc. of the 4th
International Workshop on Peer-To-Peer Systems (IPTPS’05), Ithaca,
NY, USA, Feb. 2005, pp. 205–216.

[19] “Network Systems Lab Home Page,” http://nsl.cs.surrey.sfu.ca.
[20] “GeoIP Database Home Page,” http://www.maxmind.com.
[21] O. Saleh and M. Hefeeda, “Modeling and caching of peer-to-peer

traffic,” Simon Fraser University, Tech. Rep. TR 2006-11, May 2006.
[22] Z. Silagadze, “Citations and the Zipf-Mandelbrot’s law,” Complex Sys-

tems, vol. 11, no. 487–499, 1997.
[23] “Emule Project Home Page,” http://www.emule-project.net/.
[24] “BearShare Home Page,” http://www.bearshare.com/.
[25] G. Huston, “Web Caching,”The Internet Protocol Journal, vol. 2, no. 3,

Sept. 1999.
[26] M. Rabinovich and O. Spatscheck,Web Caching and Replication.

Addison-Wesley, 2002.
[27] “Squid Web Proxy Cache Home Page,” www.squid-cache.org/.

258

