Modeling and Caching of Peer-to-Peer Traffic

Osama Saleh Mohamed Hefeeda
School of Computing Science School of Computing Science
Simon Fraser University Simon Fraser University
Surrey, BC, Canada Surrey, BC, Canada

Abstract— Peer-to-peer (P2P) file sharing systems generate when deciding which object to cache/evict. Although latenc
a major portion of the Internet traffic, and this portion is js important to P2P users, the goal of a P2P cache is often
expected to increase in the future. We explore the potentiabf focused on the ISP’s primary concern; namely, the amount

deploying proxy caches in different Autonomous Systems (AS) -
with the goal of reducing the cost incurred by Internet service of bandwidth consumed by large P2P transfers. Consequently

providers and alleviating the load on the Internet backbone We ~ byte hitrate, i.e., minimizing the number of bytes transétgiis
conduct a measurement study to model the popularity of P2P more important than latency. Moreover, P2P objects teneto b
objects in different ASes. Our study shows that the populaty of |arger than web objects [1] reducing the number of complete
P2P objects can be modeled by a Mandelbrot-Zipf distributia, objects that can be held in a cache.

regardless of the AS. Guided by our findings, we develop a - . . .
novel caching algorithm for P2P traffic that is based on objet Furthermore, although objects in P2P and video streaming

segmentation, and partial admission and eviction of objest Our Systems share some characteristics, e.g., immutability an
trace-based simulations show that with a relatively small ache large size, streaming systems impose stringent timingirequ
size, less than 10% of the total traffic, a byte hit rate of up ments. These requirements limit the flexibility of caching
to 35% can be achieved by our algorithm, which is close 10 4 q4rithms in choosing which segments to store in the cache.

the byte hit rate achieved by an off-line optimal algorithm with
complete knowledge of future requests. Our results also sko Therefore, new caching algorithms that consider the nefficra

that our algorithm achieves a byte hit rate that is at least 48 Characteristics and system objectives need to be desigrked a
more, and at most triple, the byte hit rate of the common web evaluated.
caching algorithms. Furthermore, our algorithm is robust in face In this paper, we first develop a deeper understanding of the
of aborted downloads, which is a common case in P2P systems.pop traffic characteristics that arevant to cachingsuch as
object popularity. We do that via a three-month measurement
study on a popular file-sharing system. Then, we design and
Peer-to-peer (P2P) file-sharing systems have gained tremevaluate a novel P2P caching algorithm for object admission
dous popularity in the past few years. More users are contsegmentation and replacement.
ually joining such systems and more objects are being madeSpecifically, our contributions can be summarized as fol-
available, enticing even more users to join. Currenthffita lows. First, we develop new models for P2P traffic based on
generated by P2P systems accounts for a major fraction of the measurement study. We show that the popularity of P2P
Internet traffic [1], and it is expected to increase [2]. Theex objects can be modeled by a Mandelbrot-Zipf distribution,
volume and expected high growth of P2P traffic have negatiwich is a generalized form of Zipf-like distributions with
consequences, including: (i) significantly increased loathe an extra parameter. This extra parameter captures thenfidtte
Internet backbone, hence, higher chances of congestiah; &ead nature of the popularity distribution observed near th
(i) increased cost on Internet Service Providers (ISP$) [3owest ranked objects in our traces. The flattened headeatur
hence, higher service charges for all Internet users. Anpiale has also been observed by a previous study [1], but no specific
solution for alleviating those negative impacts isdachea distribution was given. Second, we analyze the impact of the
fraction of the P2P traffic such that future requests for thdandelbrot-Zipf popularity model on caching and show that
same objects could be served from a cache in the requesteglying on object popularity alone may not yield high hit
autonomous system (AS). rates/byte hit rates. Third, we design a new caching algorit
Caching in the Internet has mainly been considered for wétr P2P traffic that is based on segmentation, partial adomss
and video streaming traffic, with little attention to the P2Rnd eviction of objects.
traffic. Many caching algorithms for web traffic [4] and for We perform trace-based simulations to evaluate the perfor-
video streaming systems [5] have been proposed and analyzednce of our algorithm and compare it against common web
Directly applying such algorithms to cache P2P traffic magaching algorithms, such as LRU, LFU and GDS [6], and a
not yield the best cache performance, because of the differeecent caching algorithm proposed for P2P systems [7]. Our
traffic characteristics and caching objectives. For insan results show that with a relatively small cache size, less th
reducing user-perceived access latency is a key objedaiive 10% of the total traffic, a byte hit rate of up to 35% can
web caches. Consequently, web caching algorithms often be achieved by our algorithm, which is close to the byte hit
corporate information about the cost (latency) of a caclesmrate achieved by an off-line optimal algorithm with complet

I. INTRODUCTION

1-4244-0593-9/06/$20.00 ©2006 IEEE 249

knowledge of future requests. Our results also show that caur algorithm outperforms LSB, which is better than MINRS
algorithm achieves a byte hit rate that is at least 40% mowmgcording to the results in [7].
and at most triple, the byte hit rate of the common web cachingPartial and popularity-based caching schemes for web
algorithms. caching, e.g., [12], and video streaming, e.g., [13], [14]
The rest of this paper is organized as follows. In Section have been proposed before. [12] proposes a popularityeawar
we summarize the related work. Section Il describes our-megreedy-dual size algorithm for caching web traffic. Becahse
surement study, presents a new model for object populari@ygorithm focuses on web objects, it does not considerglarti
and analyzes the effect of this model on cache performancaching, which is critical for P2P caching due to large sizes
Our P2P caching algorithm is described in Section V. Wef objects. Jin et al. [13] consider partial caching based on
evaluate the performance of our algorithm using tracedbasebject popularity, encoding bit rate, and available baitvi
simulation in Section V. Section VI concludes the paper. between clients and servers. Their objectives are to ma@mi
average start-up delays and to enhance stream quality. In
contrast, our partial caching approach is based on the numbe
We first summarize previous P2P measurement studie$bytes served from each object normalized by its cached siz
justifying the need for a new study. Then, we contrast odthis achieves our objective of maximizing the byte hit rate
caching algorithm with other P2P, web and multimedia caghinvithout paying much attention to latency. A partial caching
algorithms. algorithm for video-on-demand systems is proposed in [14],
Several measurement studies have analyzed various wkere the cached fraction of a stream is proportional to the
pects of P2P systems. Gummadi et al. [1] study the objeuimber of bytes played back by all clients from that stream
characteristics of P2P traffic in Kazaa and show that P2# a time slot. Unlike our algorithm, the algorithm in [14]
objects are mainly immutable, multimedia, large object thperiodically updates the fractions all cached streams, which
are downloaded at most once. The study demonstrates thatdtids significant overhead on the cache.
popularity of P2P objects does not follow Zipf distribution Finally, our caching algorithm is designed for P2P systems,
which is usually used to model the popularity of web objectghich contain multiple workloads corresponding to various
[8]. The study provides a simulation method for generatingpes of objects. This is in contrast to the previous web and
P2P traffic that mimics the observed popularity curve, but streaming caching algorithms which are typically optindize
does not provide any closed-form models for it. Sen and Wafwg only one workload.
[9] study the aggregate properties of P2P traffic in a large-
scale ISP, and confirm that P2P traffic does not obey Zipf Il. M ODELING P2P TRAFFIC
distribution. Their observations also show that few ckeate =~ We are interested in deploying caches in different au-
responsible for most of the traffic. Klemm et al. [10] use twgonomous systems (ASes) to reduce the WAN traffic imposed
Zipf-like distributions to model query popularity in Gnllle by P2P systems. Thus, our measurement study focuses on
Because the authors are mainly interested in query popularieasuring the characteristics of P2P traffic that would be
they do not measure object popularity as defined by actuddserved by thesimdividual caches, and would impact their
object transfers. performance. Such characteristics include object pojwlar
While these measurement studies provide useful insiglasd number of P2P clients per AS. We measure such char-
on P2P systems, they were not explicitly designed to studgteristics in several ASes of various sizes. In this segctio
caching P2P traffic. Therefore, they did not focus on anatyziwe describe our measurement methodology and present our
the impact of P2P traffic characteristics on caching. Theystufindings.
in [1] highlighted the potential of caching and briefly stedli
the impact of traffic characteristics on caching. But thelgtu A- Measurement Methodology
was performed in only one network domain. We conduct gpassivemeasurement study of the Gnutella
The importance and feasibility of caching P2P traffic havilde-sharing network [15]. For the purposes of our measure-
been shown in [11] and [3]. The study in [11] indicates thahent, we modify a popular Gnutella client called Limewire
P2P traffic is highly repetitive and responds well to cachinfl6]. We choose to conduct our measurement on Gnutella
Whereas the authors of [3] show that current P2P protocdilscause (i) it supports the super-peer architecture wiaicih f
are not ISP-friendly, because they impose unnecessafictratates non-intrusive passive measurements by obsenaiffictr
on ISPs. The authors suggest deploying caches or making R2Bsing through super peers; and (i) it is easier to modify
protocols locality-aware. Both [11] and [3] do not providgya since it is an open source protocol.
algorithm for caching. Previous studies show that Gnutella is similar to other P2P
The closest work to ours is [7], where two cache replaceystems. For example, early studies on the fully-distedut
ment policies for P2P traffic are proposed. These two pdlici&nutella and the index-based Napster systems found that
are: MINRS (Minimum Relative Size), which evicts the objectlients and objects in both systems exhibit very similar
with the least cached fraction, and LSB (Least Sent Bytejharacteristics such as the number of files shared, session
which evicts the object which has served the least numlsuration, availability and host uptime [17]. Another stuoly
of bytes from the cache. Our simulation results show thBitTorrent [18] made similar observations regarding objec

II. RELATED WORK

250

characteristics and host uptime. Also the non-Zipf behaviexpected to yield higher hit rates than storing any otheptet
of object popularity in Gnutella (as we show later) has beeabjects.
observed before in Kazaa [1]. Therefore, we believe thatSince we are primarily interested in the performance of
the Gnutella traffic collected and analyzed in our study iadividual caches, we measure the popularity of objects in
representative of P2P traffic in general. eachAS. To measure the popularity of an object in a specific

According to the Gnutella protocol specifications peeS, we count the number of replicas of that object in the
exchange several types of messages including PING, PONKg considered. Number of replicas indicates the number of
QUERY and QUERYHIT. A QUERY message contains searaownloads that were completed in the past. This means that if
keywords, a TTL field and the address of the immediatecache were deployed, it would have seen a similar number
neighbor which forwarded the message to the current peef.requests. This assumes that most of the downloads were
Query messages are propagated to all neighbors in the pvedapplied by peers from outside the AS, which is actually the
for a hop distance specified by the TTL field. A typicatase because peersin most current P2P networks have no sense
value for TTL is seven hops. If a peer has one or more of network proximity and thus do not favor local peers over
the requested files, it replies with a QUERYHIT messagaon-local peers. In fact, previous studies [1] have shovat th
A QUERYHIT message is routed on the reverse path of th to 86% of the requested P2P objects were downloaded from
QUERY message it is responding to, and it contains the nameers outside the local network even though they were lpcall
and the URN (uniform resource name) of the file, the IBvailable.
address of the responding peer, and file size. Upon receivingio count the number of replicas of a given object, we extract
replies from several peers, the querying peer chooses & sefrom our trace all QUERYHIT messages which contain the
peers and establishes direct connections with them tevetri unique ID (URN) of that object. QUERYHIT messages contain
the requested file. the IP addresses of the responding nodes that have copies of

Limewire has two kinds of peersitra-peers characterized the requested object. We can determine the number of replica
by high bandwidth and long connection periods, dedf- by counting the number of unique IP addresses. Then, we map
peerswhich are ordinary peers that only connect to ultrgdhese unique IP addresses to their corresponding ASesty usi
peers. We run our measurement node in an ultra-peer mdke GeolP database [20].
and allow it to maintain up to 500 simultaneous connectionsWe compute the popularity of each object in each of the
to other Gnutella peers. On average, our measurement ntme 16 ASes (in terms of sending and receiving messages).
was connected to 279 nodes, 63% of which were ultra peeffiese top 16 ASes contribute around 38% of the total traffic
Our measurement node passively recorded the contents ofsakn by our study. We also compute the popularity across all
QUERY and QUERYHIT messages passing through it witho#tSes combined. We rank objects based on their popularity,
injecting any traffic into the network. and we plot popularity versus rank. Fig. 1 shows a sample of

The measurement study was conducted between 16 Janumany results. Results for other ASes are similar and are given
2006 and 16 April 2006. Our measurement peer was locatiadthe technical report [21]. As shown in the figure, there is
at Simon Fraser University, Canada. But since the Gnutelidlattenedhead in the popularity curve of P2P objects. This
protocol does not favor nodes based on their geograpfiattened head indicates that objects at the lowest ranks are
locations [10], we were able to observe peers from many ASeast as popular as Zipf-like distributions would predict.igh
across the globe. During the three months of the measureméattened head phenomenon could be attributed to two main
we recorded more than 214 million QUERY messages anbaracteristics of objects in P2P systems: immutabilitd an
107 million QUERYHIT messages issued from more thalarge sizes. The immutability of P2P objects eliminates the
20 million peers distributed over more than 16 thousarntked for a user to download an object more than once. This
different ASes. Table | shows the number of objects ardbwnload at most once behavior has also been observed in
hosts discovered in several ASes. The large scale of quevious studies [1]. The large size of objects, and theeefo
measurement study enables us to draw solid conclusiong altbe long time to download, may make users download only
P2P traffic. The measurement data is stored in several tradyects that they are really interested in. This is in caitta
files with a total size of approximately 20 giga bytes. Thedra web objects, which take much shorter times to download, and
files are available to the research community at [19]. therefore, users may download web objects even if they are
of marginal interest to them. These two characteristicsiced
the total number of requests for popular objects.

In this subsection, we explain how we measure objectFig. 1 also shows that, unlike the case for web objects [8],
popularity in different ASes. Then, we present and validatesing a Zipf-like distribution to model the popularity of P2
a simple, and fairly accurate, popularity model for objdnts objects would result in a significant error. In log-log scale
P2P systems. the Zipf-like distribution appears as a straight line, whaan

The relative popularity of an object is defined as theeasonably fit most of the popularity distribution except th
probability of requesting that object relative to otheresltg. left-most part, i.e., the flattened head. A Zipf-like dilstriion
Object popularity is critical for the performance of the lsac would greatly overestimate the popularity of objects at the
Intuitively, storing the most popular objects in the cacke lowest ranks. These objects are the most important to cgchin

B. Measuring and Modeling Object Popularity

251

10 10* 10
o Object popularity © Obiject popularity —=o Object popularity
—— MZipf(0.47, 5) MZipf(0.7, 10) —— MZipf(0.6, 40)
10% - 0 10
> 102‘ > 2
3 S 3
& 2 &
& i 10 T
10
10'
10'
10°
10° 10° 10° 10’ 10° 10° 10° 10° 10 10° 10° 10* 10°
Rank Rank Rank
(a) AS 11803 (b) AS 1403 (c) AS 1161
10° 10* 10°

Frequency
Frequency
Frequency

o Object popularity —=o Object popularity o Object popularity
== MZipf(0.62, 50) = MZipf(0.60, 55) == MZipf(0.78, 25)
1

10
9o
10°
10°
10°
10' 10'
0o’ 10° 10*

0 2 4 6

10° 10' 10° 10° o 1 10 10 10 10
Rank Rank Rank
(d) AS 95 (e) AS 14832 (f) All ASes

Fig. 1. Object popularity in P2P traffic can be modeled by Mabibt-Zipf Distribution.

mechanisms, because they are the good candidates to ba store 10° ‘ :
in the cache. - it 20
We propose a new model that captures the flattened head 2 mgg:ﬁ fgg)

of the popularity distribution of objects in P2P systemsr Ou
model uses the Mandelbrot-Zipf distribution [22], whichthg
general form of Zipf-like distributions. The MandelbroipZ
distribution defines the probability of accessing an obpct
rank i out of N available objects as:

Frequency

K
i) = ———, 1
(i) L 1)
where K = Zf;l 1/(i + q)%, « is the skewness factor, and Rank

q > 0 is a parameter which we call th@ateaufactor. ¢ is

so called because it is the reason behind the plateau shﬁiSeZ- Zipf versus Mandelbrot-Zipf for different (plateau factor) values.

near to the left-most part of the distribution. Notice thia¢ t

higher the value ofg, the more flattened the head of the is between 0.4 and 0.70, and a typical valuegfes between

distribution will be. Wheny = 0, Mandelbrot-Zipf distribution 5 and60. By inspecting our traces, we found that ASes with

degenerates to a Zipf-like distribution with a skewnessafac higher number of clients usually have smaller values;fdfor

. Fig. 2 compares Zipf distribution versus Mandelbrot-zipgxample, in Table I, AS 9548 has 464,511 seen in our trace

distribution for differentg values. Notice that, there is abound it has a smal value ¢ = 5). On the other hand, AS 95

an order of magnitude difference in frequency between tlh@s much smaller number of clients, 6,121, and a hlgher value

two distributions at the lowest ranks. of ¢ (g = 50). This is intuitive because the number of clients
To validate this popularity model, we fit the popularity disiS @n upper bound on the number of times an object could be

tributions of objects in each of the top 16 ASes to Mandetorgiownloaded.

Zipf distribution using the Matlab distribution fitting tbo)))

Our results, some of them are shown in Fig. 1, indicate that The Effect of Mandelbrot-Zipf Popularity on Caching

Mandelbrot-Zipf distribution models the popularity of P2P In this subsection, we analyze the impact of the Mandelbrot-

objects reasonably well. Table | summarizeandq values for Zipf popularity model on the cache hit rate and byte hit rate

eight representative ASes. We observe that a typical value fising simple analysis and simulation.

252

'S
[=}

w w
(=] a1

)
o

-
o

Relative Byte Hit Rate Loss (%)
= ny
? o

3]

(a) Hit rate loss under LFU (analytic).

20

40
Relative Cache Size (%)

60 80 100

100

80

60

Hit Rate (%)

40

0 20 30

Relative Cache Size (%)

(b) Hit rate under LRU (simulation).

Fig. 3.
TABLE |
OBJECT POPULARITY AND TRAFFIC CACHEABILITY IN SEVERALAS
DOMAINS.
AS No number of number of MZipf % of cache-
* | unique IPs| unique objects (o, q) able traffic
9548 464,551 570,122 (0.65,5) 42.30
95 6,121 87,730 (0.6, 50) 54.47
2609 13,958 181,184 (0.55, 25) 54.75
397 368, 604 418,263 (0.62, 8) 48.72
1161 1000 135,921 (0.60, 40) 16.67
1859 437,901 767,890 (0.53,10) 46.16
14832 515 46,704 (0.60, 55) 95.34
18538 337 33,198 (0.62, 60) 93.74

We start with a simple analysis of an LFU (Least Frequent&t
Used) policy. Under LFU, the most popular objects are
stored in the cache. For simplicity, we assume that all dbje
have the same size and the skewness paramedtet. We are
mainly interested in exploring the impact of the plateaudac
¢ on the hit rate. The hit rat& of an LFU cache is given by:

c

. K
H:;p(z)=;—(i+q)

N ¢ K B 1+C/q
N/i:l (i+4q) _K1n<1+1/q)'

)

35
_ B e 4 30
- ac - ’V i
v B[MZipi(0.628)
9]
% 20
[\
I15 MZipf(0.6,55)
s,
@19
—e—Zipi(L0)
- MZipf(1,25) 5 —e—AS397
5 - MZipf(L,60) —o—AS14832
0 50 60 70 0 200 400 600 800 1000

Cache Size (GB)

(c) Byte hit rate under optimal (trace-based).

Effect of Mandelbrot-Zipf popularity distributioon the cache performance.

on the hit rate. We generate synthetic traces as follows. We
consider4, 000 equal-sized objects. We randomly generate re-
guests for these objects according to the Zipf and Mandelbro
Zipf distributions. We run the traces through an LRU cache
with a relative cache size that varies between 0 and 100%. We
compute the hit rate in each case. The results are shown in
Fig. 3(b). As the figure indicates, the situation is even wors
under LRU: higher drops in hit rates are observed.

Finally we use traces from our measurement study and
compute the maximum achievable byte hit rate in two differen
ASes. We pick two ASes from our traces with simitavalues
but differentg values: AS 397 withy = 8 and AS 14832 with
= 55. We use an optimal off-line algorithm which looks
the trace of each AS and stores in the cache the objects
which will serve the most number of bytes, hence, achieves

the highest byte hit rate. We perform trace-based simulatio

and compute the byte hit rate under various cache sizes for
both ASes. As can be seen from Fig. 3(c), with a cache size
of 400 GB, a byte hit rate of 24% is achieved under AS 397,

while only 9% byte hit rate is achieved under AS 14832 using

the same cache size. This means that the top popular objects

which can fit in a cache size of 400 GB receive 24% of the

total outgoing requests in AS 397, in comparison to 9% of the

total outgoing requests in AS 14832.

These observations and experiments imply that caching

Eq. (2) implies_that increasir@results in adeqrease in hit rateschemes that capitalize on object populagtpne may not
Wheng — oo, i.e., the head is very flat, the hit rate approachgge|d high hit rates/byte hit rates and may not be very efffect

zero. In contrast, for a Zipf-like popularity distributiqg =
0), the hit rate isH = KInC. To further illustrate the
impact of Mandelbrot-Zipf on the cache performance, we plot

in reducing the ever-growing P2P traffic.

IV. P2P CACHING ALGORITHM

in Fig. 3(a) therelative lossin hit rate between Zipf and With the understanding of the P2P traffic we developed, we
Mandelbrot-Zipf distributions. The relative loss in hiteais design and evaluate a novel P2P caching scheme based on
computed a§ H?"?f — HMZirfy/ pZivf where H#?/ and segmentation and partial caching. Partial caching is saces
HMZirf are the hit rates achieved by an LFU cache if thieecause objects in P2P systems are large, ranging from 20 KB
popularity follows Zipf and Mandelbrot Zipf distributions to 10 GB. Furthermore, P2P objects are composed of multiple
respectively. As the figure shows, significant loss in hieraivorkloads, each workload corresponds to a different canten
could be incurred because of the flattened-head nature of thee (e.g., audio, video, documents), and occupies a sgbéran
Mandelbrot-Zipf popularity distribution. The loss in hite is of the total object size range. A detailed discussion on the
higher for smaller relative cache sizes and larger valugg ofcharacteristics of P2P objects is given in the accompanying
Next, we consider an LRU (Least Recently Used) cachiechnical report [21]. Moreover, because of the Mandelbrot
We use simulation to study the impact of the popularity modgipf popularity model, the most popular objects may not

receive too many requests. Thus storing an entire objeat upo that workload. Denote the average object size in workload
a request may waste cache space. P2P caching should takas p,,. Further lety; be the number of bytes served from
a conservative approach towards admitting new objects imibject i normalized by its cached size. That g, can be
the cache to reduce the cost of storing unpopular objeatensidered as number of times each byte in this object has
To achieve this objective, our algorithm divides object® in been served from the cache. The cache ranks objects aagordin
smaller segments and incrementally admits more segmentsmtheir v value, such that for objects ranked fromto n,
an object to the cache as the object receives more requestg. > 72 > 73 > --- > v,. We refer to an object at rank
We use different segment sizes for different workloadsimply as object. When an object is seen for the first time,
because using the same segment size for all workloads noayy one segment of it is stored in the cache. If a request
favor some objects over others and introduce additiondieaarrives for an object of which at least one segment is cached,
management overhead. For example, if we use a small segntbatcache computes the number of segments to be added to this
size for all workloads, large objects will have large nhumbebject's segments &Sy, /v1) 1w, Wherep,, is the mean of the
of segments. This introduces a high overhead of managiolject size in workloadv which objecti belongs to. Notice
large number of segments within each object. Such overhdhélt this is only the number of segments the cache could store
includes locating which segments of an object are cached,objecti. But since downloads can be aborted at any point
and deciding which segments to evict. On the other hamtlring the session, the number of segmeattually cached
using a large segment size for all workloads will favor serall upon a request, denoted by is given by
objects since they will have smaller number of segments and _ i
get cached quicker. Making segment size relative to objeet s k = min[missed, max1, —)], 3)
has the same two problems. This is because the range of P2P n
object sizes extends to several gigabytes. Thus usingveelatvheremissed is the number of requested segments not in the
Segmenta’[ion' as a percentage of an object Size, may regaﬁhe. This means that the cache will StOp Storing uncached
in |a|’ge Objects having Segments that are orders of ma@]iuﬁg}gments if the client fails or aborts the dOWnload, and that
larger than unsegmented smaller object. the cache stores at least one segment of an object.
Consistent with our observations of multiple workloads, we The pseudo-code of our P2P caching algorithm appears in
use four different segment sizes. For objects with sizes Idsig. 4. At a high level, the algorithm works as follows. The
than 10 MB, we use a segment size of 512 KB, for objecé@che intercepts client requests and extracts the objeattD
between 10 MB and 100 MB, a segment size of 1 MB, and fhe requested range. If no segments of the requested range
objects between 100 MB and 800 MB a segment size of 2 MBte in the cache, the cache stores at least one segment of
Objects whose size exceeds 800 MB are divided into segmelfe requested range. If the entire requested range is cached
of 10 MB in size. We call this segmentation scheme variablge cache will serve it to the client. If the requested rarge i
segmentation scheme. Note that our segmentation procecR@gially available in the cache, the cache serves the dache
is inline with most segmentation schemes used by real Pgggments to the client, and decides how many of the missing
systems. Our analysis of more than 50,000 unique torr&ggments to be cached using Eg. (3). In all cases, the cache
files shows that the vast majority of BitTorrent objects arépdates the average object size of the workload to which the
segmented into 256 KB, 512 KB, 1 MB and 2 MB segmentgbject belongs and the values of the requested object.
E-Donkey uses segments of size 9.28 MB [23]. Depending on
the client implementation, segment size in Gnutella cameeit
be a percentage of object size, as in BearShare [24], or fixed
few hundred KBs [15]. We opt not to follow protocol-specificy i object i is not in the cache
segmentation scheme so as to make our algorithm independent 544 one segment of i to cache, evicting if necessary
of the underlying P2P protocol. In addition, protocol-sfiec 3 g|se

rgquest(objecti, requested range)

segmentation scheme might not always be inline with the hit = cached range N requested range
objective of maximizing byte hit rate. This is confirmed by ~; += hit / cached size of i
our evaluation in Section V. 6 missed = (requested range - hit)/segment size

The basic. idea of our algori_thm is to c_ache of each objectya k = min[missed , max(1, 2 i,,)]
portion that is proportional to its popularity. That way jpidgr
objects will be incrementally given more cache space thgh
unpopular objects. To achieve this goal, our algorithm eachl'o_
a constant portion of an object when it first sees that Obje(irl.
As the object receives more hits, its cached size incredbes.
rate at which the cached size increases grows with the number Fig. 4. P2P caching algorithm.
of hits an object receives. The unit of admission into théneac
is one segment; that is the smallest granularity our algarit The algorithm uses a priority queue data structure to store
caches/evicts is one segment. objects according to theiy; values. When performing eviction,

For each workload, the cache keeps the average object siegments are deleted from the least valued objects. Clytrent

if cache does not have spat:e for k segments
evict k segments from the least valued object(s)
add k£ segments of object i to the cache
return

254

our algorithm evicts contiguous segments without favoring In all experiments, we use the ASes which have the most
any segments over others. This is because P2P downloadsamneunt of traffic seen by our measurement node. This ensures
likely to start from anywhere in the file [7]. Our algorithmthat we have enough traffic from an AS to evaluate the
needs to perforrO(log N) comparisons with every hit or effectiveness of deploying a cache for it.
miss, whereN is the number of objects in the cache. But ,
since objects are large, this is a reasonable cost considef®: Caching under Full Downloads
the small number of objects the cache will contain. One of the main advantages of our caching policy is that
it effectively minimizes the impact of unpopular traffic by
admitting objects incrementally. Traditional policiesually

In this section, we use trace-driven simulation to study tleche an entire object upon a miss, evicting other, perhaps
performance of our P2P caching algorithm, and comparenitore popular, objects if necessary. This may waste cacluespa
against three common web caching algorithms (LRU, LFby storing unpopular objects in the cache. To investigage th
and GDS) and a recent caching algorithm proposed for PRpact of partial versus full caching, we, first, assume that

V. EVALUATION

systems. have a no-failure scenario where peers download the object
_ entirely. We look at all objects found in an AS, line them up in
A. Experimental Setup a randomly shuffled stream of requests and run them through

We use traces obtained from our measurement studyth@ cache. We vary the cache size between 0 and 1000 GB.
conduct our experiments. Our objective is to study the ef- Fig. 5 shows the byte hit rate for two representative ASes
fectiveness of deploying caches in several ASes. Thus, wéh different characteristics. These two ASes have dffier
collect information about objects found in a certain AS anchaximum achievable byte hit rates, which is defined as the
measure the byte hit rate that could be achieved if a cadnaction of traffic downloaded more than once, i.e., cackeab
were to be deployed in that AS. We use the byte hit rate &raffic, over the total amount of traffic. As shown in the
the performance metric because we are mainly interestedfigure, our policy outperforms other policies by as much as
reducing the WAN traffic. 200%. For instance, in AS397 (Fig. 5(a)) with a cache of

We run several AS traces through the cache and comp&f® GB, our policy achieves a byte hit rate of 24%, which is
the byte hit rate achieved using several caching algorittims almost double the rate achieved by LRU, LFU, GDS, and LSB
addition to our algorithm, we implement the Least Recentlyolicies. Moreover, the byte hit rate achieved by our altoni
Used (LRU), Least Frequently Used (LFU), Greedy-Dual Size about 3% less than that of the optimal algorithm. Our trace
(GDS) [6] and Least Sent Bytes (LSB) [7] algorithms. We alsshows that the amount of traffic seen in AS397 is around 24.9
implement the off-line optimal (OPT) algorithm and use it atera bytes. This means that a reasonable cache of size 600
a benchmark for the performance of other algorithms. LRGB would have served about 6 tera bytes locally using our
capitalizes on the temporal correlation in requests, ang thalgorithm.
replaces the oldest object in the cache. LFU sorts objesextba The reason traditional policies perform poorly for P2Pficaf
on their access frequency and evicts the object with the le@sbecause of the effect of unpopular objects. For example, o
frequency. GDS sorts objects based on a cost function ainder objects are stored entirely under traditional pekcon
recency of requests, and evicts the one with the least valaemiss. Under our policy, however, only one segment of each
We used object size as the cost function to allow GDS tme-timer will find its way into the cache, thus minimizing
maximize byte hit rate as indicated by [6]. LSB is designed faheir effect. The same could be said about 2nd-timers, 3rd
P2P traffic caching and it uses the number of transmittedsbytemers and so on. Thus, our algorithm strives to discover the
of an object as a sorting key. Objects which have transmittbdst objects to store in the cache by incrementally admittin
the least amount of bytes will be evicted next. OPT looks &tem. Similar results were obtained for the other top tensASe
the entire stream of requests off-line and caches the objed®l]. Our policy consistently preforms better than traatitl
that will serve the most number of bytes from the cache. policies. Fig. 5(c) summarizes the relative improvemeiyite

We measure the byte hit rate under several scenarios. Fihétrate that our policy achieves over LRU, LFU, and LSB for
we consider the case when objects requested by peers theetop ten ASes. The relative improvement is computed as the
downloaded entirely, that is, there are no aborted traigeact difference between the byte hit rate achieved by our poliay a
Then, we consider the case when the downloading peers ghee byte hit rate achieved by another policy normalized fey th
maturely terminate the downloads during the session, wiBichbyte hit rate of the other policy. For instance the improvetne
not uncommon in P2P systems. We also run our experimenter LRU would be(P2P— LRU)/LRU. The figure shows a
under the independent reference model, where entries of thiative improvement of at least 40% and up to 180% can be
trace file are randomly shuffled to eliminate the effect afchieved by using our algorithm. That is a significant gain
temporal correlation. We do that to isolate and study thgiven the large volume of the P2P traffic. We notice that
effect of object popularity on caching. Finally, we run outhe relative gain our policy achieves is larger in ASes with
experiments on the original trace with preserved temporlsubstantial fraction of one-timers. We also observe that t
correlation between requests to study the combined effiectazhievable byte hit rate is around 15% to 40% with reasonable
temporal correlation and popularity. cache sizes. This is similar to the achievable byte hit rate f

255

35 30 200
—=—OPT —a—OPT
——P2P
30} —e—15B - —v—P2P °
——LFU ——Lss s
—e—LRU ——LFU 2 150
25H —+—GDs — 20| ——LRU 4 ¢
o &7 || ——acbs 2
820 B <
= 15 & 100
§
% 15 ; E
@ 10)
10 % 50
e —e— (P2P - LRU)ILRY
5 5 —w— (P2P - LSB)/LSB|
—o— (P2P - LFU)/LFU)|
o ‘ N S e
0 200 400 600 800 1000 200 400 600 800 1000 1 2 3 4 \ZS E 7 8 9 10
Cache Size (GB) Cache Size(GB) ran
(a) AS397, 48% of traffic is cacheable (b) AS95, 54% of traffic is cacheable (c) Top ten ASes

Fig. 5. Byte hit rate for different caching algorithms. Nooaled downloads.

web caching, which is practically in the range 20%—35%ownload, or abort a download. We run experiments to study
(CISCO technical paper [25]), or as other sources indicatee effect of aborted downloads on caching, and how robust
30%—60% [26]. But due to the large size of P2P objects,aur caching policy is. Following observations from [1], we
small byte hit rate amounts to savings of tera bytes of dataallow 66% of downloads to abort anywhere in the download
As a final comment on Fig. 5, consider the absolute by&@ssion. While our policy is designed to deal with aborted
hit rate archived under our algorithm as well as the optimgpwnloads, web replacement policies usually download the
byte hit rate in the two different ASes. Notice that althougfntire object upon a miss, and at times perform pre-fetching
the percentage of cacheable traffic in AS397 is less th@hpopular objects. This is reasonable in the web since web
that of AS95, the absolute byte hit rate is higher in AS39Pbjects are usually small, which means they take less cache
This is because popular objects in AS95 do not get as ma#f§ace. But in P2P systems, objects are larger, and partial
requests as their counterparts in AS397. That is, the pdpuladownloads constitute a significant number of the total num-
distribution of AS95 has a more flattened head than that B¢r of downloads. Fig. 6 compares the byte hit rate with
AS397. We computed the skewness factoand the plateau aborted downloads using several algorithms. Comparedeto th
factor ¢ of the Mandelbrot-Zipf distribution that best fits thescenario of caching under full downloads (Section V-B), the
popularity distributions of these two ASes. We found thdterformance of our algorithm improves slightly while the
AS95 hasa = 0.6 and ¢ = 50, while AS397 hasy = 0.55 Performance of other algorithms declines. The improvement
andq = 25. Smallerq values mean less flattened heads, ar@ our policy could be explained by the fact that fewer bytes
yield higher byte hit rates. Section V-C elaborates morehen tare missed in case of a failure. The performance of LRU, LFU,
impact ofa andq on the byte hit rate. and LSB declines because they store an object upon a miss
Next, we study the effect of temporal correlations on Pzrfggardless of how much of it the client .actuaIIy downlgads.
caching by using the original unshuffled traces with pre&érvHence’ _qnder abpr_ted download scenarios, th(=T byte hit rates
temporal correlations. Fig. 8 shows the byte hit rate und@' traditional policies suffers even more than it does unde
AS397. LRU and GDS perform slightly better than | sgull download scenario. Slm_llar resu_lts were obtained foe t
and LFU because they make use of the temporal correlatiiyer top ten ASes. Our policy consistently outperforms |.SB
between requests. However, the achieved byte hit rate unHBY @nd LFU with a significant improvement margin in all
the four algorithms is still low compared to the byte hit ratiPP t€n ASes. Fig. 7 shows that the relative improvement in
achieved by our algorithm. Note that the absolute byte hit r?Yt€ hit rate is at least 50% and up to 200%.
under our algorithm is slightly smaller than in the previous)
experiment where we used the independent reference mofel Effect ofa andg on P2P Caching
This is because our algorithm does not consider temporalas we mention in Section Ill, P2P traffic can be modeled
correlation. However, this reduction is small, less than. 3%y a Mandelbrot-Zipf distribution with a skewness facter
The fact that the performance of our algorithm does néktween 0.4 and 0.70, and a plateau fagtbetween between
suffer much under temporal correlation and still outperfer 5 and 60 In this section, we study the effect of and ¢ on
other algorithms (e.g., LRU and GDS) could be explained @se byte hit rate of our algorithm via simulation. We did not
follows. We believe that object size is the dominant factor iyse our traces because they may not capture the performance
caching for P2P systems, because the maximum cache gjzeour algorithm for all possible values af and ¢. We
we used (1000 GB) is still small compared to the total size @indomly pick100, 000 objects from our traces and generate
objects, less than 5%—10% in most cases. As a consequemigéir frequencies using Mandelbrot-Zipf with various esu
object admission strategy is a key element in determinifgr o andg. We fix the cache size at 1,000 GB and we assume
the byte hit rate, which our algorithm capitalizes on. Samil a no-failure model where peers download objects entirely.
results for other ASes were obtained [21]. To study the effect of different values, we fix; and change
Due to the nature of P2P systems, peers could fail duringrabetween 0.4 and 1. As shown in Fig. 9, the byte hit rate

256

N
S
]

——P2P
——LSB
300 ——LFU
—e—LRU
25| ——GDs

.
@
3

—=—oPT
—v—P2P
30 ——1 5B
—o—LFU
25| —e—LRU
——GDS

=
@
3

N
N
S

120

Byte Hit Rate

60

Byte Hit Rate (%)

Relative increase in byte hit rate
=
S
38

40 —e— (P2P - LRU)ILR
5 1 20| —— (P2P - LSB)/LSB 5
—o— (P2P - LFU)/LFU|

1 2 3 4 5 6 7 8 9 10
800 1000 AS rank 200

200 800 1000

40 00 40(600
Cache Size (GB) Cache Size (GB)

Fig. 6. Byte hit rate for different caching algo- Fig. 7. Relative byte hit rate improvement. Fig. 8. Byte hit rate for different caching algo-
rithms usina traces with aborted downloads. rithms using traces with temporal correlations.

1

0. 35
——a=0.6

30

N
o

N
o

Byte Hit Rate
o
>
Byte Hit Rate
Byte Hit Rate

-
15}

—e— variable seg.
—=—1MB
——50 MB
—¢— 100 MB

0.1
0.2 L L L L L
. X 0.6 0.8 0.9 0 10 20 30 40 50 60 70 0 200 400 600 800 1000

o7 q Cache Size (GB)

Fig. 9. The impact ok on caching. Fig. 10. The impact of on caching. Fig. 11. The effect of segmentation on caching.

increases as the skewness factoncreases. This is intuitive of managing too many segments if large objects were to have
since higher values af mean that objects at the lowest rankthe same segment size as small objects. It also helps iecreas
are more popular and caching them yields higher byte hit ratgyte hit rate because larger segments for larger objectasnea
Thus ASes whose popularity distribution is characterizétl w that they will be available in the cache after relatively few
high o« values would benefit more from caching than thosequests. For example, if we use 1 MB segmentation, then an
with low « values. object of 4 GB will have 4000 segments to manage. On the
Another parameter that determines the achievable byte diber hand, using 10 MB segment size for would reduce the
rate is the plateau factay of the popularity distributiong number of segments to 400 and still give a higher byte hit
reflects the flattened head we observed in Section Ill. Figte.
10 shows that the byte hit rate decreaseg &screases. The To measure the impact of segmentation on byte hit rate,
reason for this is that a higher value @f means popular we repeat the experiment of aborted downloads under AS397.
objects are requested less often. This has a negative impgadsing different segment sizes, we, first, evaluate the byte
on a cache that stores those popular objects, because thieyrate when all objects have the same segment size (1
receive less downloads resulting in a decreased byte leit ra¥iB, 50 MB, and 100 MB) regardless of their size. Then
Notice, though, that we are only exploring how changing thee evaluate our variable segmentation scheme which we
Mandelbrot-Zipf parameters impacts the caching perfoeaandescribed in Section IV. As can be seen from Fig. 11, as
and not suggesting using specific values foand a. This the segment size increases, the byte hit rate degradesisThis
means that there exists some ASes for which Mandelbrot-Zipécause the cache evicts and admits segments only, and when a
accurately captures the popularity model by a small value @déwnload aborts in the middle of downloading a segment, the
« and a large value of resulting in popularity being spreadrest of it will be unnecessarily stored. Similarly, undemika
out among objects more evenly, i.e., approaching a unifosegment sizes, we may admit more unpopular objects since
distribution. But in such model all caching algorithms willadmitting one segment of a one-timer amounts to admitting a
suffer since the portion of requests received by populeeaibj substantial part of the object. The figure also shows that our

decreases drastically. variable segmentation scheme achieves similar byte lgitast
a uniform 1 MB segmentation, which imposes higher cache
D. Effect of Segmentation on P2P Caching management overhead as discussed above.

Our algorithm uses a variable segmentation scheme whereby
objects belonging to the same workload have the same segment
size. As we discuss in Section IV, variable segmentation hasn this paper, we conducted a three-month measurement
several advantages over fixed segmentation. Using differstudy on the Gnutella P2P system. Using real-world traces,
segment size for different workloads helps reduce the @aath we studied and modeled characteristics of P2P traffic thet ar

VI. CONCLUSION AND FUTURE WORK

257

relevant to caching. We found that the popularity distiitnut
of P2P objects cannot be captured accurately using Zipf-lik
distributions. We proposed a new Mandelbrot-Zipf model for[5]
P2P popularity and showed that it closely models object popu
larity in several AS domains. Our measurement study indgat (6]
that: (i) The Mandelbrot-Zipf popularity has a negativeeeff

on hit rates of caches that use LRU or LFU policies, and (ii}7]
Object admission strategies in P2P caching are as critical t
cache performance as object replacement strategies.

We designed and evaluated a new P2P caching algorithisi
that is based on segmentation and incremental admission
of objects according to their popularity. Using trace-dnv [q]
simulations, we showed that our algorithm outperforms tra-
ditional algorithms by a significant margin and achieves
byte hit rate that is up to triple the byte hit rate achieve
by other algorithms. Finally, because of aborted downlpads
caching policy should not perform pre-fetching of objedts
its objective is to maximize byte hit rate, which is the st
taken by our algorithm.

We are currently implementing our algorithm in the Squiﬁz]
[27] proxy cache and testing it using our traces. In the fitur
we intend to investigate preferential segment evictiorgrghy
segments of the same object carry different values.

(4]

]

1)

[13]

ACKNOWLEDGMENTS [14]

We thank James Griffioen, the shepherd of our paper, and
the anonymous reviewers for their constructive commends
suggestions. This research is partially supported by anRCSE [16]
Discovery Grant and by a President's Research Grant frdhl
Simon Fraser University .

[18]
REFERENCES

[1] K. Gummadi, R. Dunn, S. Saroiu, S. Gribble, H. Levy, and@dhorjan,
“Measurement, modeling, and analysis of a peer-to-peersfigging
workload,” in Proc. of the 19th ACM Symposium on Operating Systen{
Principles (SOSP’03)Bolton Landing, NY, USA, Oct. 2003, pp. 314—
329.

[2] T. Karagiannis, A. Broido, N. Brownlee, K. C. Claffy, ad. Faloutsos,
“Is P2P dying or just hiding?” ifProc. of IEEE Global Telecommunica-

[19]
0]
1

[22]

tions Conference (GLOBECOM’'04Pallas, TX, USA, Nov. 2004, pp. 23]
[24]
1532-1538. [25]

[3] T. Karagiannis, P. Rodriguez, and K. Papagiannaki, t8thdnternet
service providers fear peer-assisted content distrib@tiin Proc. of the 26]
5th ACM SIGCOMM Conference on Internet Measurement (IM{'05
Berkeley, CA, USA, Oct. 2005, pp. 63-76. [27]

258

S. Podlipnig and L. Bszrmenyi, “A survey of web cache emgiment
strategies,”ACM Computing Surveywsol. 35, no. 4, pp. 347-398, Dec.
2003.

J. Liu and J. Xu, “Proxy caching for media streaming ovVes internet,”
IEEE Communications Magazineol. 42, no. 8, pp. 88-94, Aug. 2004.
P. Cao and S. Irani, “Cost-aware WWW proxy caching aldponis,”
in Proc. of USENIX Symposium on Internet Technologies andi@gst
Monterey, CA, USA, Dec 1997, pp. 193-206.

A. Wierzbicki, N. Leibowitz, M. Ripeanu, and R. WozniakCache
replacement policies revisited: The case of P2P traffic,Pioc. of
the 4th International Workshop on Global and Peer-to-Peemputing
(GP2P’04) Chicago, IL, USA, Apr. 2004, pp. 182-189.

L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenkergt¢aching
and Zipf-like distributions: Evidence and implicationsfi Proc. of
INFOCOM’'99 New York, NY, USA, Mar. 1999, pp. 126-134.

S. Sen and J. Wang, “Analyzing peer-to-peer traffic aerlasge net-
works,” IEEE/ACM Transactions on Networkingol. 12, no. 2, pp.
219-232, Apr. 2004.

A. Klemm, C. Lindemann, M. K. Vernon, and O. P. Waldhorshar-
acterizing the query behavior in peer-to-peer file sharipgfesns,” in
Proc. of ACM/SIGCOMM Internet Measurement Conference (M7
Taormina, Sicily, Italy, Oct. 2004, pp. 55-67.

N. Leibowitz, A. Bergman, R. Ben-Shaul, and A. Shaviré file swap-
ping networks cacheable? Characterizing P2P traffic,Piac. of the
7th International Workshop on Web Content Caching and istion
(WCW'’02) Boulder, CO, USA, Aug. 2002.

S. Jin and A. Bestavros, “Popularity-Aware GreedyD8&le Web Proxy
Caching Algorithms,” inProc. of the IEEE International Conference on
Distributed Computing Systems (ICDCS’QTaiwan, May 2000.

S. Jin, A. Bestavros, and A. lyengar, “Network-Awarertizd Caching
For Internet Streaming Media,ACM Multimedia Systems Journal
vol. 9, no. 4, pp. 386-396, Oct. 2003.

S. Park, E. Lim, and K. Chung, “Popularity-based Pam@aching for
VOD Systems using a Proxy Server.” iroc. of the 15th International
Parallel & Distributed Processing Symposium (IPDPS’0$gn Fran-
cisco, CA, USA, Apr. 2001.

“Gnutella Home Page,” http://www.gnutella.com.

“Limewire Home Page,” http://www.limewire.com/.

S. Saroiu, P. K. Gummadi, and S. D. Gribble, “Measurimgl analyz-
ing the characteristics of Napster and Gnutella hoA€M/Springer
Multimedia Systems Journalol. 9, no. 2, pp. 170-184, Aug. 2003.
J. Pouwelse, P. Garbacki, D. Epema, and H. Sips, “Th&oBient P2P
file-sharing system: Measurements and analysis,Piac. of the 4th
International Workshop on Peer-To-Peer Systems (IPTBS'@baca,
NY, USA, Feb. 2005, pp. 205-216.

“Network Systems Lab Home Page,” http://nsl.cs.gusfe.ca.

“GeolP Database Home Page,” http://www.maxmind.com.

0. Saleh and M. Hefeeda, “Modeling and caching of pegueer
traffic,” Simon Fraser University, Tech. Rep. TR 2006-11,yMx06.
Z. Silagadze, “Citations and the Zipf-Mandelbrot'svja Complex Sys-
tems vol. 11, no. 487-499, 1997.

“Emule Project Home Page,” http://www.emule-projaet/.
“BearShare Home Page,” http://www.bearshare.com/.

G. Huston, “Web Caching,The Internet Protocol Journakol. 2, no. 3,
Sept. 1999.

M. Rabinovich and O. SpatscheckWeb Caching and Replication
Addison-Wesley, 2002.

“Squid Web Proxy Cache Home Page,” www.squid-caclgg.or

