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Abstract— Fine granularity scalability (FGS) coding enables
finer bitrate scalability and better error resiliency than t radi-
tional multi-layer coding, because it allows truncating a bitstream
at arbitrary bits. This flexibility enables streaming appli cations
a more space to optimize quality (i.e., minimize distortion) at
a given channel bandwidth. This optimization relies on accurate
estimation of the rate-distortion (R-D) characteristics of video se-
quences. In this paper, we analyze and compare the performance
of the R-D models proposed in the literature for FGS coding
systems. We analyze the models by following their mathematical
derivations and scrutinizing their assumptions. We perform the
comparison by implementing the models and conducting an
extensive experimental study using a large set of video sequences
with diverse image and motion complexities. The results of our
experiments provide guidelines for choosing the appropriate R-D
model for rate-distortion optimized streaming applications.

I. I NTRODUCTION

Video streaming on the Internet is increasingly getting very
popular. The best-effort service offered by the Internet, how-
ever, poses unique challenges for high-quality video stream-
ing. These challenges include heterogeneity and bandwidth
variability in network channels between streaming servers
and clients. These challenges require streaming systems to
support bitrate scalability and error resiliency. Traditional
streaming systems partially cope with these challenges using
either multi-layer or multi-description encoding of streams.
These solutions, however, provide limited (coarse-grain)rate
scalability: clients receiving incomplete layers or descriptions
can not use them to enhance display quality. These solutions
also suffer from poor error resiliency because the loss or
corruption of a few bits render the entire layer useless.

In contrast to traditional multi-layer video coding, fine
granularity scalability (FGS) coding has been proposed to
provide finer bitrate scalability and better error resiliency [1].
An FGS encoder compresses video data into two layers: a base
layer which provides basic quality, and a single enhancement
layer that adds incremental quality refinements proportional
to the number of bits received. Arbitrary truncation (at the
bit level) of the enhancement layer to achieve a target bitrate
is possible, and, more importantly, it does not require any
complex or resource-intensive operations from the streaming
servers or their proxy caches. This in turn enables streaming
servers to scale to larger and more heterogeneous set of clients.

Given the flexibility of controlling the bitrate provided by
FGS encoders and the constraints on and the variability of the

channel bandwidth, researchers seek to optimize the received
video stream quality. A common method in the literature to
achieve such quality-optimized systems is through the use of
rate-distortion (R-D) functions. R-D functions describe the
relationship between the bitrate and the expected level of
distortion in the reconstructed video stream. Knowing the R-D
functions enables us, for example, to determine the required
bitrate to achieve a target quality, to optimally allocate agiven
bandwidth among frames, and to prioritize bits within the same
frame.

There are two approaches for determining R-D functions
of a given video sequence: empirical and analytic. Empirical
models rely on statistical observations rather than theoretical
derivations. Each empirical model proposes aparameter-
ized function that is thought to approximate the actual R-
D function. The parameters of the model are computed by
fitting actual R-D data to the proposed function. This requires
coding a video sequence several times at different rates to
get enough samples for estimating the parameters. Analytic
models, on the other hand, break the system into components
and describe each component with a model using theoretical
bases. The components are then put together for a complete
R-D model. Several analytic models have been proposed in
the literature. Unfortunately, we are not aware of any previous
work that rigorously analyzes and compares the accuracy and
applicability of the models.

In this paper, we analyze and compare the performance of
the R-D models proposed in the literature for FGS coding
systems. We analyze the models by following their mathemat-
ical derivations and scrutinizing their assumptions. We perform
the comparison by implementing the models and conducting
an extensive experimental study using a large set of video
sequences with diverse image and motion complexities. The
results of our experiments provide guidelines for choosingthe
appropriate R-D model for rate-distortion optimized streaming
applications.

The rest of this paper is organized as follows. In Section II,
we present the mathematical foundations of several FGS R-D
models. In Section III, we describe our experimental setup,
the selection of test sequences, and our results. We conclude
the paper in Section IV.

Due to space limitations, in this paper we present only a
synopsis of our analysis and a small sample of our experi-



mental results. Interested readers are referred to [2] for the
details.

II. FGS RATE-DISTORTION MODELS

The FGS enhancement layer employs a different quanti-
zation mechanism from the base layer. Instead of quantizing
transform coefficients with different quantization parameter
Q, the FGS enhancement layer drops bits from transform
coefficients, which is equivalent to gauging the bitrateR. This
suggests that the traditional R-D models may not capture the
characteristics of the enhancement layer. We carefully studied
several traditional models, such as the quadratic model and
ρ-domain model, and found most of them are not applicable
to the enhancement layer. More details are given in [2]. In the
following subsections, we present three R-D models that are
explicitly designed for the FGS enhancement layer.

A. Square Root Model

To develop the square root model, Dai et al. [3] first
statistically analyzed FGS-encoded sequences. They foundthat
the enhancement layer coefficients can be modeled by a linear
combination of two Laplacian distributions:

f(x) =p
λ0

2
e−λ0|x| + (1 − p)

λ1

2
e−λ1|x|, (1)

where p is a weight parameter between the two Laplacian
distributions, which haveλ0 and λ1 as their distribution
parameters.

Suppose there aren bitplanes, and letz denote the num-
ber of transmitted bitplanes. This means the receiver is not
aware of the last(n − z) bitplanes, and has to reconstruct
the coefficients without these bitplanes. This is essentially a
quantizer with a uniform quantization step∆(z) = 2(n−z),
and the reconstruction levels at:

L(x) =

{

⌊x/∆⌋ × ∆ x ≥ 0;

⌈x/∆⌉ × ∆ x < 0.
(2)

Next, we write the distortionD (in terms of the mean square
error) as a function of the quantization step∆:

D(∆) = 2

N
∑

m=0

(m+1)∆−1
∑

n=m∆

(n − m∆)2f(n), (3)

wheref(n) is the source probability distribution, andN = 2z

is the total number of positive quantization bins. The outer
summation iterates through all quantization bins, while the
inner summation covers integers within each quantization bin.
The m∆ is the reconstruction level of the quantization index
m. Substituting the the source model in Eq. (1) forf(x), we
get the D-Q function.

Meanwhile, the size of each bitplane is extracted by scan-
ning the compressed bitstream. Comparing the bitplane size
against the target bitrate, we can find out the corresponding
z (the last transmitted bitplane). This defines the quantization
step∆, but only at the bitplane boundaries.

To get the R-Q function, the following heuristic function is
used [3]:

R(z) = e1z
2 + e2z + e3, (4)

wheree1, e2, and e3 are polynomial coefficients, which are
derived by fitting the function against theR-z mappings at
bitplane boundaries.

B. Logarithm Model

The logarithm R-D model also assumes a mixture Laplacian
source and is derived as follows [4]. LetC denote the
collection of all enhancement layer coefficients, and letM =
|C| denote the total number of coefficients. For any given
quantization step∆, the coefficients falling in the interval
(−∆, ∆) will have zero reconstructed level.C is divided into
two subsets:Cz and Cnz for zero and non-zero quantized
coefficients. It was found that theCz contributes the majority
of distortion at low and medium bitrates [4]. DefineDz

and Dnz to be the distortion contributed byCz and Cnz,
respectively. The authors of [4] propose to carefully compute
Dz and roughly approximateDnz, since theDz represents the
majority of distortion.

Because coefficients inCz have zero reconstruction level,
Dz (in mean square error) can be written as:

Dz(∆) =
∑

ci∈Cz

|ci|
2
. (5)

Since bitplane quantization is very close to uniform quanti-
zation, the logarithm model uses the following D-Q function
to approximateDnz:

D(∆) =
∆2

12
. (6)

Adding and normalizingDnz and DZ result in the D-Q
function:

D(∆) =
Dz + Dnz

M
=

1

M

∑

ci∈CZ

|ci|
2

+ ρ
∆2

12
, (7)

whereρ is the percentage of non-zero quantized coefficients.
Dai et al. found that the linear bitrate model proposed

for traditional transform coders [5] is also valid in the FGS
enhancement layer and proposed to employ it as the R-Q
model [4]. The linear bitrate model defines the bitrateR as
a linear function ofρ with slopeγ. To estimate the slopeγ,
we first compute all the mapping betweenρ and bitrateR at
bitplane boundaries, and then do a polynomial fitting.

C. Generalized Gaussian Model

To accurately model the enhancement layer coefficients, the
generalized Gaussian model introduces higher flexibility by
applying a zero-mean generalized Gaussian function to each
frequency [6]. The R-D function is separately derived for each
of the 64 frequencies. Then, the complete R-D function is
calculated by aggregating all64 functions together.

The R-D function is approximated by:

R(∆) =h(f) − log2 ∆,

D(∆) =∆2/3, (8)



whereh(f) is the differential entropy off(x). Note that, the
derivation of this R-D function holds under the assumption that
f(x) is a zero-mean symmetric distribution. Furthermore, the
D(∆) function is deviated from the classic uniform quantizer
approximation (Eq. (6)) due to the unique reconstruction levels
in bitplane coding (Eq. (2)).

High computational complexity is a main concern for this R-
D model. We have to estimate and store64 pair of distribution
parameters for each frame, instead of1 set of parameters
in other models. The differential entropyh(f) computation
involves intensive integrations over the whole real line. The
intensity is even higher for a complex density functionf(x),
like the generalized Gaussian.

III. E XPERIMENTAL STUDY

A. Set up

In our experiments, we use the MPEG-4 Reference Software
Version 2.5 [7] developed by Microsoft as an experimental
package for the MPEG-4 standard. We instrument the refer-
ence software to extract various statistics of a video sequence.
For instance, we collect the transform coefficients, numberof
bitplanes, and size of each bitplane in the enhancement layer.
This information is then used to estimate the parameters of
different R-D models. We have implemented the following R-
D models for the FGS enhancement layer: the square root, the
logarithm, and the generalized Gaussian. To thoroughly evalu-
ate the above R-D models for FGS-encoded video sequences,
we perform the following steps:

1) Choose a test video sequence (see Section III-B).
2) Fix the bitrateRb for encoding the base layer, and FGS-

encode the sequence. The encoder creates two files: one
for the base layer and the other for the enhancement
layer.

3) For each frame, equally divide every bitplane into5
segments. This defines6 sampling bitratesRe for each
bitplane, including the bitrates at bitplane boundaries.
The minimum rate is0, while the maximum rate is the
rate at which all bitplanes of a frame are included in the
stream, i.e., full quality. For each value ofRe, do the
following:

a) For each R-D model considered in the study, ex-
tract the needed information from the enhancement
layer file. Then compute the parameters of the R-D
model and estimate the distortion atRe.

b) Truncate the enhancement bitstream atRe and save
it as a new file. Compute the empirical distortion
by decoding this truncated file and comparing the
reconstructed and original video frames (both are
uncompressed).

4) Randomly choose several frames from the video se-
quence and plot the R-D curves computed in step 3 for
these frames.

5) For each R-D model, compute the absolute average error
per frame by doing the following:

a) Compute the absolute difference (in PSNR) be-
tween the empirical and the estimated distortion
at all consideredRe.

b) Take the mean value of the difference to get the
average absolute error.

6) Repeat steps 1-5 for the next test video sequence.

B. Test Sequences

To form a set of test sequences, we select twenty video se-
quences from various sources [8], [9]. We adopt the neighbor-
hood difference as the complexity metric [10], and categorize
these sequences into three complexity classes: low, medium,
and high. Our extensive experimental results [2] indicate
that video sequences belonging to the same complexity class
exhibit similar R-D characteristics.

To illustrate our classification, we describe three sample
sequences: Akiyo (low complexity), Foreman (medium com-
plexity), and Mobile (high complexity). In Akiyo, a female
reporter reads news with very limited head movements in
front of a fixed camera. The Foreman sequence also features
a talking person, but it was taken with a hand-held device that
introduces camera movements. The Mobile sequence contains
saturated colors and several moving objects, thus falls in the
highest complexity class. More details on sequence complexity
and classification are given in [2].

C. Sample Results

The accuracy of the R-D models across different complexity
classes is depicted in Figure 1. The accuracy of the models
are compared against the actual R-D function (denoted as the
empirical (Emp) model in the Figures) of each video sequence.
First, we find that the square root model deviates dramatically
at high bitrate. This is because its D-Q function (Eq. (3))
assumes that there is no rounding error, and returnsD(∆) = 0
when all bitplanes have been transmitted.

Second, the generalized Gaussian model works poorly on
following the empirical R-D curves. It has larger deviation
at low bitrates, and it does not produce any results at high
bitrates. The large errors at low bitrates can be explained
by the derivation of its R-Q and D-Q functions, where the
quantization steps are assumed to be very small and all
samples in the same quantization bin share equal probability.
This introduces tremendous errors when∆ is large, e.g., at low
bitrates. On the other hand, the D-Q function (Eq. (8)) stops
working when∆ = 1 (high bitrate). Hence, the generalized
Gaussian model can not handle high bitrates.

Last, the logarithm model shows a higher deviation at high
bitrates of high complexity sequences, e.g., Fig. 1(c). This is
because these sequences tend to have more bitplanes, which
influences the linear bitrate model accuracy. More importantly
is the assumption that zero-quantized coefficients contribute
the majority of distortion does not hold in high complexity
sequences with low quantization steps. Furthermore, the uni-
form quantizers (Eq. (6)) approximation is rough, and may not
be applicable to FGS coders as proved in [6].
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(a) Akiyo, frame 122
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(b) Foreman, frame 105
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(c) Mobile, frame 104

Fig. 1. R-D curves for four models applied to three video sequences of different complexities.
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(b) Foreman
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(c) Mobile

Fig. 2. The average absolute error of the R-D models across all frames of three video sequences with different complexities.

In Fig. 2, we present more global results in the format of
average absolute error in each frame. Across all complexity
classes and frame types, the generalized Gaussian model con-
stantly produces errors larger than5dB. This implies that this
model is not useful in practice. The square root model works
better in high complexity sequences than low complexity
ones. On the other hand, the logarithm model works better in
low complexity ones. We see the square root model slightly
outperforms the logarithm model in Fig. 2(c), and expect to see
a larger margin in sequences with even higher complexity. Fig.
2(a) indicates that the logarithm model significantly surpasses
the square root model, which is universally true in all low
complexity sequences we have tested.

IV. CONCLUSION

We have analyzed and experimentally compared three R-
D models proposed for FGS-encoded video sequences: the
square root, logarithm, and generalized Gaussian models. We
find that the generalized Gaussian model fails to provide
reasonable accuracy. Our results indicate that the logarithm
model is more accurate than the square root model in low
complexity sequences, while the square root model is more
accurate in high complexity sequences. Our findings provide
streaming applications guidelines to choose the appropriate R-
D model based on sequence complexity. For example, a video
conference system may choose the logarithm model, while a
high-complexity sports program may perform better with the

square root model.
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