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Abstract— Fine granularity scalability (FGS) coding enables channel bandwidth, researchers seek to optimize the exteiv
finer bitrate scalability and better error resiliency than tradi-  video stream quality. A common method in the literature to
tional multi-layer coding, because it allows truncating a litstream achieve such quality-optimized systems is through the dise o
at arbitrary bits. This flexibility enables streaming applications . . . . .

a more space to optimize quality (i.e., minimize distortion at rate-_dlstor_tlon (R-D) functlo_ns. R-D functions descrildee t

a given channel bandwidth. This optimization relies on acctate  relationship between the bitrate and the expected level of
estimation of the rate-distortion (R-D) characteristics d video se- distortion in the reconstructed video stream. Knowing thB R
quences. In this paper, we analyze and compare the performae  functions enables us, for example, to determine the reguire
of the R-D models proposed in the literature for FGS coding bitrate to achieve a target quality, to optimally allocatgiaen

systems. We analyze the models by following their mathematal . e . oy
derivations and scrutinizing their assumptions. We perfom the bandwidth among frames, and to prioritize bits within theea

comparison by implementing the models and conducting an frame.
extensive experimental study using a large set of video seepces There are two approaches for determining R-D functions

with diverse image and motion complexities. The results ofwr  of a given video sequence: empirical and analytic. Emgirica
experiments provide guidelines for choosing the approprige R-D o els rely on statistical observations rather than thieale
model for rate-distortion optimized streaming applications. R -
derivations. Each empirical model proposesparameter-
|. INTRODUCTION ized function that is thought to approximate the actual R-

Video streaming on the Internet is increasingly gettingyveD function. The parameters of the model are computed by
popular. The best-effort service offered by the Internetyh fitting actual R-D data to the proposed function. This regglir
ever, poses unigue challenges for high-quality video streacoding a video sequence several times at different rates to
ing. These challenges include heterogeneity and bandwigiet enough samples for estimating the parameters. Analytic
variability in network channels between streaming servemgodels, on the other hand, break the system into components
and clients. These challenges require streaming systemsamsl describe each component with a model using theoretical
support bitrate scalability and error resiliency. Tramhtl bases. The components are then put together for a complete
streaming systems partially cope with these challengesyusR-D model. Several analytic models have been proposed in
either multi-layer or multi-description encoding of stnem the literature. Unfortunately, we are not aware of any fresi
These solutions, however, provide limited (coarse-greatg¢ work that rigorously analyzes and compares the accuracy and
scalability: clients receiving incomplete layers or dgsttons applicability of the models.
can not use them to enhance display quality. These solutiondn this paper, we analyze and compare the performance of
also suffer from poor error resiliency because the loss #re R-D models proposed in the literature for FGS coding
corruption of a few bits render the entire layer useless.  systems. We analyze the models by following their mathemat-

In contrast to traditional multi-layer video coding, fineical derivations and scrutinizing their assumptions. \Wégren
granularity scalability (FGS) coding has been proposed tlke comparison by implementing the models and conducting
provide finer bitrate scalability and better error resitigril]. an extensive experimental study using a large set of video
An FGS encoder compresses video data into two layers: a basguences with diverse image and motion complexities. The
layer which provides basic quality, and a single enhancémeasults of our experiments provide guidelines for choosieg
layer that adds incremental quality refinements propoafiorappropriate R-D model for rate-distortion optimized stnégzg
to the number of bits received. Arbitrary truncation (at thapplications.
bit level) of the enhancement layer to achieve a targettbitra The rest of this paper is organized as follows. In Section I,
is possible, and, more importantly, it does not require anye present the mathematical foundations of several FGS R-D
complex or resource-intensive operations from the stregmimodels. In Section 1ll, we describe our experimental setup,
servers or their proxy caches. This in turn enables stregmithe selection of test sequences, and our results. We canclud
servers to scale to larger and more heterogeneous setmifscliethe paper in Section IV.

Given the flexibility of controlling the bitrate provided by Due to space limitations, in this paper we present only a
FGS encoders and the constraints on and the variabilityeof thynopsis of our analysis and a small sample of our experi-



mental results. Interested readers are referred to [2]Her t To get the R-Q function, the following heuristic function is
details. used [3]:
R(z) = e12® + epz + e3, (4)

whereey, eq, andes are polynomial coefficients, which are

The FGS enhancement layer employs a different quandierived by fitting the function against thB-z mappings at
zation mechanism from the base layer. Instead of quantizipgiplane boundaries.

transform coefficients with different quantization paraene _

Q, the FGS enhancement layer drops bits from transforﬁw Logarithm Model

coefficients, which is equivalent to gauging the bitr&teThis ~ The logarithm R-D model also assumes a mixture Laplacian
suggests that the traditional R-D models may not capture tpeurce and is derived as follows [4]. Let denote the
characteristics of the enhancement layer. We carefullgistls collection of all enhancement layer coefficients, andMét=
several traditional models, such as the quadratic model déd denote the total number of coefficients. For any given
p-domain model, and found most of them are not appncaupejantization step], the coefficients falling in the interval
to the enhancement layer. More details are given in [2]. & thi—2, A) will have zero reconstructed level: is divided into
following subsections, we present three R-D models that dW0 subsets:C, and C,,. for zero and non-zero quantized

II. FGS RATE-DISTORTION MODELS

explicitly designed for the FGS enhancement layer. coefficients. It was found that th€, contributes the majority
of distortion at low and medium bitrates [4]. DefinB,
A. Sguare Root Model and D,,, to be the distortion contributed bg, and C,,.,

3] firsLrtespectively. The authors of [4] propose to carefully cotepu
fiand 2> and roughly approximat®,,.., since theD, represents the
g}ﬁjority of distortion.

Because coefficients in’, have zero reconstruction level,
D, (in mean square error) can be written as:

To develop the square root model, Dai et al.
statistically analyzed FGS-encoded sequences. They
the enhancement layer coefficients can be modeled by a lin
combination of two Laplacian distributions:

A0 ala A e
fla) =pTre i 4 (1= p) e, @ D.(A) =3 el )
c,eCy
Since bitplane quantization is very close to uniform quanti
zation, the logarithm model uses the following D-Q function

where p is a weight parameter between the two Laplacian
distributions, which have\; and \; as their distribution

parameters. to approximateD.. .-

Suppose there are bitplanes, and let denote the num- PP " )
ber of transmitted bitplanes. This means the receiver is not D(A) = A_ (6)
aware of the las{n — z) bitplanes, and has to reconstruct 12

the coefficients without these bitplanes. This is esséptml  Adding and normalizingD,,. and Dy result in the D-Q
guantizer with a uniform quantization step(z) = 2(»=), function:

and the reconstruction levels at: D, + D, 1 A2
DA)=——r—=17; > al? trog )
/Al x A x>0 e
L) = @) , o . .
[2/A] x Az <O0. where) is the percentage of non-zero quantized coefficients.

) ) ) _ Dai et al. found that the linear bitrate model proposed
Next, we write the distortio) (in terms of the mean squaresoy traditional transform coders [5] is also valid in the FGS

error) as a function of the quantization stép enhancement layer and proposed to employ it as the R-Q
N (mt+1)A—1 model [4]. The linear bitrate model defines the bitr&eas
D(A) =2 Z Z (n — mA)2f(n), 3) @ linear function ofp with slope~. To estimate the slope,
=0 nmA we first compute all the mapping betwegrand bitrateR at

] S bitplane boundaries, and then do a polynomial fitting.
where f(n) is the source probability distribution, add = 2*

is the total number of positive quantization bins. The out& Generalized Gaussian Model

summation iterates through all quantization bins, while th To accurately model the enhancement layer coefficients, the

inner summation covers integers within each quantization bgeneralized Gaussian model introduces higher flexibiligy b

The mA is the reconstruction level of the quantization inde&pplying a zero-mean generalized Gaussian function to each

m. Substituting the the source model in Eq. (1) fider), we frequency [6]. The R-D function is separately derived foclea

get the D-Q function. of the 64 frequencies. Then, the complete R-D function is
Meanwhile, the size of each bitplane is extracted by scacalculated by aggregating alli functions together.

ning the compressed bitstream. Comparing the bitplane sizelhe R-D function is approximated by:

against the target bitrate, we can find out the corresponding -

z (the last transmitted bitplane). This defines the quaritimat R(A) —h(2f) log, 4,

stepA, but only at the bitplane boundaries. D(A) =A%/3, (8)



whereh(f) is the differential entropy of (x). Note that, the a) Compute the absolute difference (in PSNR) be-

derivation of this R-D function holds under the assumpttoat t tween the empirical and the estimated distortion
f(z) is a zero-mean symmetric distribution. Furthermore, the at all considered®..

D(A) function is deviated from the classic uniform quantizer b) Take the mean value of the difference to get the
approximation (Eqg. (6)) due to the unique reconstructioele average absolute error.

in bitplane coding (Eq. (2)). 6) Repeat steps 1-5 for the next test video sequence.

High computational complexity is a main concern for this R-
D model. We have to estimate and stérepair of distribution B. Test Sequences
parameters for each frame, instead lofset of parameters
in other models. The differential entropy(f) computation
involves intensive integrations over the whole real linbeT
intensity is even higher for a complex density functiffx),
like the generalized Gaussian.

To form a set of test sequences, we select twenty video se-
guences from various sources [8], [9]. We adopt the neighbor
hood difference as the complexity metric [10], and categori
these sequences into three complexity classes: low, medium
and high. Our extensive experimental results [2] indicate
that video sequences belonging to the same complexity class
exhibit similar R-D characteristics.

A. Set up To illustrate our classification, we describe three sample

IIl. EXPERIMENTAL STUDY

X - a talking person, but it was taken with a hand-held device tha
For instance, we collect the transform coefficients, nun@er o4, ces camera movements. The Mobile sequence contains
bitplanes, and size of each bitplane in the enhancement layg,rated colors and several moving objects, thus fall&ién t

This information is then used to estimate the parameters r%hest complexity class. More details on sequence coritplex
different R-D models. We have implemented the following Ry classification are given in [2].

D models for the FGS enhancement layer: the square root, the
logarithm, and the generalized Gaussian. To thoroughlipevac Sample Results

ate the above R-D models for FGS-encoded video sequencegIJ ) )
we perform the following steps: he accuracy of the R-D models across different complexity

h i i classes is depicted in Figure 1. The accuracy of the models
1) C. ocr)]sebg test V'f €o squ_enceh (sge S(Tctmn ”I'dB)' are compared against the actual R-D function (denoted as the
2) Fix the bitratert, for encoding the base layer, an FGSampirical (Emp) model in the Figures) of each video sequence

fencohde Ehe selquence.dThhe encr?de][ creﬁ\tes t\go files: t, we find that the square root model deviates dramétical
or the base layer and the other for the en anceme(ﬂthigh bitrate. This is because its D-Q function (Eq. (3))

layer. hf v divid bito| , assumes that there is no rounding error, and reti¥1s) = 0
3) For each frame, equally divide every bitplane irito o o)l pitplanes have been transmitted.

s_egments_. Th|s_def|neﬁss§1mpl|ng bltr_atesRe for each_ Second, the generalized Gaussian model works poorly on
bltplan_e,_ including _the blt_rates at blt_plane bounda”e?ollowing the empirical R-D curves. It has larger deviation
The minimum ratg i9), while the maximurm rate Is .the at low bitrates, and it does not produce any results at high
rate at W.h'Ch all bltpla}nes of a frame are included in thﬁitrates. The large errors at low bitrates can be explained
strear_n, |..e., full quality. For each value &, do the by the derivation of its R-Q and D-Q functions, where the
following: guantization steps are assumed to be very small and all
a) For each R-D model considered in the study, e$amples in the same quantization bin share equal prolyabilit
tract the needed information from the enhancemehis introduces tremendous errors wheiis large, e.g., at low
layer file. Then compute the parameters of the R-Bjtrates. On the other hand, the D-Q function (Eq. (8)) stops
model and estimate the distortion At. working whenA = 1 (high bitrate). Hence, the generalized
b) Truncate the enhancement bitstreanRatind save Gaussian model can not handle high bitrates.
it as a new file. Compute the empirical distortion | ast, the logarithm model shows a higher deviation at high
by decoding this truncated file and comparing thgjirates of high complexity sequences, e.g., Fig. 1(c)sTi
reconstructed and original video frames (both algecause these sequences tend to have more bitplanes, which
uncompressed). influences the linear bitrate model accuracy. More impdigan
4) Randomly choose several frames from the video si-the assumption that zero-quantized coefficients cantrib
guence and plot the R-D curves computed in step 3 fire majority of distortion does not hold in high complexity
these frames. sequences with low quantization steps. Furthermore, tie un
5) For each R-D model, compute the absolute average erform quantizers (Eq. (6)) approximation is rough, and maly no
per frame by doing the following: be applicable to FGS coders as proved in [6].
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Fig. 2. The average absolute error of the R-D models acré$samies of three video sequences with different complesiti

In Fig. 2, we present more global results in the format afquare root model.

average absolute error in each frame. Across all complexity

classes and frame types, the generalized Gaussian model con
[1] H. Radha, M. van der Schaar, and Y. Chen, “The MPEG-4 firméngd

stantly produces errors larger thadB. This implies that this

model is not useful in practice. The square root model works
better in high complexity sequences than low complexity?]
ones. On the other hand, the logarithm model works better in
low complexity ones. We see the square root model slightl}é
outperforms the logarithm model in Fig. 2(c), and expece® s
a larger margin in sequences with even higher complexity. Fi

2(a) indicates that the logarithm model significantly ssges

the square root model, which is universally true in all low
complexity sequences we have tested.

We have analyzed and experimentally compared three
D models proposed for FGS-encoded video sequences: t
square root, logarithm, and generalized Gaussian models. W
find that the generalized Gaussian model fails to provid
reasonable accuracy. Our results indicate that the Idgarit
model is more accurate than the square root model in low
complexity sequences, while the square root model is mofé
accurate in high complexity sequences. Our findings proviﬁ@]

IV. CONCLUSION

streaming applications guidelines to choose the apprepRa

D model based on sequence complexity. For example, a video
conference system may choose the logarithm model, while a
high-complexity sports program may perform better with the
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