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ABSTRACT

Von Kries adaptation has long been considered a reasonable vehicle for color constancy. Since the
color constancy performance attainable via the von Kries rule strongly depends on the spectral response
characteristics of the human cones, we consider the possibility of enhancing von Kries performance by
constructing new "sensors" as linear combinations of the fixed cone sensitivity functions.

We show that if surface refiectances are well-modeled by 3 basis functions and illuminants by 2 basis
functions then there exists a set of new sensors for which von Kries adaptation can yield perfect color
constancy. These new sensors can (like the cones) be described as long-, medium-, and short-wave sensitive;
however, both the new long- and medium-wave sensors have sharpened sensitivities—their support is more
concentrated. The new short-wave sensor remains relatively unchanged. A similar sharpening of cone
sensitivities has previously been observed in test and field spectral sensitivities measured for the human eye.

We present simulation results demonstrating improved von Kries performance using the new sensors even
when the restrictions on the illumination and reflectance are relaxed.

1 INTRODUCTION

To a human observer, the world is populated with objects whose color does not change with change in
the incident illumination. Moving from indoor tungsten illumination to outdoor blue sky light has only a
small effect on our perception of color even though the light spectrum entering our eye differs markedly in
the two situations. The ability to discount the effect of the illuminant and thereby perceive only surface
properties is called color conslancy.

Light entering the eye is sampled by long-, medium- and short-wave sensitive cone sensors. Consequently
these cone response functions are at the heart of our color perception. Color constancy requires that the
values registered by each cone, a 3-vector p, be transformed into an illuminant-invariant surface descriptor. This transform is usually considered linear—a matrix is applied to cone response vectors. Indeed, under
Forsyth's formulation7 of the color constancy problem, the transform musi be linear. The color constancy
problem in equation form is:

= Qi? (1: color constancy equation)

where Q is the color constancy transform to be determined. Many different computational schemes have
been proposed for solving for Q. Each places structural constraints on the form of Q, and further, usually
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requires that the world satisfy certain other strong constraints (e.g., that each scene must contain a particular
distribution of surface reflectances'2). In studying color constancy algorithms, therefore, we must ask two
questions:

1. Independent of the computational scheme for computing the matrix, how well in principle can a
particular matrix form discount the effect of the illuminant?

2. How successful is a given color constancy algorithm in solving for the correct (or best) transform?

This paper focuses on the first of these two questions. We show that if illuminants and surface refiectances
are well described by finite-dimensional models with 2 and 3 degrees offreedom respectively (henceforth called
the 2-3 case) then a generalized diagonal matrix form supports perfect color constancy:

f = T'VTp (2 : generalized diagonal matrix color constancy)

The meaning of (2) is that color constancy is achieved by applying a diagonal matrix V under a basis change
T. Of course the operation of the diagonal matrix can be made explicit by prernultiplying both sides of
equation (2) with T:

T = VTp (3)

The matrix T effectively creates new sensors by taking a linear combination of the cone response functions.
These new sensors are again best described as long-, medium-, and short-wave sensitive; however, both the
new long- and medium-wave sensors have sharpened sensitivities with their support more concentrated than
before. As it happens, the new short-wave sensor remains relatively unchanged. The cone fundamentals
measured by Vos and Walraven are contrasted with their sharpened counterparts in Figure 1. A similar
sharpening of cone sensitivities has been measured in test and field spectral sensitivity experiments8"5'20,
and more recently in color discrimination experiments19. Finlayson et al.5 have investigated how sharpened
sensors better supports diagonal matrix color constancy.

Our work serves to strengthen existing diagonal matrix theories of color constancy; these include von
Kries adaptation22, Land's retinex17, I-Torn'3 and Blake's' Lightness algorithms and Forsyth's7 CRULE
algorithm. Moreover we will show that the non-diagonal theories of Lennie and D'Zmura4, Buchsbaum2
and Gershon'2, when weakly restricted, reduce to diagonal counterparts under a sensor transformation. Our
work also challenges the generally accepted belief that color constancy can only be achieved via more complex
matrix forms.

In Section 2 we provide the necessary definitions required to develop a mathematical model to describe
the color response of the human eye and go on to state formally the color constancy problem. In Section 3 we
develop techniques for finding the sensor transform T which affords perfect diagonal matrix color constancy
under the 2-3 constraints. It should be noted that this analysis is quite general and does not place restrictions
on the possible form of the initial set of sensors. Obviously, the human cone sensitivities are of interest in the
study of human color constancy; nevertheless, the analysis presented applies in a straightforward manner to
the type of RGB filters found in color cameras used in machine vision.

474/SPIE Vol. 1913



In Section 4 we discuss our results in the context of existing computational theories of color constancy. In
Section 5 we present simulation results which evaluate the performance of generalized von Kries adaptation
for the case of real surface reflectances and illuminant spectra. Finally in Section 6 we present a brief review
of the psychophysical evidence for sharpened cone sensitivities.

2 THE MODEL

The light reflected from a surface depends not only on the spectral properties of illumination and surface
reflectance but also on other confounding factors such as specularities and mutual illumination. To simplify
our analysis we will, in line with many other authors, develop our method for the simplified Mondrian world;
a Mondrian is a planar, matte surface with several different, uniformly colored patches. We assume that
the light striking the Mondrian is of uniform intensity and is spectrally unchanging. In this world the only
factor confounding the retrieval of surface descriptors is illumination.

Light reflected from a Mondrian falls onto the retina where, for simplicity, we assume that at each location
x all 3 classes of cone sensors are present. The value registered by the kth cone, pf (a scalar), is equal to
the integral of its response function multiplied by the incoming color signal. The color signal is the product
of the illuminant spectral power distribution and the surface spectral reflectance function. For convenience,
we arrange the index X such that each p corresponds to a unique surface reflectance:

: jCx() Rk() dA (4: color response)

where \ is wavelength, Rk(A) is the response function of the kth sensor, Cx()) is the color signal at X
and the integral is taken over the visible spectrum w. The color signal is the product of a single surface
reflectance S()) multiplied by the ambient illumination E(\): Cot) =

2.1 Finite-Dimensional Models

Illuminant spectral power distribution functions and surface spectral reflectance functions are well described
by finite-dimensional models of low dimension. A surface reflectance vector S()) can be approximated as:

d
S(\) S1(1 (5)

where S(;\) is a basis function and o is a ds-cornponent column vector of weights. Maloney'8 presents
evidence which suggests surface reflectances can be well modeled by a set of between 3 and 6 basis vectors.
Similarly we can model illuminants with a low—dimension basis set:

dE

E,(\)e3 (6)
j=1

where E1(\) is a basis function and is a dE dimensional vector of weights. Judd'4 measured 605 daylight
illuminants and showed that overall they are well modeled by a set of 3 basis functions.
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2.2 Lighting Matrices

Given finite-dimensional approximations to surface reflectance, the color response eqn. (4) can be rewritten as
a matrix transform. A lighting rnalrix A() maps reflectances, defined by the g vector, onto a corresponding
color response vector:

? A() (7)
where A()3 = R(\)E(,\)S ())d. The lighting matrix is dependent on the illuminant weighting vector, with E(A) given by eqn. (6).

2.3 The Color Constancy Problem

Within the framework of eqn. (1), any color constancy algorithm must aim to transform the color response
vector , due to the surface c, to its corresponding illuminant independent descriptor however, there is no
consistent definition for a descriptor. Under von Kries adaptation22 for example, the color response adapted
relative to the response of a white reflectance is used as a descriptor. Specifically the adapted response in the
long-wave cone channel is equal to the long-wave response of the surface . divided by the long-wave response
of the white reflectance (the medium- and short-wave adapted responses are similarly defined). The
simple von Kries descriptor is formally stated in eqn. (8); note that the function diag converts a vector into a
diagonal matrix, the ith row of the vector is mapped to the ith diagonal component of the matrix. Forsyth,
in contrast, defines a descriptor to be the color response of a surface seen under a canonical illuminant,
defined by the weight vector (eqn. (9)).

iv = (8 von Kries descriptor)

= A(Q)[A()]'A(�) (9 Forsyth's descriptor)

Since both descriptors are a linear transform from the cone response vector, they are themselves related
by a linear transform. If, for all illuminants A(Q)[A()J1 is a diagonal matrix then this implies that von
Kries adaptation will afford perfect color constancy. In Section 3 we show, assuming 2-3 world conditions,
that there exists a transformation of the cone basis such that A(c)[A(e)]1 is always diagonal.

3 DIAGONAL MATRIX TRANSFORM AND THE 2-3 CASE

In this section we show that if illumination and surface reflectance are described perfectly by finite
dimensional models of 2 and 3 degrees of freedom respectively then there exists a transformed sensor basis
in which a diagonal matrix supports perfect color constancy.

Under the 2-3 restrictions, every illuminant is described by a 2—vector with components (i ,2)T . Conse-
quently, the color response of a surface characterized by can be written with respect to the two A matrices
associated with the two basis directions in c—space,

A(1) (10)T , A(2) #-+ (0, i)T , (10)

A(c) = ciA(1) + e2A(2) (11)
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Therefore the color response of (eqn. (7)) becomes

= eiA(1)+e2A(2) (12)

Let us define our canonical illuminant, , to be the first illurninant basis function. Now consider the
relationship between the color response of a surface seen under illuminant with that for the same surface
illuminated by the second illuminant basis function. It is immediately clear that the color response under
the second illuminant basis function is a linear transform, M, away from its response vector viewed with
respect to the canonical illuminant:

A(2) = MA(1) (13)
M = A(2)[A(1)J' (14)

Now we can rewriting eqn. (12):
P = (fil + e2M)A(1)g (15)

where :i: is the identity matrix.

Therefore we have shown that the color response of any surface viewed under an arbitrary illuminant is
a fixed linear transform from its response with respect to the canonical illuminant. Furthermore, this linear
transform is necessarily a linear combination of the identity matrix I and the matrix M.

We defined a generalized diagonal Iransform (eqn. (2)) as a diagonal matrix applied with respect to a
transformed sensor basis. That there exists a generalized diagonal transform mapping surface color responses
between illuminants now follows from the eigenvector decomposition of M. Suppose M has the (unique)
decomposition

M = T1VT . (16)
We can also express the identity matrix I in terms of the eigenvectors of M:

I = T11T (17)

Consequently we can rewrite eqn. (12) as a generalized diagonal matrix transform:

Tp = (eu + e2V)TA(1)g (18)

and hence
(e11 + e2V)1Tp = 'TA(1) (19)

Using Forsyth's definition of a descriptor (eqn. (9)), the color response of a surface under a canonical
illuminant, equation (19) is a statement of diagonal matrix color constancy. All surfaces described by the
3-dimensional reflectance set seen under an arbitrary illuminant (falling in the span of the 2-dimensional
illuminant space) can be mapped to the canonical illuminant through the application of a diagonal matrix. An
implication of equation (19) is that in the 2-3 world all color constancy transforms of the form A(c)[A(e)]'
have the same eigenvectors.

Of course, depending on the spectral characteristics of our illuminant and reflectance basis functions, the
matrix M may have complex eigenvalues and eigenvectors. However as described in Finlayson et. al6, gen-
eralized diagonal matrix color constancy holds equally well even when the sensor transformation is complex.
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3-parameter

CIE A
0.04

D48
0.3

D55
0.11

D65
0.23

D75
0.16

D100
0.22

2-parameter 4.8 5.4 4.1 1.4 1.1 5.7

Table 1: Percentage error of best fitting 2- and 3-parameter spectra to 6 test illuminants

4 IMPLICATIONS FOR COMPUTATIONAL THEORIES OF
COLOR CONSTANCY

Many computational theories of color constancy assume that illumination and surface reflectance are
well described by finite-dimensional models with few parameters. Commonly both reflectance and illumina-
tion are restricted to be 3-dimensional. This is a pragmatic choice since data analyses have demonstrated
that 3-parameter models provide reasonable approximations to real illuminant and real reflectance spectra.
Moreover restricting reflectances to a 3-parameter model is necessary if metamerism is to be avoided and
color constancy rendered soluble.

One of the supposed advantages of color constancy algorithms founded on finite-dimensional models is
that the color constancy transform is not constrained to be diagonal. The reasoning is that an independent
adjustment of each sensor channel (i.e., the application of a diagonal matrix) is too simple an operation
to discount the illuminant effectively. For example, Lennie and D'Zmura4, assuming 3-parameter models
of illumination and reflectance, state that "Because any reasonable basis functions for illuminants and re-
flectances are spectrally broadband, the integrals that describe the link between reflectance and quantum
catches are typically non-zero [and hence] the three numbers used in scaling cone signals cannot undo what
it takes nine numbers to describe".

Our analysis of Section 3 directly contradicts this viewpoint, however. Restricting illumination to be
2-dimensional implies that, under an appropriate transformation of the sensor basis, perfect color conslancy
is afforded by a diagonal malrix. . As long as illumination is restricted to a 2-dimensional space, then Lennie
and Dzmura's algorithm is simply a diagonal matrix theory of color constancy. Similarly the computational
methods discussed by Buchshaum2 and Gershon12 both assume 3-parameter models of illumination and
reflectance. Again, restricting illumination to a 2-dimensional space implies that these approaches also
reduce to diagonal matrix color constancy.

Assuming that good color constancy is theoretically possible given a 3-parameter model of illumination,
we must ask how good it still will be if we drop to a 2-parameter model. To answer this question, we
performed a simulation experiment with the following 6 illuminants: 5 daylight phases (correlated color
temperatures ranging from 4800 to 10000K) measured by Judd14 and CIE standard illuminant A23 (color
temperature 2856K). A singular value decomposition of these spectra was used to derive optimal 3- and
2-parameter basis sets (optimal in the sense of minimizing the sum of squares of all the spectra to their best
fitting 3- and 2- parameter approximations). In Table 1 we tabulate the percentage error between the real
illuminant spectra and their closest fitting 2- and 3- parameter fits.

Clearly a 3-parameter model describes all 6 of our test illuminants well—all fitted errors are less than 0.25%.
Also, reasonable fits are still obtained when we move to a 2-parameter model; errors ranging between 1.1
and 5.7%. In both cases the approximate spectra are close enough that we may venture to guess that a
diagonal matrix may in fact support fairly good color constancy even when the 2-3 restrictions are relaxed.
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This guess is tested in Section 5.

It is perhaps unsurprising that we can model the illuminants so well—after all we derived our 2- and
3-parameter models from a small set of only 6 illuminants. To more stringently test the adequacy of our
models, we generated 13 Planckian black-body radiator spectra with color temperatures in the range 3200K
to 10000K. The mean fitted error to the (previously derived) 3- and 2-parameter models are 5.2 and 9.3%
respectively.

5 SIMULATIONS OF VON KRIES ADAPTATION

The 2-3 world is only an approximation of reality—refiectances are not precisely 3-dimensional nor are
illuminants 2-dimensional—and as such a diagonal matrix affords only approximate color constancy. In this
section we carry out simulations, using measured refiectances and measured illuminants, to evaluate the
performance of simple and generalized von Kries adaptation—equations (8) and (20).

çjV Tl (20)

The color responses ofsurfaces viewed under different illuminants are generated using equation (4). The
human cone fundamentals measured by Vos and Walraven2' are used as our sensors, the 462 Munsell Spectra3
for surfaces, and the 5 Judd Daylight phases14 (D48, D55, D65, D75 and D100) and CIE A23 for illuminants.
All spectra are sampled at lOnm (nanometer) intervals from 400 to 650nm. Consequently the integral of
eqn.(4) is approximated as a summation. The sensor transformation T was calculated via the technique
outlined in Section 3. Illumination was modeled using the 2-dimensional basis described in Section 4. A
3-dimensional reflectance basis was derived by performing a singular value decomposition of the Munsell
spectra. Figure 1 contrasts the Vos Walraven fundamentals with the transformed sensitivities.

We chose the Munsell spectra closest to uniform white as the white reference patch and the adapted
responses calculated for D55 as canonical descriptors—these provide a reference for determining constancy
performance. Under each of the remaining 5 lesI illuminants we calculated the adapted responses correspond-
ing to each of the 462 reflectances. The Euclidean distance between these descriptors and their canonical
counterparts, normalized with respect to each descriptor's length, provides a measurement of constancy
performance. The percent normalized fitted distance (NFD) metric is defined as:

NFD = 100* ¶cC
II

(20)

where c denotes the canonical (D55) illuminant and e a second arbitrary illuminant. For each of our 5 test
illuminants we calculated the following 3 cumulative NFD histograms:

1. the NFD error for simple von Kries adaptation, eqn.(8).

2. the NFD error for generalized von Kries adaptation, eqn. (20).

3. the optimal color constancy performance for a general linear transform.
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Figure 1: Result of sensor transformation T. Solid lines: Vos—Walraven cone fundamentals; dashed lines:
transformed sensors.
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Optimal color constancy performance is defined to be a least-squares fit relating the responses of all surfaces
viewed under an illuminant e to the corresponding responses with respect to the canonical illuminant c.
This optimal case, serves as a control for evaluating the color constancy performance afforded by a diagonal
matrix.

Figure 2 displays these 3 cumulative histograms for the test illuminants CIE A, D48, D65, D75 and
D100. In all cases generalized von Kries adaptation outperforms, by a large margin, simple von Kries
adaptation. Generalized von Kries adaptation also compares favorably with optimal color constancy. Only
for the extremes in test illuminants, CIE A and D100, is there a significant performance difference.

6 PSYCHOPHYSICAL EVIDENCE

Sharpened sensitivities, similar to those shown in Figure 1, have been detected both in field- and test-
sensitivity experiments (for a review of these terms see Foster9). Sperling and Harwerth2° measured the
test spectral sensitivities of human subjects conditioned to a large white background and, in correspondence
with our transformed sensors, found sharpened peaks at 530nm and GlOnm with no sharpening of the blue
mechanism. Furthermore, consistent with our computational analysis, these authors propose that a linear
combination of the cone responses accounts for the sharpening.

More recently, Foster8 observed that field- and test-sensitivity spectra show sharpened peaks when derived
in the presence of a small monochromatic auxiliary field coincident with the test field. Foster" extended this
work by performing a hybrid experiment with a white, spatially-coincident auxiliary field; and sharpened
sensitivities again were found. In both cases, these experimentally determined, sharpened sensitivities agree
with our theoretical results. Like Sperling, Foster1° verified that the sharpened sensitivities were a linear
combination of the cone sensitivities.

Krastel16 has measured spectral field sensitivities under changing illumination where, like Sperling, a
white conditioning field is employed. Illumination color was changed by placing colored filters in front of
the eye. The same test spectral sensitivity curve is measured under both a reddish and bluish illuminant.
This suggests that the eye's sharpened mechanisms are unaffected by illumination. Kalloniatis has mea-
sured cone spectral sensitivities under white adapting fields of different intensity and found the sharpened
sensitivities to be independent of the intensity of the adapting field.

Poirson and Wandell19 have developed techniques for measuring the spectral sensitivity of the eye with
respect to the task of color discrimination. For color discrimination among briefly presented targets, the
spectral sensitivity curve has relatively sharp peaks at 530nm and 6lOnm.

Although the general correspondence between our sharpened sensors and the above psychophysical results
does not imply that sharpening in huma.ns exists for the purpose of color constancy, at least the evidence
that a linear combination of the cone responses is employed somewhere in the visual system lends plausibility
to the idea that sharpening might be used in human color constancy processing.
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Figure 2: Cumulative histograms showing improved performance of generalized diagonal color constancy.
Short dashed lines: simple von Kries adaptation; Long dashed lines: generalized von Kries adaptation; solid
lines: optimal (non-diagonal) color constancy.
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7 CONCLUSION

A diagonal matrix transform is at the foundation of many color constancy theories; these include von
Kries adaptation, Land's retinex and Forsyth's CRULE. If illuminants are 2-dimensional and reflectances
3-dimensional, then we have shown that there exists a transformed cone basis in which a diagonal matrix
will support perfect color constancy. Moreover, our analysis is quite general in the sense that subject to the
dimensional restrictions on illuminants and rellectances, a diagonal matrix will suffice for color constancy
for all trichromatic visual systems.

Relaxing these restrictions, we performed simulations of von Kries adaptation using actual measured
illuminant and reflectance spectra. While the initial cone sensitivities afforded poor color constancy relative
to the optimal possible. The transformed cone basis supported close to optimal color constancy. Indeed
given the transformed basis, the performance is sufficiently good that there seems little reason to employ a
more complex matrix form to support color constancy.
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