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A general survey of digital still camera processing

igital still color cameras (DSCs) have gained significant popularity in recent years,

with projected sales in the order of 44 million units by the year 2005. Such an

explosive demand calls for an understanding of the processing involved and the

implementation issues, bearing in mind the otherwise difficult problems these

cameras solve. This article presents an overview of the image processing pipeline,
first from a signal processing perspective and later from an implementation perspective, along
with the tradeoffs involved.

IMAGE FORMATION
A good starting point to fully comprehend the signal processing performed in a DSC is to con-
sider the steps by which images are formed and how each stage affects the final rendered image.
There are two distinct aspects of image formation: one that has a colorimetric perspective and
another that has a generic imaging perspective, and we treat these separately.

In a vector space model for color systems, a reflectance spectrum () sampled uniformly in
a spectral range [Amin, Amax] interacts with the illuminant spectrum L() to form a projection
onto the color space of the camera RGB. as follows:

c:N(S LMr+n), 1)

where S is a matrix formed by stacking the spectral sensitivities of the K color filters used in
the imaging system column-wise, L is a diagonal matrix with samples of the illuminant spec-
trum along its diagonal, M is another diagonal matrix with samples of the relative spectral
sensitivity of the charge-coupled device (CCD) sensor, r is a vector corresponding to the rela-
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tive surface spectral
reflectance of the object,
and n is an additive noise
term (in fact, noise may
even be multiplicative
and signal dependent,
making matters mathe-
matically much more
complex) [1], [2]. N cor-
responds to the nonlin-
earity introduced in the
system. A similar algebra-
ic setting exists for color
formation in the human
eye, producing tristimu-
lus values where A is used
to denote the equivalent
of matrix S, and t denotes
the tristimulus values in
the CIEXYZ space [3]. Let
us denote by f an image
with M rows, N columns,
and K spectral bands.
DSCs typically use K = 3, although one may conceive of a sen-
sor with a more spectral bands. In some recent cameras, four
sensors are used: red, green, blue, and emerald or cyan,
magenta, yellow, and green. (Depending on the choice of the
spectral sensitivities, the colors captured form color gamut of
different sizes; for DSCs, it is typically important to capture
skin tones with reasonable accuracy.) The image may also be
considered as a two-dimensional (2-D) array with vector-val-
ued pixels. Each vector-valued pixel is formed according to the
model in (1), with values determined by the reflectance and
illumination at the three-dimensional (3-D) world point
indexed by 2-D camera pixel position. The image formed is
then further modeled as follows:

Sensor, Aperture,
and Lens

Focus
Control

Exposure
Control

Display on Preferred
Device

Compress and Store

g = B{Hf}, @

where B is a color filter array (CFA) sampling operator, H is the
point spread function (a blur) corresponding to the optical sys-
tem, and f is a lexical representation of the full-color image in
which each pixel is formed according to (1).

Although there is an overlap between color processing prob-
lems for other devices, such as scanners and printers, working
with DSCs is complicated by problems stemming from the man-
ner in which the input image is captured; the spatial variation in
the scene lighting, the nonfixed scene geometry (location and
orientation of light source, camera, and surfaces in the scene),
varying scene illuminants (including combination of different
light sources in the same scene), or the use of a CFA to obtain
one color sample at a sensor location, to name a few.

Further resources on DSC issues include an illustrative
overview of some of the processing steps involved in a DSC by
Adams et al. [4]. A recent book chapter by Parulski and
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[FIG1] Image processing involved in a DSC.

Spaulding details some of these steps [5]. An excellent resource
for DSC processing is a book chapter by Holm et al. [6]. The
multitude of problems that still remain unsolved is a fascinating
source of research in the community.

PIPELINE

The signal flowchart shown in Figure 1 briefly summarizes DSC
processing. It should be noted that the sequence of operations
differs from manufacturer to manufacturer.

Each of these blocks may be fine-tuned to achieve better sys-
temic performance [7], e.g., introducing a small amount of blur
using the lens system increases the correlation between neigh-
boring pixels, which in turn may be used in the demosaicking
step. Let us now consider each block in Figure 1.

SENSOR, APERTURE AND LENS

Although there is a need to measure three (or more) bands at
each pixel location, this requires the use of more than one sen-
sor and, consequently, drives up the cost of the camera. As a
cheaper and more robust solution, manufacturers place a CFA
on top of the sensor element. Of the many CFA patterns avail-
able, the Bayer array is by far the most popular [8]. Control
mechanisms interact with the sensor (shown in Figure 1 as a
red-green-blue checkered pattern, the CFA), to determine the
exposure (aperture size, shutter speed, and automatic gain con-
trol) and focal position of the lens. These parameters need to be
determined dynamically based on scene content. It is conven-
tional to include an infrared blocking filter called a “hot mirror”
(as it reflects infrared energy) along with the lens system, as
most of the filters that are used in CFAs are sensitive in the
near-infrared part of the spectrum, as is the silicon substrate
used in the sensor.
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[FIG2] lllustration of the division of the image into various blocks
over which the luminance signal is measured for exposure
control. (a) The image is divided into 24 blocks. (b) Sample
partitioning of the scene for contrast measurement.

Exposure control usually requires characterization of the
brightness (or intensity) of the image: an over- or underexposed
image will greatly affect output colors. Depending on the meas-
ured energy in the sensor, the exposure control system changes
the aperture size and/or the shutter speed along with a carefully
calibrated automatic gain controller to capture well-exposed
images. Both the exposure and focus controls may be based on
either the actual luminance component
derived from the complete RGB image or
simply the green channel data, which is a
good estimate of the luminance signal.

The image is divided into blocks [9],
[10] as shown in Figure 2(a). The average
luminance signal is measured in each one
of these blocks that later is combined to
form a measure of exposure based on the

contrast ratio between the brightest pixel and the darkest pixel
in an image. The human visual system (HVS) can adapt to about
four orders of magnitude in contrast ratio, while the sSRGB sys-
tem and typical computer monitors and television sets have a
dynamic range of about two orders of magnitude. This leads to
spatial detail in darker areas becoming indistinguishable from
black and spatial detail in bright areas become indistinguishable
from white. To address this problem, researchers have used the
approach of capturing multiple images of the same scene at
varying exposure levels and combining them to obtain a fused
image that represents the highlight (bright) and shadow (dark)
regions of an image in reasonable detail [11]. A detailed discus-
sion of this topic is beyond the scope of this article, however, we
refer the interested reader to the appropriate references
[12]-[14]. Another interesting approach to this problem is to
squeeze in two sensors in the location of what was formerly one
sensor element; each with a different sensitivity to light, captur-
ing two images of different dynamic ranges, hence effectively
increasing the net dynamic range of the camera. Commercial
cameras are beginning to incorporate high dynamic range
(HDR) imaging solutions into their systems, either in software
through image processing routines or in
hardware by modifying the actual sensor, to
facilitate the capture of excessively front or
backlit scenes.

Focus control may be performed by
using one of two types of approaches,
active approaches that typically use a
pulsed beam of infrared light from a small
source placed near the lens system (called

type of scene being imaged: backlit or
frontlit scene or a nature shot. In a typical
image, the average luminance signal is
measured and is compared to a reference
level, and the amount of exposure is con-
trolled to maintain a constant scene lumi-
nance. Backlit or frontlit scenes may be
distinguished by measuring the difference
between the average luminance signal in
the blocks, as shown in Figure 2(b). If the
image is excessively frontlit, the average
energy in region A will be much higher
than that in region B, and vice versa in the
case of a backlit scene. The exposure is
controlled so as to maintain the difference
between the average signals in these two
areas, an estimate of the object contrast.
Figure 3(a)—(c) illustrates an underex-
posed, overexposed, and well-exposed
image, respectively.

Outdoor images (and many indoor ones
as well) taken with typical cameras suffer
from the problem of limited dynamic range
in the case of an excessively backlit or
frontlit scene. Dynamic range refers to the

(b)

[FIG3] Images of a Macbeth
ColorChecker chart showing exposure
levels: (a) an underexposed image, (b)
an overexposed version of the same
image, and (c) a well-exposed image.
These images were taken using a
manually controlled lens control.

an auto-focus assist lamp) to obtain an
estimate of the distance to the object of
interest or passive approaches that make
use of the image formed in the camera to
determine the best focus. Passive
approaches may be further divided into
two types, ones that analyze the spatial
frequency content of the image and ones
that use a phase detection technique to
estimate the distance to the object.
Techniques that analyze the spatial fre-
quency content of the image typically
divide the image into various regions
(much like in the case of exposure con-
trol), and the position of the lens is adjust-
ed to maximize the high-spatial-frequency
content in the region(s) of interest (region
labeled A in the case of a portrait image).
In other words, given that sharp edges are
preferred over smooth edges, in cases
when the object of interest is in the central
region (A) the position of the lens is adjust-
ed so as to maximize the energy of the
image gradient in this region. A digital
high-pass filter kernel is used to measure
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the resulting energy as a measure of focus. There
are other “smart” measures of focus discussed in
the open literature [15], [16] and as intellectual
property [17]. Clearly, such techniques require that
the scene have high contrast, which is not always
the case. Also, such techniques have high computa-
tional demands on the camera.

Techniques that use phase detection utilize the
phase difference between the energy measured from
the two halves of the lens, much like in the case of a
split-image rangefinder used in film-based, single-
lens-reflex (SLR) cameras. The majority of this work
is part of intellectual property owned by Honeywell
[18]. This principle is easily explained through the
use of ray diagrams, shown in Figure 4. Figure 4(a)
shows a ray diagram when the lens is in good focus,
and (b) shows the intensity profile corresponding to
this lens position. When the object is moved farther
away, the rays from the upper and lower halves of
the lens no longer intersect at the same locations,
and the measured energy from the two halves of the
lenses are out-of-phase [Figure 4(b)—(c)] and
requires the lens to move relative to the image plane
to compensate for this defocus; in this case, towards

(d)

/m

(f)

the image plane. A similar argument may be made
for the case when the object moves closer to the
lens [Figure 4(e)—(f)].

Figure 5 shows one such image in two out-of-
focus positions of the lens and one in-focus position.
A focus measure is plotted in Figure 5(d). In-focus
positions of the lens maximize the measure.
Cheaper camera alternatives avoid this mechanism
by using a fixed-focal-length lens.

[FIG4] Ray diagrams illustrating the basis for phase-detection techniques. (a)
Case when the object is in good focus, with rays from the two halves of the
lens intersecting on the image plane. (b) The corresponding intensities on the
image plane. (c) The object is farther from the lens than in case (a) with the
rays intersecting in front of the image plane. (d) The corresponding intensities
on the image plane, showing the lower intensities of the two halves of the
lenses separately. (e) The object is closer to the lens than in case (a) with the
rays intersecting behind the image plane. (f) Corresponding intensities on the
image plane with a condition similar to that in (d). In cases (c) and (e), the
image appears blurred. In this figure, lines in red and green on the images on
the right, respectively, denote the intensity from the upper and lower halves of
the lens. Adapted from [18].

We should note at this point that aliasing (due to
the CFA sampling) causes highly objectionable arti-
facts in the output image. As a means of reducing these artifacts,
most cameras use an antialiasing filter using one of two
approaches: using a birefringent material that uses polarization
to spread a beam of light over multiple pixels [19] or using
phase delay techniques [4] that shift neighboring rays out of
phase, consequently attenuating high-frequency content. This
helps reduce Moiré patterns that may occur due to the sampling
process involved, while aiding the demosaicking process by
increasing the correlation between neighboring pixels.

The sensor element (CCD/CMOS sensor with a CFA) records
the image by using photosensitive elements that convert light
energy to electrical energy. The use of the CFA has the advan-
tage that, although we are recording three color signals, we
require only one sensor. Of course, this has the drawback that,
at each sensor location, we measure only one color and the
other two need to be estimated. This estimation process is
called demosaicking. Another drawback with such a sampling
process is that each channel of the image is usually sampled at
one-half or one-quarter of the resolution of the sensor. In the
Bayer array, the green channel is sampled at one-half, and the

red and blue are sampled at one-quarter of the sensor resolu-
tion, which, after demosaicking, introduces artifacts. In such a
scenario, the antialiasing filter is important, although there is a
tradeoff with image sharpness.

In an exciting new development, the invention of entirely
new sensor arrays [20] that more or less emulate the capture
process of slide film to produce three color values at each and
every pixel can eliminate the demosaicking step entirely and
lead to crisper images.

Let us briefly look at the filters used in the sensor. Figure 6
shows a sample set of filter sensitivities. Notice that the filters
have sensitivities that are nonzero, even outside what is typically
accepted as the visible part of the spectrum (400-700 nm). This
problem may be alleviated, as mentioned earlier, by using an IR-
blocking filter in conjunction with the lens apparatus.
Comparing the CIE standard observer sensitivities [21], [3,
Figure 3] with the sensitivities of the CFA, we can anticipate
that the color space of the camera is going to be very different
from that of the human observer. Notice also that there is a
remarkable amount of overlap in the spectral sensitivities of the
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three channels in the camera, which, along with the blur, fur-
ther reduces artifact problems associated with demosaicking.

PREPROCESSING

The raw data obtained from the sensor needs to be processed
before producing a full-color image to remove noise and other
artifacts, along with a color processing pipeline to produce an
accurate or, alternatively, a pleasing representation of the cap-
tured scene. One commonly used preprocessing step is defec-
tive pixel correction. It is possible that certain photo-elements
in the sensor are defective and, if not corrected, show up as
confetti-like errors after demosaicking. These missing or defec-
tive pixels are estimated by interpolating the accurately record-
ed data in their neighborhood.

LINEARIZATION

Some cameras require that the data be linearized since the cap-
tured data resides in a nonlinear space, mostly due to the electron-
ics involved. However, most CCD sensors typically have a linear
response. Cameras that include correction for nonlinear data use
an opto-electronic conversion function (OECF) that relates the
input nonlinear data to an output linear space. ISO standard
14,524 describes methods for measuring the OECF [22]. This cor-
rection transforms the raw measured data (typically with an 8-b
precision) into linear space (of higher bit precision, typically 12-b).
Relating to (1), the OECF is the inverse of the term denoted V.

DARK CURRENT COMPENSATION

Even with the lens cap on, a dark current signal is recorded,
which is due to thermally gener-
ated electrons in the sensor sub-
strate. To account for this, two
strategies are used; place an
opaque mask along the edges of
the sensor to give an estimate of
(b) intensity due to dark current

Focus Measure

In-Focus Range

-~

alone, or capture a dark image for
the given exposure time. In the
first case, the mean dark current
is subtracted from the entire
image, and in the second, the
dark image itself is subtracted
from the captured data. It should
be noted that dark current is a
function of both exposure time

(©

[FIG5] Sample images showing focus control. (a) An out-of-focus image block at a certain lens
position. (b) The same image with lens position closer to the required focal length. (c) An in-focus
image block. (d) A plot of the focal measure versus the lens position. These are simulated images.
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[FIG6] Sample spectral sensitivities of filters used in a digital
color camera.

Lens Position
(d)

and the ambient temperature.
Dark current is one contributing
component in the noise term, n
in (1). It becomes increasingly
important in low-exposure
images, as the noise energy may
be comparable to signal energy. Other contributing factors to
the noise in the signal include “one-over-f” (flicker) and “reset”
(kT/c) noise that arise from the readout clock system and from
thermal noise, respectively.

FLARE COMPENSATION

Flare compensation is of significance in images where a bright
source of light is in the field of view. Light entering the optics of
the camera gets scattered and reflected, causing a nonuniform
shift in the measured energy. Flare compensation techniques
are mostly proprietary. A naive means of compensating for flare
light is to subtract from the whole image a percentage of the
mean measured signal energy in a channel. Another, more adap-
tive technique is to subtract a fixed percentage of the mean sig-
nal energy in the pixel’s neighborhood. The first technique,
however, will make dark regions of the image darker blindly, and
possibly negative, when in fact there would have been less flare
in the darker regions in any case. Flare light is another con-
tributing component in the noise term, n in (1).
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WHITE BALANCE
The HVS has the ability to map “white” colors to the sensation
of white, even though an object has different radiance when it
is illuminated with different light sources. In other words, if
you were shown a sheet of white paper under fluorescent
lighting or under incandescent
lighting or even under natural
daylight, you would say that it
was white, although the actual
irradiated energy produces dif-
ferent colors for different illu-
minations. This phenomenon is
called color constancy. While a
pinkish-white light impinging
on a white wall may be perceived as white by the human eye-
brain system, white light reflected from a rose is not seen as
white, this even though camera pixel values may be identical
in the two cases. However, DSCs do not have the luxury of
millions of years of evolution and hence need to be taught
how to map white under the capture illuminant to white
under the viewing illuminant (and other colors accordingly).
All this needs to be done automatically, without knowledge
about the capture illuminant. Under flash photography, how-
ever, this is simpler, as we know the illuminant relatively well.
One means of performing white balance is to assume that a
white patch must induce maximal camera responses in the
three channels. In other words, if R, G, and B denote the red,
green, and blue channels of the image, the white-balanced
image has signals given by R/Rmax, G/Gmax, and B/Bmax.
However, the maximum in the three channels is very often a
poor estimate of the illuminant.

The next level of complication as an approach to color constan-
cy (although an admittedly naive one) is the
“gray world” assumption: assume all colors
in an image will average out to gray,
R = G = B. In other words, the channels are
scaled based on the deviation of the image
average from gray (keeping, say, the green
channel gain, fixed). In this scheme, the
white-balanced image has signals given by
kyR, G, and kB, where ky = Gmean / Rmean
and & = Gmean /Bmean, the premise being
that all off-balance neutral colors will get
mapped to balanced neutrals.

This technique fails when most of the
image is highly chromatic, e.g., a close-up
image of a brightly colored flower. There
are heuristics around this problem,
though, that perform the scaling only for
less chromatic colors. In [23],
Kehtarnavaz et al. present a technique
called “scoring” to perform automatic
white balance. In [24], Barnard et al. pres-
ent white balance techniques in an histori-

cal perspective and illustrate the world assumption.

OUTDOOR IMAGES TAKEN WITH
TYPICAL CAMERAS SUFFER FROM
THE PROBLEM OF LIMITED DYNAMIC
RANGE IN THE CASE OF AN EXCESSIVELY
BACKLIT OR FRONTLIT SCENE.

[FIG7] (a) Image captured under an
incandescent illuminant. (b) Same image
after white balance using the gray-

performance of the algorithms on synthetic data. It is not
always the case that white balance must be done automatically.
Some cameras, particularly the more expensive ones, put more
emphasis on preprogrammed white balance or manual white
balance than their automatic counterparts. Figure 7 shows a
rendering of an image captured
under an incandescent illumi-
nant (with dominant energy
near the red part of the spec-
trum). Notice that the white
patch shows up with a yellow-
red tint. Figure 7 shows the
result of a gray-world assump-
tion white balance performed to
correct for this shift. More sophisticated techniques for illumi-
nant estimation (e.g., [25]) are slowly entering the industry.

DEMOSAICKING

Demosaicking is, by far, the most computationally intensive step
in the processing pipeline. The techniques used are usually
either proprietary or covered by patents. All demosaicking tech-
niques make use of pixel neighborhood information to estimate
the values of the pixel colors that were not measured. As one
might imagine, this process will introduce artifacts that the
remainder of the pipeline needs to remove. There are many
techniques available for demosaicking, some of which are out-
lined in [26]. Popular techniques for demosaicking in open liter-
ature may be found in [27]-[31]. More details about
demosaicking techniques may be found in a companion article
by Gunturk et al. [32]. At this stage, the image is in a K-band
form, residing in the color space of the camera.

COLOR TRANSFORMATION—

UNRENDERED COLOR SPACES

Unrendered color spaces are so called
because they are not designed for an output
medium but rather for a convenient stor-
age or calculation medium. This advantage
comes with the added drawback of storage
requirements. Given that the spectral sen-
sitivities of the camera are not identical to
the human color matching functions, it is
clear that cameras are not colorimetric.
(The need to use colorimetric values lies in
the fact that the color matching functions
for the CIEXYZ system have been deter-
mined through careful visual experiments
and are known to be a good estimate of the
colors perceived by the HVS. However,
recent advances have shown that the
CIEXYZ space may be replaced with a
scene-referred color space, such as the ISO-
RGB color space [33] or the RIMM-RGB
color space [34].) The data captured by the
sensor is in the color space of the camera
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and has little to do with colorimetric (human) values. One
means of obtaining colorimetric accuracy in the process of cap-
turing an image is to transform the image from the sensor’s
spectral space to the CIEXYZ color space. In other words, given
a camera measurement ¢ at a pixel and the corresponding col-
orimetric value ¢, one may attempt to find the optimal color
characterization transformation that maps the camera color
space measurements to the CIEXYZ color space, i.e., find the
(linear, for simplicity and efficiency of implementation) transfor-
mation B that minimizes the function

N
J =Y IBNTIN(STLMy; + ny) — ATLr; )2
i=1
N
=D IBN e — i, )

i=1

where 7 is the index of the colors that need to be mapped. This,
however, does not guarantee white point preservation; white in
the camera’s color space need not get mapped to white in the
CIEXYZ space. To this end, Finlayson and Drew propose a white
point preserving least squares technique [35] that adds a con-
straint to the previous function to give

N
J=>"IBN e —t |7 + AIBN Tty — tul® (4
i=1

where A is a Lagrange multiplier and ¢,, and t,, are the camera
measurements and tristimulus values of the white point, conse-
quently preserving the white-point. A simple extension is to
include the neutral colors as approximate constraints in this
optimization. Although the transform matrix B resulting from
the second technique may have larger overall error, it guaran-
tees that distinguished points are mapped error free or nearly so
[35]. This matrix now maps the data from the camera’s color
space to the CIEXYZ color space (which is also unrendered).
Other techniques for generating a transform matrix using high-
er order measurements are also used to obtain better estimates
[35]. Typically, a Macbeth ColorChecker chart [36] is used to
obtain colors that need to mapped, although other standard
charts are also available.

Spaulding et al. [37] refer to the stages a raw digital camera
image goes through as “image states,” and refer to the unren-
dered (scene-referred) and rendered (output-referred) versions
of the image. We had alluded to the fact that the filter sensitiv-
ities of color cameras are different from the CIEXYZ functions
and that this is intentional. One of the main reasons for this
lies behind the need not for accurate scene reproduction but
rather for pleasing reproductions of the scene. These aims are
not the same. This does not change the manner in which the
aforementioned equations are set up for optimization, but does
affect the manner in which the scene is encoded. The scRGB

color space [38] is one popularly used, unrendered color space
that has been shown to be well suited to digital color camera
operations, especially with regard to white-point conversions
[39]. It was designed with the sRGB color space [40] as a can-
didate output-referred color space and is thereby based on the
ITU-R BT.709-3 color primaries (basic RGB colors) and set to a
D65 (standard daylight at “correlated color temperature”
6,500°) white point. Another popularly used scene-referred
(unrendered) color space is RIMMRGB [34], a wide-gamut
color space, well suited for mathematical manipulations. This
space is based on imaginary primaries and a D50 white point.
Interchanging between the unrendered spaces and CIEXYZ
color spaces is via simple matrix multiplications (linear trans-
forms), included in these standards.

COLOR TRANSFORMATION—RENDERED COLOR SPACES
Rendered color spaces are designed for output purposes and
have a limited gamut, unlike their unrendered counterparts
that are scene based. Rendered color spaces are produced from
the image data in the unrendered color space. This process
involves a loss in dynamic range (rendered spaces are limited
to 8 b, while their unrendered counterparts have 12-16-b
dynamic ranges). The most common rendered space is the
sRGB color space [40], which has become a common cross-
platform standard for multimedia. Another common rendered
space is defined in ITU-R BT.709-3 [41], a standard originally
devised for high definition televisions. The sRGB standard
adopts the primaries defined by the ITU-R BT.709-3 standard.
These standards define the transformation process from
unrendered spaces (mostly CIEXYZ) to 8-b values required by
most output media. In [42], Stisstrunk et al. discuss the advan-
tages and disadvantages of a variety of such color spaces. The
interested reader is referred to the work by Holm [43] for a
study of considerations in color space standards design. With
the data now in a standard color space for reproduction, the
processing chain is almost complete, modulo possible post-
processing steps that make the images look better.

POSTPROCESSING

Different camera manufacturers use different proprietary steps
subsequent to all the aforementioned processing, aimed at
image appearance enhancement. Postprocessing is necessary as
each of the previous steps may introduce objectionable artifacts.
For example, the demosaicking step may introduce a zipper arti-
fact along strong intensity edges. A few of the common post-
processing steps employed are color-artifact removal, edge
enhancement, and coring. These techniques are mostly heuris-
tic based and require considerable fine-tuning.

The demosaicking step introduces objectionable artifacts
referred to as zipper and confetti artifacts. It is important to
keep these artifacts to a minimum while at the same time
retaining image sharpness. The solution to this problem lies
in a series of choices starting from the camera lens system
to the size of the sensor to the demosaicking technique
used, with implementation restrictions and tradeoffs con-
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trolling these choices. For a given set
of choices, further processing is used
to reduce errors/artifacts. This is typi-
cally done by generating luminance-
chrominance channels from the
demosaicked image and performing
spatial operations on the chrominance
channels, especially at locations where
artifacts are pronounced.

The human eye is known to be highly
sensitive to sharp edges; we prefer sharp
edges in a scene to blurred ones.
Specifically, we are more sensitive to
horizontal and vertical edges than diago-
nal ones, and even less sensitive to edges
in other directions. Most camera manu-
facturers use an edge-enhancement step
such as unsharp masking to make the
image more appealing by reducing the
low frequency content in the image.

Coring is used to remove detail infor-
mation that has no significant contribu-
tion to image detail and behaves much
like noise [44]. The term “coring” origi-
nates from the manner in which the
technique is implemented: usually a rep-
resentation of the data to be filtered is
generated at various levels of detail
(scales), and noise reduction is achieved
by thresholding (or coring) the trans-
form coefficients computed at the vari-
ous scales. How much coring needs to
be performed (how high the threshold
needs to be set) is, again, heuristic.

DISPLAY/ARCHIVE

Depending on the reproduction medi-
um (computer monitor, type of print-
er), the data needs to be further
transformed into the appropriate color
space. For example, in the case of a CRT
monitor (an additive color system), the
data needs to be transformed into an 8-
b format, taking into consideration the
display model used (the gamma values,
offsets, and color temperature). In the
case of a four-color, dye-sublimation
printer (subtractive color), the data is
transformed into a CMYK color space,
and the appropriate color reproduction
model is used.

For storage purposes, current imple-
mentations focus on two solutions, pro-
fessional cameras, which have the
freedom of much larger sensors and

(d)

[FIG8] Sample image as it flows through
the image pipeline. (a) The raw image as
stored in a TIFF/EP file. (b) After
linearization, dark noise subtraction and a
gray-world white balance. (c) The image
after demosaicking. (d) The image after
transformation to the 1ISO-RGB color space.
(e) The image after transformation to the
sRGB color space and application of a3 x 3
median filter. All images in unrendered
spaces are shown here using a min-max
scaling for display purposes.

storage space, prefer to store the images
in either a proprietary file format or in
a recently developed file format called
tagged image file format for electronic
photography (TIFF/EP). TIFF/EP files
are regular TIFF files, but additional
tags in the file store information about
the linearization function, spectral sen-
sitivities, illuminant used, details of
camera settings, and the color trans-
form matrix, and usually store the
image data in its mosaicked form (the
demosaicking step has not yet been per-
formed) [45], [46]. Consumer cameras
tend to use the EXIF format [47], as it
is highly compact and easy to imple-
ment in hardware [48]. The JPEG algo-
rithm is another alternative, and
usually baseline JPEG is used. In some
cameras, audio that accompanies digital
images can also be stored.

JPEG2000, a new international stan-
dard for image compression [49], pro-
vides better compression efficiency than
the current JPEG standard, as well as a
set of useful features for DSC applica-
tions such as accurate control of com-
pressed data size and progressive coding
for image quality and resolution. While
these advantages make JPEG2000 a
good candidate for the next generation
compression standard for DSC, its com-
putational complexity and memory
requirements are limiting factors.

IMPLEMENTATION

Some of the more difficult problems

faced by camera developers are

m from an implementation perspec-
tive, maintaining a fast shutter
release, short shot-to-shot delay,
low power consumption, speed of
focus versus accuracy tradeoff, the
sequence of color processing
(when must the white balancing
and other normalizations be per-
formed, before or after demosaick-
ing) and, above all, performing all
of the mathematical calculations in
fixed-point arithmetic on an
embedded system
mfrom a color science and signal

processing perspective, choice of
the antialiasing filter, color filter
sensitivities, CFA pattern and
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consequently the demosaicking technique used, automat-
ic focus, exposure and white balancing, improving image
quality, and choosing a convenient color space (and the
mathematics involved) for storing the images.

As an illustration of the various processing steps, we show in
Figure 8 a summarized version of the image processing chain
and how the image looks after each of the various stages.

Digital camera development is a highly market-driven field.
As in any market-driven product, the user often determines
the features and options that are implemented. From the per-
spective of a camera user, there are many goals to be met; high
image quality, accurate color reproduction, low power con-
sumption, and fast, yet conveniently reconfigurable operation.
The market, and hence consumers, determine what is accept-
able and what is not for given price and performance. Not sim-
ply science, but human tastes dictate the final steps in the
pipeline: a “preferred reproduction” is required [50], rather
than an accurate one.

MEASURING CAMERA QUALITY

From the previous description, one observes that each camera
manufacturer can potentially have their own intellectual prop-
erty invested in a camera, which can change the resulting
images. Each of the blocks described previously may be cus-
tomized by choosing the size of the sensor, filter sensitivities,
auto-focus and exposure technique, color transform, white bal-
ance algorithm, and postprocessing, image reproduction tech-
nique. To assess the quality of the various choices made and
the resulting images, camera manufacturers use a host of visu-
al observers. Evaluating image quality has been receiving
much interest in the standards committees. It raises questions
about the ability to quantify observer judgment. In a compre-
hensive book, Keelan and other contributors [51] have clearly
described work performed in the Eastman Kodak Company,
over the years, in quantifying image quality. The ISO/WD
20462/1.2-3.2 working-draft standard documents contain
recent attempts at standardizing experimental methods used
in evaluating image quality [52].

WHAT DOES THE FUTURE HOLD?

Interestingly, film cameras are the benchmark for digital color
cameras. Users will feel compromised until DSCs match film
cameras in aspects such as shot-to-shot delay, auto-focus speed,
and picture quality. However, DSCs already exceed film cameras
by providing features such as white-balance (without additional
equipment or post-processing at the print stage) and ISO-sensi-
tivity options and continue to differentiate DSCs from their film
counterparts.

HDR imaging is becoming increasingly popular in recent
implementations. One may well expect HDR imagings solutions
to become mainstay in all cameras.

From a color processing perspective, the near-future holds
promise of a standard for digital camera characterization, with
care taken for white point preservation [35]. Work in this direc-
tion has led to the development of the ISO-RGB color space [33]
and more recently, the scRGB color space [38]. The data in the

ISO-RGB and scRGB color space represents an estimate of the
scene colorimetry and hence are able to adapt to varying imag-
ing conditions.

Digital cameras can also function as digital video cameras
with few additional hardware components, especially when they
have programmable processing units to implement video coded
algorithms. Traditional video cameras will be the benchmark for
this functionality and will drive video signal processing require-
ments such as real-time auto white balance, exposure and focus
control, and vibration blur compensation.

From the perspective of a consumer, the future holds larg-
er sensor arrays, which will be accompanied by more power-
ful processors in digital cameras, with possibly lower power
requirements and more complex operations. Image enhance-
ment and editing features will be more common in future
DSCs, and various image processing algorithms will be
required to implement such features. Among many possibili-
ties are histogram balancing, contrast enhancement, satura-
tion enhancement, negative image, solarization,
posterization, sharpening, and red-eye reduction, which are
conventionally done on the computer after moving the pic-
ture files from the DSC.
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