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Exemplar-Based Colour Constancy and Multiple
Illumination

Hamid Reza Vaezi Joze and Mark S. Drew

Abstract—Exemplar-based learning or, equally, nearest neighbour methods have recently gained interest from researchers in a variety

of computer science domains because of the prevalence of large amounts of accessible data and storage capacity. In computer

vision, these types of technique have been successful in several problems such as scene recognition, shape matching, image parsing,

character recognition and object detection. Applying the concept of exemplar-based learning to the problem of colour constancy seems

odd at first glance since, in the first place, similar nearest neighbour images are not usually affected by precisely similar illuminants

and, in the second place, gathering a dataset consisting of all possible real-world images, including indoor and outdoor scenes and

for all possible illuminant colours and intensities, is indeed impossible. In this paper we instead focus on surfaces in the image and

address the colour constancy problem by unsupervised learning of an appropriate model for each training surface in training images.

We find nearest neighbour models for each surface in a test image and estimate its illumination based on comparing the statistics of

pixels belonging to nearest neighbour surfaces and the target surface. The final illumination estimation results from combining these

estimated illuminants over surfaces to generate a unique estimate. We show that it performs very well, for standard datasets, compared

to current colour constancy algorithms, including when learning based on one image dataset is applied to tests from a different dataset.

The proposed method has the advantage of overcoming multi-illuminant situations, which is not possible for most current methods

since they assume the colour of the illuminant is constant all over the image. We show a technique to overcome the multiple illuminant

situation using the proposed method and test our technique on images with two distinct sources of illumination using a multiple-

illuminant colour constancy dataset. The concept proposed here is a completely new approach to the colour constancy problem and

provides a simple learning-based framework.

Index Terms—Colour Constancy, Exemplar Based Learning, Multiple Illuminants.
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1 INTRODUCTION

MANY computer vision applications as well as im-
age processing problems for both still images and

video can make use of colour constancy processing as
a prerequisite to ensure that the perceived colour of the
surfaces in the scene does not change under varying illu-
mination conditions. The observed colour of the surfaces
in the scene is a combination of the actual colour of the
surface, i.e., the surface reflection function, as well as the
illumination. Estimation of illumination is the main goal
of the colour constancy task.

Recently, notwithstanding large amounts of accessible
data, many problems can be simply solved by a search
through data instead of applying sophisticated algo-
rithms. Sometimes these methods make use of nearest
neighbour methods. Such use of these techniques occurs
in a variety of computer vision problems such as shape
matching [1], character recognition [2], human pose esti-
mation [3], image parsing [4], scene recognition [5] and
object detection [6]. As an example, Torralba et al. [7]
gathered a large data set of some 80 million tiny 32× 32
images, each labelled with a word. They solve different
computer vision problems such as scene recognition, ob-
ject classification, person detection, object categorization,
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picture orientation determination and even colourization
by nearest neighbour methods using this large dataset.

Learning based on a previously seen examples is not a
new concept. This concept appears in different domains
such as exemplar theory in psychology as a model of
perception and categorization, case-based reasoning in
artificial intelligence and instance-based methods [8] in
machine learning. It has also been suggested that the
familiarity of colours of some natural objects (memory
colours) might help in estimating the colour of the
illuminant in the human visual system [9], [10]. Thus
even human colour constancy may learn by examples.

Many colour constancy algorithms have been pro-
posed (see [11], [12] for an overview). The White-Patch,
or Max-RGB, method estimates the light source colour
from the maximum response of three different colour
channels [13]. Another well-known colour constancy
method is based on the Grey-World hypothesis [14],
which assumes that the average reflectance in the scene
is achromatic. Grey-Edge is a recent version which as-
sumes that the average of the reflectance differences in a
scene is achromatic [15]. Shades of Grey [16] is another
grey-based method which uses the Minkowski p-norm
instead of regular averaging. The Gamut Mapping algo-
rithm [17], a more complex and more accurate algorithm,
is based on the assumption that in real-world images, for
a given illuminant one observes only a limited number
of colours. As mentioned in [18], these methods deal
with an image as a bag of pixels and the spatial relation
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between pixels is not considered.
Applying the concept of exemplar-based or instance-

based learning to the colour constancy problem seems
to be an odd idea at first glance since similar or nearest
neighbour images are not usually affected by precisely
similar illuminants and moreover gathering a dataset
consisting of all possible real world images including
indoor and outdoor scenes for all possible illuminant
colours and intensities is indeed impossible. In contrast,
what can we say about surfaces themselves? Every mod-
erate sized dataset of real images includes thousands of
surfaces under different viewing and lighting conditions.
We can make these surfaces weakly invariant to illumi-
nation changes by simple colour constancy algorithms.
Therefore, using the exemplar theory concept we can
reduce our illumination estimation task down to the
following steps: (1) finding surfaces in an image; (2)
finding a similar surface or surfaces in the training
dataset for each of our image surfaces; (3) estimating
the illumination for each surface based on comparing the
statistics of pixels belonging to similar surfaces with the
target surface; (4) combining these estimated illuminants
into a unique estimate.

In this paper we present a wholly new line of ap-
proach to the colour constancy problem, which we call
Exemplar-Based Colour Constancy. We use both texture
features and weakly colour-constant three-channel RGB
colour values in order to find the nearest neighbour
surfaces from training data for each surface. Then we
estimate the possible illuminant for each surface based
on histogram matching of each surface to its nearest
neighbour surfaces from training data. The final step is
integrating these estimates into a unique illuminant es-
timation for the whole image. Since we have no labelled
or clustered data for our training process as would be the
case for a semantic segmentation task or texture detec-
tion task, we lack information for providing confidence
for our mapping (such as k-nearest neighbour). Never-
theless, although we find some amount of mismatching
for surfaces, the illumination estimation process simply
considers these cases as outliers compared to the other
estimates. Operating on three standard colour constancy
datasets, we show that exemplar-based colour constancy
produces excellent results that are better than for previ-
ous colour constancy algorithms.

Most colour constancy algorithms assume that the
spectral distribution of light source is uniform across
the image and therefore that the colour of illuminant
is constant all over the image, Hence, estimation of
this uniform illuminant is the main goal of such colour
constancy method as discussed below. Although this
assumption works well in most cases and is widely
used in commercial cameras, nevertheless there exist
common cases in which this assumption is violated
in real images, including: skylight from windows plus
indoor light; in-shadow plus non-shadow lights; or two
different light sources in an indoor room. This situation,
multiple illuminants or multiple light sources with dif-

ferent colours, is a common source of failure for cur-
rent colour constancy methods. Exemplar-based colour
constancy has the advantage of succeeding even in the
multiple illuminant situation, which is not possible for
most current methods. Hence as another contribution we
show a technique to overcome the multiple illuminant
situation using our proposed method, and test our tech-
nique on standard images having two distinct sources of
illumination.

The implications for a useful discounting or regu-
larizing for light in images are substantial in various
tasks in computer vision such as image retrieval, colour
reproduction and object detection [19]

The outline of the paper is as follows: we discuss
related work in §2 and then in §3 we introduce the
proposed method by explaining our surface model, the
process of learning surface models for training images,
and the proposed illumination estimation procedure. In
§4 we apply our proposed method to three standard
colour constancy datasets, comparing performance to
current colour constancy methods. In §2.1, we discuss
our proposed method in the multiple illuminant situa-
tion, and carry out experiments. Finally, we conclude the
paper and discuss future work in §6.

2 RELATED WORK

Illumination estimation methods can categorized into
two groups: (1) static methods which try to estimate
the illuminant for each image based on its statistical
or physical properties and (2) learning-based methods
which try to estimate the illuminant using a model that is
learned on training images. Grey-based methods, which
form a main part of static methods, have been formalized
into a single framework [16], [20]:
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where e is estimated illuminant colour, k denotes R, G
or B, p denote the Minkowski norm and n is grey-edge
order. If n = 0, for p = 1 the equation is equal to the
grey-world assumption, for p = ∞ it is equal to colour
constancy by White-Patch and it is Shades of Grey and
for 1 < p <∞. For higher n it is Grey-Edge.

Static colour constancy methods also include some
physics-based methods such as methods that use specu-
larity to estimate illuminant chromaticity [21], [22]. Drew
et al. [22] present an effective physics-based colour con-
stancy method, called the Zeta-Image, which makes use
of a log-relative-chromaticity planar constraint involving
specular reflection. This method is fast and requires no
training or tunable parameters.

One of the first colour constancy methods which
estimates the illuminant by a model that is learned
on training images is the Gamut Mapping algorithm
[17]. It is based on the assumption that in real-world
images, for a given illuminant one observes only a
limited number of colours; therefore, colours forming a
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Fig. 1. The common procedure of learning-based colour constancy methods that try to find the best algorithm or a

combination of algorithms for each image using extracted features in both training and test phases.

“canonical” gamut which contains possible colours can
be observed under a canonical illumination in a training
phase, and an estimate of a test-image illuminant can
be derived by mapping current pixel colours to that
canonical gamut. Several extensions have been proposed
for gamut mapping algorithms. Several extensions to
gamut mapping algorithms have been proposed [23],
[24], [25]. Colour-By-Correlation [23] is a discrete im-
plementation of gamut mapping, where the canonical
gamut is replaced by a correlation matrix.

Another learning-based approach to the illumination
estimation problem is the Bayesian approach [26], [27],
in which the variability of reflectance and illuminant is
modeled as independent random variables. These meth-
ods estimate illuminant colour from the posterior dis-
tribution condition learned from training images. Here
the illuminant prior could be uniform over a subset of
illuminants [26] or could be an empirical distribution
of illuminants in training images [27]. Other machine
learning techniques includes using neural networks [28],
in which binarized chromaticity histograms are used
to estimate 2D illuminant chromaticity via a neural
network system, or support vector regression [29]. In
a different learning approach, a maximum likelihood
approach presented by [18], [30] uses spatial information
along with standard statistical knowledge by developing
a statistical model for the spatial distribution of colours
in colour constant images.

Besides static colour constancy methods such as Max-
RGB, Grey-World, Grey-Edge and Shades-of-Grey, which
as mentioned above are based on simple assumptions,
recently efforts at fusing these algorithms have generated
better performance than for the individual algorithms.
One of the first attempts in this direction was carried
out by Cardei and Funt [31], who applied a weighted
committee mechanism over several of these methods.
More complex methods try to learn to select the best
algorithm or combination of algorithms for each image
using pixel information as well as spatial information,

and hence they do not deal with the image as simply a
bag of pixels.

As mentioned in [12], these learning-based colour con-
stancy methods that try to find the best or a combination
of algorithms for each image using extracted features go
through a similar procedure. They extract texture, shape
or colour features from sets of training images, and
estimate the colour of the illuminant for each image us-
ing several statistical illumination estimation algorithms.
They then learn a model based on extracted features as
well as the error of these estimates compared to known
ground truth. This type of model could e.g. learn the set
of weights associate with estimates of these illumination
estimation algorithms [32], [33] or directly learn the
colour of the illuminant [34], [35]. Figure 1 shows this
procedure in both the training and test phases. It can
be stated that the main differences amongst this kind of
algorithm are in the feature extraction blocks, where the
feature could be simple, such as a colour histogram [36],
[34], or edge direction histogram [34], or more complex
features such as Weibull features [32], [35], [33], Wiccest
features [33], or Wavelet statistics [34].

As an example, Gijsenij and Gevers [32] clustered the
images by a k-means algorithm using natural image
statistics to characterize the images on the basis of
Weibull distribution parameters. They then correspond
each cluster with the best single algorithm for training
images for that cluster. To estimate the illuminant of
a test image, they select the algorithm according to
its cluster or combination of the individual algorithms
according to the distances to neighbouring clusters.

In a different approach to selecting best algorithms,
Wu et al. [33] introduce a multi-resolution texture de-
scriptor based on an integrated Weibull distribution to
extract texture information. They used an image sim-
ilarity measure derived from the Wiccest feature and
spatial pyramid matching to find the K most similar
images for a test image from amongst training images,
and with these neighbouring images they provide a
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combination for uniting the data-driven strategy and
prior knowledge.

Van de Weijer et al. [37] extend the grey world hy-
potheses to say: the average reflectance of semantic
classes in an image is equal to a constant colour, rather
than being just grey. Therefore, for each of the semantic
classes present in an image they compute that illuminant
that transforms the pixels assigned to that class into the
average reflectance colour of that semantic class in the
training images. They call this a top-down approach
as opposed to bottom-up approaches in many other
colour constancy methods. They also make use of high-
level visual information to select the best illuminant
out of a set of possible illuminants generated by other
methods. In a similar approach [38], the special visual
object categories (called here memory-colour categories)
which have a relatively constant colour such as sky or
grass and foliage (which were used in their experiment)
are detected using the Bag-of-Features machine learning
method. Then the initial estimate provided by a statisti-
cal colour constancy method can be adjusted to map the
observed colour of the category to its actual colour which
is determined in the training phase. The main difference
between this work and [37] is that the visual object
categories are known and hand labelling and tagging
with the category label is required for training images.

2.1 Multiple Illuminants

Most colour constancy algorithms assume that the spec-
tral distribution of light is uniform in the image and
therefore the colour of the illuminant is constant across
the image, Estimation of this single illuminant is the
main goal of most colour constancy methods, and very
few methods explicitly focus on local illuminant esti-
mation. Although this assumption works well in most
cases and is widely used in commercial cameras, there
exist common cases in which this assumption is violated
in real images. These include: skylight from windows
plus indoor light; in-shadow pixels plus out-of-shadow
pixels; ambient light and flash-light in photography;
and two different light sources in an indoor room. This
situation, which we call multiple illuminants or multiple
light sources with different colours is a common failure
case for current colour constancy methods.

Figure 2 shows a scene with two distinct illuminants:
outdoor sky-light and indoor luminaire light. Assuming
uniform illumination in the scene, the image on the
left is colour-corrected using the outdoor sky-light and
the image on the left is colour-corrected using indoor
light. It is obvious that the colour constancy task, with
a uniform-illumination assumption, fails for this scene
even when we use the ground truth as our colour-
correction illuminant.

In early research, it is shown in [39], [40] that a
difference in illumination, once it has been identified
correctly, provides additional constraints which can be
applied to obtain better colour constancy; however these

Fig. 2. A scene with two distinct illuminants. The image

on the left is colour-corrected using outdoor sky-light and

the image on the left is colour-corrected using indoor light.

works do not provide algorithms to detect multiple
illuminants automatically. Ebner [41] assumes a grey-
world assumption works locally, and not just globally,
and attempts a diffusion based methodology for pixel
intensities. However a local grey-world can be noisy and
inaccurate, especially for near uniform-colour scenes. In
another approach, Bleier et al. [42] propose a method
to overcome the multiple illumination problem in which
the image is segmented into a set of superpixels based on
colour; then a collection of colour constancy algorithms
(Bayesian, plus different versions of grey-world, grey-
edge and gamut mapping) is applied to each superpixel
independently. The illumination estimate for each su-
perpixel is computed using different fusion techniques
such as the average, or a machine learning method such
as Gradient tree boosting or Random forest regression.
A local colour constancy algorithm is also presented
by [43], which adjusts colours pixel-by-pixel based on
its local area to solve the multi-illuminants for High-
Dynamic-Range images. This estimates the illumina-
tion for each pixel from the colour information of its
neighbouring pixels, weighted by the spatial distance,
luminance intensity difference, and chromaticity.

A specific case of the multiple-illuminant scenario
is encompassed in research on in-shadow and out-of-
shadow regions. That is, the shadow removal problem
[44], [45], [46] can be considered as a colour constancy
problem involving two light sources.

Recently, Gijsenij et al. [47] proposed a colour con-
stancy method for multiple light sources. They ob-
tain image patches by grid-based, keypoint-based, or
segmentation-based sampling, and then estimate the
illuminant for each image patch by some of the grey-
based methods in eq. (1), assuming a uniform illuminant.
Focusing on scenes with two distinct light sources and
their combination, their final estimation of two distinct
illuminant colours is either by clustering the illuminant
estimates for patches or taking into account the spatial
relations between these estimates by applying segmen-
tation.

2.2 Evaluation

In order to evaluate performance of a colour constancy
method we need to calculate the error of our estimation.
Considering the actual chromaticity of illuminant e and
the estimated chromaticity of illuminant eest by any of
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of the aforementioned illumination estimation methods,
there are different measures used to calculate the error.
Two measures commonly used to calculate this error
are angular error, which is the angle between 3-vector
e and 3-vector eest, and Euclidean error, i.e., Euclidean
distance in r, g chromaticity space; note that these two
measures are highly correlated to each other [48]. Here
we could also mention perceptual Euclidean distance
[49], which uses perceptually optimized weights for
Euclidean distance, and also the RMS error for all pixels
in r, g, b or R,G between the corrected image and the
ground truth image. In this paper, we use angular error
as our measurement for computing estimation error
because of its frequent use in the literature [48], [50]. It is
also shown by [49] that the angular error is a reasonably
good indicator of the human perceptual performance of
colour constancy methods.

errangle(e, eest) = acos(
e · eest
‖e‖‖eest‖

) (2)

Having a set of images with known colour of illu-
minant, we can calculate the error of estimation (using
either of the generally used error metrics) for each image.
Then the overall metric of performance of an algorithm
for that set of images can be the mean of errors. However
the mean by itself is not a good index for evaluating
performance of methods [48]. The median or trimean
of errors is usually preferred in the literature [48], [49]
because the mean is sensitive to outliers. The median
indicates the performance of the methods for half of the
images or equally the 50th percentile error. The trimean
of a distribution is defined as a weighted average of
its median and its two quartiles. It is also important to
minimize the worst-case errors or, equally, consider the
maximum of errors as the measure [51]. In this paper
we calculate both mean and median as well as the 75th
percentile error as our measurement to compare different
illumination estimation algorithms.

In [52], we introduced the exemplar-based colour
constancy approach, and in this paper we go on to
investigate the method much more substantially. Firstly,
the method’s details are set out considerably more com-
prehensively, and with illustrations. The method is first
delineated in the context of previous learning-based
approaches. Then entirely new tests are carried out, as
well as challenging the method by applying colour con-
stancy via exemplars obtained from one dataset to test
images for a different image dataset – an inter-dataset
test which is very demanding. Moreover here we go on
to investigate how to structure the new algorithm in the
face of the very difficult multiple-illuminant situation,
and an entirely fresh set of tests on multiple-illuminant
images with ground truth is carried out.

3 PROPOSED METHOD

The proposed method falls into the learning based colour
constancy category, in which a model needs to be learned

from training images. The main distinctions between
this work and other learning based colour constancy
methods that use spatial information by local feature
descriptors, such as [32], [33], [37], is that they use
this information to determined the best or combination
of best possible illumination estimation algorithms (the
procedure is shown in Fig. 1), while we use selected
instances for illumination estimation. Compared to the
top-down approach [37], [38] in which they assign a
semantic classes (or memory-colour categories) to each
patch of an image based on models learned in the
training phase, in our proposed model we assign to
segmented regions we call “surfaces”, from training
images to each surface of the test image. As well, [37]
used the extended version of the grey world assumption
to estimate the illuminant whilst we use the ground truth
of corresponding surfaces for illumination estimation.

On the other hand, scenes with a single or a just few
number of surfaces (such as images captured of grass or
sky) are a common failure for grey-based methods which
form the core of most recent learning based methods,
since the grey assumption is not satisfied for these
images. The Gamut Mapping method also fails for these
images since only a limited number of colours are seen in
the image and that is not enough to map the input gamut
to the canonical gamut. We will see that our exemplar-
based method can overcome this problem since the
exemplar-based method estimates the illuminant based
on similar surfaces and there is no assumption that more
than one surface is needed (although more surfaces do
make the estimate more robust).

3.1 Surface Model

We find surfaces for both training and test images by
mean-shift segmentation, implemented via [53]. Since
the pixels in the margin of segmented areas affect texture
information, we remove margin pixels of segments by
dilating segment edges as well as small segments. In
order to define a model for each surface we use both
texture features and colour features. For the purpose of
texture features, the MR8 filter bank [54] on three chan-
nels is selected for use because of its good performance
in texture classification applications [55] and also its fast
implementation.

The MR8 filter bank consists of 38 filters (6 orientations
at 3 scales for 2 oriented filters, plus 2 isotropic) but
only 8 filter responses. The filter bank contains filters at
multiple orientations but it records only the maximum
filter response across all orientations. We use the nor-
malized histogram of frequency of appearance in that
particular surface for each colour channel as our colour
features. Here we store the colour constant diagonal
transformations generated by the Max-RGB method M
for each surface model, which will be used in illumina-
tion estimation process. Since we deal with illumination
variation, we apply this transformation (divide each
channel by its maximum value) before computing each
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histogram. This makes our surface model weakly colour
constant [56]. This means that we are not interested in
specific colours for our surface matching, but instead on
its relative distribution.

In the learning stage, training images are convolved
with a filter bank to generate dense filter responses.
Exemplar filter responses are chosen as textons via K-
Means clustering (with K = 1000) and are collected
into a dictionary. The histogram of frequency of textons
belonging to this dictionary is a common description for
texture detection [57] although other local descriptors
such as scale-invariant feature transform (SIFT) [58] may
used instead of the MR8 filter bank.

Given a surface in a training image, its corresponding
model is generated by first convolving it with the filter
bank and then labelling each filter response with the
Euclidean nearest neighbour texton in the texton dictio-
nary. The histogram of textons, i.e. the frequency with
which each texton occurs in that surface, forms the first
histogram in the corresponding model for that training
surface. We then add a coarse three-channel histogram to
that surface’s model (we use only 10 bins for each chan-
nel to be robust again noise). In order to make our model
weakly invariant to variation in illuminant colour, we
stretch the histogram for each channel to have maximum
equal to 1 or, equally, divide the values of each colour
channel by its maximum value among pixels within that
surface (thus making it colour constant for Max-RGB
via using a diagonal transformation). Therefore, each
surface model includes four normalized histograms that
are then stored in a single vector. We also need to store
some meta-data for each model, consisting of ground
truth illumination colour for that image as well as the
maximum response for each channel used for stretching
histograms. Fig. 3 shows a surface and its normalized
histogram of textons and three weakly colour constant
normalized histograms of colour channels. In summary,
the training phase for exemplar-based colour constancy
is expressed in Algorithm 1. Here the MaxRGB function
makes the input pixels colour constant by dividing by
the illuminant as estimated by Max-RGB method.
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Fig. 3. A surface and its normalized histogram of textons

and three weakly colour constant normalized histograms

of colour channels.

In the test stage, the same procedure is followed to

Algorithm 1 Training Exemplar Based Model

Generate Texton Dictionary

1: features ← convolve all training images with MR8 filter
2: textons ← K-Means clustering of features (k = 1000)

Finding Surfaces

1: surfaces ← mean-shift seg. of all training images

Generate Surface Models

1: for all S in surfaces do
2: features ← convolve S with MR8 filter
3: label ← NN(features,textons)
4: texture hist ← normalized histogram of labels
5: Scc ← MaxRGB(S)
6: colour hist ← normalized histogram of each colour

channel in Scc (10 bins)
7: trainmodelS ← ( texture hist, colour hist )
8: end for

build the model (one histogram of textons and three
histograms of colour channels) corresponding to each
surface in the test image. This model is then compared
with the models corresponding to training surfaces by
nearest neighbour classifier with the chi-squared statistic
employed to measure distances. We select M nearest
neighbours from training surfaces (with M = 10). Fig. 4
shows some test image surface examples and their eight
nearest surface models from training data. We carry
out our experiment on the re-processed version of the
dataset [27], [59] (denoted “ColorChecker”) (refer to § 4
for details). Since we have no labelled or clustered data
for our training process as would be the case for a
semantic segmentation task or texture detection task,
we lack information for providing confidence for our
mapping. Nevertheless, although we find some amount
of mismatching for surfaces as shown in Fig. 4, the
illumination estimation process simply considers these
cases as outliers compared to the other estimates.

3.2 Illumination Estimation

Given a test surface model and its nearest neighbour
surface model from training models, we can transfer
the test surface’s colours to its corresponding training
surface’s colours linearly by a 3 × 3 matrix. We can ap-
proximate this matrix by a diagonal matrix as discussed
in [60] and solve the transformation for each channel
separately based on their channel histograms. Therefore,
we can write this matrix which transforms test surface
to training surface as follows:

D =M−1

testDHMtrain (3)

whereMtest andMtrain are the weakly colour constant
diagonal transformations of the test and train surface
colours via the Max-RGB division method and DH is the
transformation of the test surface’s histograms to train-
ing surfaces’ histograms. Since we use this histogram
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Fig. 4. Surfaces from test images (on the left) and their 8 nearest surface models from training images.

to find similar models these histograms are usually
approximately identical or not far from each other; this
means that DH is approximately the identity matrix
(we use DH = I in our experiments). Finally, since the
illumination colour of a training surface etrain is known,
the estimation for test surface illumination colour is:

etest = Detrain =M−1

testDHMtrainetrain (4)

Given a test image, we will have n large enough
surfaces and M nearest neighbour surfaces from training
data, or equally M illumination estimates by eq. (4)
corresponding to each. The final estimate can be the me-
dian or the mean after removing outliers of all of these
estimates in rg chromaticity space ({r, g} = {R,G}/(R+
G+B)). We can also use weighted averaging by defining
weights for each estimated illuminant according to the
confidence of estimation for each surface, which we
compute based on the standard deviation of estimates
for that single surface and also similarity which we
compute based on chi squared distance between their
normalized histograms. Experiments show that none of
these techniques outperforms the others, and therefore
for simplicity we estimate the final illuminant by finding
the median over all estimates for the three channels
separately.

Fig. 6. A test image and angular errors of estimated

illuminant for its surfaces (computation is not carried out

for small segments, and the ColorChecker is masked off).

A scene with a single surface constitutes a failure case
for most non-learning methods since their assumptions

are not satisfied. In case of textured surfaces, the pro-
posed method overcomes the problem by considering
texture histograms. Note that a completely uniform sur-
face is obviously an ill-posed problem (uniform yellow
wall under white light or uniform white wall under
yellow light) and no method can solve this problem.
Fortunately since the proposed method uses many esti-
mates we find experimentally that it performs well with
a limited number of uniform surfaces in the scene, with
their estimates considered as outliers.

Figure 5 shows the procedure for illuminant estima-
tion for a test image using exemplar-based color con-
stancy. Figure 6 shows a test image and the angular error
of estimated illuminant for its surfaces; as mentioned,
we do not form any estimate for small segments. We see
that more textured surfaces such as grass or textured
road have more precise estimates compared to smooth
road. In summary, the proposed illumination estimation
for a test image is expressed in Algorithm 2.

Algorithm 2 Illumination Estimation for image I

1: surfaces ← mean-shift segment of I
2: for all S in surfaces do
3: features ← convolve S with MR8 filter
4: label ← NN(features, textons)
5: texture hist ← normalized histogram of labels
6: Scc ← MaxRGB(S)
7: colour hist ← normalized histogram of each colour

channel in Scc (10 bins)
8: modelS ← ( texture hist , colour hist )
9: for all i in KNN(modelS ,trainmodels) do

10: estimatesSi ← eq. (4)
11: end for
12: end for
13: return median(estimates)

3.3 Colour Correction

Once the colour of the light has been estimated, the
input image, which was captured under an illuminant
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Fig. 5. The procedure of estimating illuminant for a test image using exemplar-based colour constancy. A test image

and its nearest neighbour surface models from training images on the left and estimated illuminants according to each

model in rg chromaticity space on the right.

as estimated, should be transferred back to an image as
it would appear under the canonical illuminant. This
procedure is usually done using the diagonal model.
Although exemplar based colour constancy estimates
a unique illumination for an image, and this can be
used for colour correction by a diagonal model, the
method actually estimates a distinct illuminant for each
surface, and this can be used for colour correction for
each surface separately. The diagonal model for pixels
that belong to surface edges or to small surfaces can be
constructed as a weighted linear combination of those
for its neighbour pixels.

We call the matrix in which every pixel is assigned to
its own illuminant estimate “back-projection”, where this
usage derives from [47]. Obviously, in the case when the
uniform illumination assumption is made, in our exper-
iment in §4, the back-projection is a constant. The colour
correction process using estimated back-projections, D,
which have equal dimension to the input image I , is as
follows:

I∗ijk = Iijk ∗ e
∗

k/Dijk , k = {R,G,B} (5)

where I∗ is colour-transferred images under canonical
illuminant e∗ and ij is pixel address. Figure 7 shows
an input image, its estimated back-projection using uni-
form and surface illumination, and uniform illumination
and colour transferred output images using these two
back-projections. The estimated back-projection for each
surface is computed based on similar known surfaces
(similarity for both colour and texture); therefore even
if they are not accurate they seem reasonable, as seen
in the colour of the grass in Fig. 7(d). Even though this

colour is not necessarily accurate compared to the known
illumination, nonetheless it seems reasonable to us since
it is similar to some other grass surfaces in the training
images.

4 EXPERIMENTS

We applied our proposed method to four standard
colour constancy datasets of real images of indoor and
outdoor scenes. The first dataset is the Gehler colour con-
stancy dataset [27], denoted the ColorChecker dataset,
This dataset consists of 568 images, both indoor and
outdoor. The illuminant ground truth for these images is
known because each image has a Macbeth ColorChecker
placed in the scene — which must masked off in tests.
The images are captured by auto white balance setting
of the camera. For this dataset, we used three-fold cross-
validation to learn our models using this original dataset,
as used by other learning based methods we compared
to. The second dataset is the re-processed version of the
above ColorChecker dataset, provided by Shi and Funt
[59]. This dataset which includes the same number of
images, but contains raw image data of ColorChecker
dataset in an attempt to recover linear sensor values,
which is in principle critical for our 3 × 3 matrix trans-
formation.

Table 1 indicates the accuracy of the proposed meth-
ods for the ColorChecker dataset and its re-processed
version, in terms of the mean, median and 75th per-
centile of angular errors, for several colour constancy
algorithms applied to this dataset. For those methods
which need tunable parameters (refer to [61]), we utilize



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL., NO., MONTH 2013 9

(a) (b) (c) (d) (e)

Fig. 7. (a) An input image, (b) constant back-projection (c) back-projection by surface illuminant estimates (d) colour

corrected image via b and (e) colour corrected image via c.

TABLE 1

Angular errors for the ColorChecker dataset [27] in terms of mean, median and 75th percentile errors for several

colour constancy algorithms.

Original ColorChecker Reprocessed ColorChecker
Method Median Mean 75th Median Mean 75th

Do nothing 6.8
◦

9.5
◦

13.6
◦

13.5
◦

13.4
◦

14.8
◦

White-Patch 6.0
◦

8.1
◦

10.8
◦

5.7
◦

7.4
◦

11.7
◦

Grey-World 7.3
◦

9.8
◦

14.6
◦

6.3
◦

6.4
◦

8.4
◦

Grey-Edge 5.2
◦

7.0
◦

9.5
◦

4.5
◦

5.3
◦

7.0
◦

Zeta-Image [22] 5.0
◦

6.9
◦

9.0
◦

2.8
◦

4.1
◦

5.6
◦

Bayesian [27] 4.7
◦

6.7
◦

8.8
◦

3.5
◦

4.8
◦

6.7
◦

Gamut Mapping 4.9
◦

6.9
◦

8.9
◦

2.5
◦

4.1
◦

6.0
◦

Gamut Mapping 1jet [24] 4.9
◦

6.9
◦

9.0
◦

2.5
◦

4.1
◦

6.0
◦

Spatio-spectral Statistics ML [30] - - - 3.0
◦

3.7
◦

4.9
◦

Bottom-up+Top-down [37] 4.5
◦

6.4
◦

8.8
◦

2.5
◦

3.5
◦

4.1
◦

Natural Image Statistics 4.5
◦

6.1
◦

8.2
◦

3.1
◦

4.2
◦

5.8
◦

Exemplar-Based 3.7◦ 5.2◦ 7.0◦ 2.3◦ 3.1◦ 3.9◦

optimal parameters for this dataset and for learning-
based methods we utilize standard testing setup used
in [12] which include similar training-testing sets. Here
dash in table cells means that the result for that dataset
was not reported by their authors. We see that our
exemplar-based method makes a substantial improve-
ment over previous algorithms.

Another dataset, which contains lower quality real
images (image resolution 360 × 240), is the GreyBall
dataset of Ciurea and Funt [62]; this contains 11346
images extracted from video recorded under a wide
variety of imaging conditions. The ground truth was
acquired by attaching a grey sphere to the camera,
displayed in the bottom-right corner of the image (again
masked for experiments). In order to learn our models
for this dataset, we use 15 folds each of which represents
a recorded video as provided by the dataset itself, as
for the other learning based methods we compared to.
The ground truth of the GreyBall dataset is obtained
using the original images (colour model is NTSC-RGB).
Therefore, the ground truth was recomputed by [12] by
converting the images from NTSC-RGB to linear RGB
assuming gamma is equal to 2.2. This modified dataset
is named linear GrayBall.

Table 2 shows the performance of our proposed
method for the GreyBall dataset and its linear version in
terms of the mean, median and 75th percentile of angular
errors, for several colour constancy algorithms applied
to this dataset. Again we utilize optimal parameters
for this dataset for those methods which need tunable
parameters (refer to [61]) and for learning-based meth-

ods we utilize a standard testing setup as in [12]. Here
again, we see a substantive improvement over previous
approaches, even those using complex methods.

To our knowledge, for these four standard datasets,
widely used for evaluating colour constancy methods,
Exemplar-Based Colour Constancy does best in terms
of all of mean, median and 75th percentile angular
error compared to any reported colour constancy meth-
ods, even those using a combination of algorithms
such as Natural Image Statistics [32] or Bottom-up+Top-
down [37] . Table 1 and 2 indicate that not only does
Exemplar-Based Colour Constancy generally perform
better (smaller mean and median angular errors) than
existing methods but also it produces significantly less
failure, indicated by a smaller 75th percentile angular
angular error, for all datasets.

In Figure 8 we show colour-corrected images from
GreyBall dataset based on Exemplar-based method com-
pare to Grey-World, Grey-Edge, gamut mapping and
Zeta-Image methods, along with their angular error
compared to ground truth as obtained from the grey
sphere mounted onto the video camera. The proposed
exemplar-based method works well overall, and more-
over also works significantly better compared to other
methods for images of a single surface or a few surfaces,
such as a grass scene as in Fig. 8: this constitutes a failure
case for grey-based methods since the grey assumption
is not satisfied, as well as for gamut mapping since only
a limited number of colours are seen in the image.
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TABLE 2

Angular errors for GreyBall dataset [62] in terms of mean, median and 75th percentile errors for several colour

constancy algorithms.

Original GrayBall Linear GrayBall
Method Median Mean 75th Median Mean 75th

Do nothing 6.7
◦

8.3
◦

14.0
◦

14.0
◦

15.6
◦

26.5
◦

White-Patch 5.3
◦

6.8
◦

10.4
◦

10.5
◦

12.7
◦

19.5
◦

Grey-World 7.0
◦

7.9
◦

10.8
◦

11.0
◦

13.0
◦

20.2
◦

Grey-Edge 4.7
◦

5.9
◦

8.6
◦

8.8
◦

10.6
◦

15.0
◦

Zeta-Image [22] 4.6
◦

5.9
◦

8.6
◦

9.0
◦

10.8
◦

15.0
◦

Gamut Mapping 5.8
◦

7.1
◦

10.2
◦

8.9
◦

11.8
◦

18.0
◦

Gamut Mapping 1jet [24] 5.8
◦

6.9
◦

9.6
◦

8.9
◦

11.8
◦

17.5
◦

Spatio-spectral Statistics ML [30] - - - 8.9
◦

10.3
◦

13.9
◦

Bottom-up+Top-down [37] - - - 7.7
◦

9.7
◦

13.3
◦

Natural Image Statistics [32] 3.9
◦

5.2
◦

7.4
◦

7.7
◦

9.9
◦

13.8
◦

Exemplar-Based 3.3◦ 4.4◦ 6.1◦ 6.5◦ 8.0◦ 10.8◦

4.1 Inter Dataset Cross Validation

Although we have shown excellent performance for
exemplar-based colour constancy, outperforming exist-
ing methods for the standard colour constancy data
sets studied, we would also like to investigate whether
our proposed methods also work well for any arbitrary
images using a fixed learned model, inter-datasets. A
three-fold cross validation for the ColorChecker datasets
and 15-fold cross validation for the GreyBall dataset
were already designed for this purpose, intra-dataset,
and we applied them in the tests for all learning based
colour constancy methods. However images from the
same dataset may be to some degree correlated to each
other because of the limitation of gathering image data,
and therefore doing cross validation between different
datasets is a more challenging task and has not been
considered in most papers on learning-based illumina-
tion estimation methods. For this purpose, we run our
proposed method, exemplar-based colour constancy, for
the GreyBall dataset, but using surface models learned
by images from ColorChecker dataset. The median and
mean of angular errors of our illumination estimation for
these 11346 images are respectively 5.3◦ and 6.6◦, which
is acceptable.

As well, we also ran our proposed method on the
ColorChecker dataset, but using surface models learned
by images from the Greyball dataset. The median and
mean of angular errors of our illumination estimation
for these 568 images are respectively 5.1◦ and 6.5◦, again
quite acceptable.

Although the results for inter dataset cross validation
are not as good as intra dataset cross validation, shown
above, they are good enough to convince us that a
general surface model is sufficient for estimating the
colour of light for any arbitrary image using an arbi-
trary camera, considering the fact that in comparison
either static methods such as Grey-Edge or learning-
based methods such as gamut mapping or Bayesian
have parameters which must be tuned for each dataset
separately. Especially for the two datasets examined, the
images differ significantly: the images in the GreyBall

dataset were captured from a video recorder and contain
approximately 0.1 megapixels (360 × 240), while the
images in the ColorChecker dataset were captured by
two high quality DSLR cameras (Canon 5D and 1D)
and contain approximately 5 megapixels ( 813 × 541 or
874× 583)

5 PROPOSED METHOD FOR MULTIPLE ILLU-
MINATION

Exemplar-based colour constancy has the advantage of
working in the multiple illuminant situation, which is
not possible for most current methods. White patch finds
the brighter illuminant, grey-based method as well as
grey-edge methods may find combination of illuminant
colours, and gamut mapping approximately finds the
dominant illuminant.

As discussed above, given a test image with n surfaces
we will have M nearest neighbour surfaces from the
training set for each of them, and then finally we have
nM different estimates for the colour of illuminant that
will end up as our final estimation assuming uniform
illumination for the test image. If we have more than
one illuminant in the scene, however, we then need to
carry out an estimation procedure for such illuminants
using our nM estimates. As we already seen, since we
are dealing with estimates for each of the test image
surfaces, we can have separate estimates for each of these
surfaces via the median of the estimates from M nearest
neighbour surfaces from the training data. This is in the
general case in which we have no knowledge about the
number of distinct illuminants in the scene. However,
knowing the number of illuminants can make our final
estimate more robust and incorporate more resistance to
incorrect surface matching, which in itself is inevitable
as we showed above for the assumption of a single
illuminant in the scene.

As in [47], this task can be done either by clustering
the illuminant estimates or by taking into account the
spatial relations between these estimates. Knowing the
number of illuminants, K, we cluster our estimates into
K clusters and make the procedure more accurate by
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Original Exemplar-based Grey-World Grey-Edge Gamut Mapping Zeta

Fig. 8. Examples of colour-corrected images from GreyBall dataset based on the Exemplar-based method, compared

to Grey-World, Grey-Edge, Gamut Mapping and Zeta methods, along with their angular error compared to the ground

truth as obtained from the grey sphere mounted onto the video camera. Here the first column, labelled “Original”, is

the error for the video frame as compared to that under the canonical illuminant, and is the same as the “Do Nothing”

entries in the Tables.

finding the median of each cluster as our final illumi-
nation estimation. If two of the illuminants are close to
each other it is likely that they become clustered into
the same cluster, with extra clusters containing some
other estimates. In this case we simply remove the extra
clusters by removing small sized clusters; so therefore
we may end up having fewer than K final illuminant
estimates. In summary, the proposed illumination esti-
mation for a test image with K illuminants is expressed
in Algorithm 3. The final step is colour correction, in
which the RGB value for back-projection of each surface
will be the nearest one to the separate estimates for that
surface. Figure 9 displays an image with two distinct
illuminants, all illuminant estimates by exemplar-based
method in rg chromaticity space, and two final estimates
using clustering.

Here we assume that each surface is illuminated with
a distinct illumination and there is no surface with
varying illumination; therefore we make a hard decision
on which of the N illuminants each surface is assigned
to. Fortunately, in the case of a sharp transmission the

Algorithm 3 Estimation of K Illuminants

1: estimates ← Algorithm 2
2: clusters ← k-means( estimates, K )
3: remove the clusters with size less than a threshold:

clusters ← k-means( estimates, updated K )
4: illums ← median of each clusters
5: return illums

mean-shift-segmentation will assign separate segments
for each light. However the case of a smooth trans-
mission from one illuminant to another could be a
problem for the illumination estimation process for that
surface. However, in a scene with multiple illuminants
there is usually only a small number of segments under
varying illumination, and we can simply consider them
as outliers, thereby still generating a valid estimation of
the colour of multiple illuminants. In order to make the
colour corrected output image perfectly consistent for
these segments, we would need to estimate an illuminant
for each pixel for these surfaces as a mixture of our
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Fig. 9. An input image with multiple illuminants. All

illuminant estimates, using our exemplar-based method,

are shown as blue dots in rg chromaticity space. Two

red stars are the ground truth for two distinct illuminants

in the scene. The red square shows the illuminant as

estimated by the proposed method for the single illumi-

nant assumption. And two green squares indicate the two

illuminants estimated by the proposed method assuming

two illuminants.

estimated illuminants. Thus here we could apply light
mixture techniques [63], [64], given knowledge of our
estimated illuminant colours which is not the main
concern of this paper.

5.1 Experimental Results

We evaluate our proposed method with the multi-
illuminant dataset provided in [47], which includes 9
outdoor low-quality images with two distinct illumi-
nants for each scene. The ground truth for the light
sources is provided by several grey balls placed in the
scene and is manually annotated for each image. The
images differ in size and are of quite low resolution, con-
taining approximately 40 kilopixels. Since we are dealing
with scenes with varying illuminations, we need to find
the error across the scene. Therefore the angular error
compared to ground truth for each pixel is computed
and the average angular error throughout the image is
considered as our measure.

First we run our proposed method as enunciated in
section 3 to estimate a single illuminant for each image.
Then we again run exemplar-based colour constancy
but estimating the illuminant for each surface estimate
separately via the median of estimates from their nearest
neighbour surface models; thus each surface can have
a distinct illuminant and there is no limitation on the
number of illuminants in the scene. Finally, we assume
there are exactly two illuminants in the scene and run
exemplar-based colour constancy for multiple illumina-
tion as described in the last subsection, clustering the
illuminants into two clusters with the estimates for each
surface assigned to one of these two estimates. For all of

TABLE 3

Median angular errors for a 9 outdoor image dataset [47]

in terms of mean and median angular error, for colour

constancy algorithms using a one- or two-illuminant

assumption.

No. of Illuminants Method Median Err.

One

White-Patch 7.8
◦

Grey-World 8.9
◦

Grey-Edge (n=1) 6.4
◦

Grey-Edge (n=2) 5.0
◦

Two (from [47])

White-Patch 6.7
◦

Grey-World 6.4
◦

Grey-Edge (n=1) 5.6
◦

Grey-Edge (n=2) 5.1
◦

One
Exemplar-Based

5.1◦

Two 3.8◦

Multi 4.3◦

these three experiments we used the texton dictionary
and surface models learned from the GreyBall dataset,
for an inter-dataset test.

Table 3 shows the median of per-pixel angular error for
this dataset assuming a single illuminant and using the
White-Patch, Grey-World and Grey-Edge methods; as
well as assuming two illuminants with these algorithms
with the method proposed in [47], compared to our
three experiments as outlined above. For these images
with multiple illuminants, almost all methods show
significant improvement when including the knowledge
that there are two distinct light sources in the image. Al-
though the quality of the images is quite low and indeed
this may affect our texture features in our exemplar-
based surface model, our proposed method works well
assuming a single illuminant is the goal. Moreover using
the surface estimates (called Multi in Table 3) and our
proposed method for multiple illuminants, with a 2-
illuminant assumption, the performance of illumination
estimation improves respectively by 14% and 25%. As
already mentioned, knowing the number of illuminants
makes our final estimate more robust and resistant
to incorrect surface matching; therefore the exemplar-
based method performs better for this dataset when
we use the knowledge that the are exactly two illumi-
nants in the scene. Figure 10 displays images from this
dataset, showing ground truth as well as calculated back-
projection images using the three mentioned approaches
of assuming a single illuminant, two illuminants, and
illumination estimation for each surface separately.

6 CONCLUSION

In this paper we present a completely new line of
approach to the colour constancy problem, which we
call Exemplar-Based colour constancy. We use both tex-
ture features and weakly colour constant three-channel
colour values in order to find the nearest neighbour
surfaces from training data for each surface, and then
we estimate the illuminant for each surface based on
histogram matching of each surface to its candidate near-
est neighbour surfaces from training data. The final step
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Fig. 10. Five example images from an outdoor image dataset with two distinct illuminants [47]. For each example, from

left to right: original image, the ground-truth back projection (chromaticity of pixelwise illumination) for that image and

its estimated value using exemplar based colour constancy assuming single illuminant, two illuminants and illumination

estimation for each surface separately.

is integrating these estimates into a unique illuminant
estimation for the whole image. The proposed method
has the advantage of overcoming the difficulty of multi-
illuminant situations, which is not possible for most
current methods. We show that the proposed method
performs very well for four standard datasets commonly
used in colour constancy tests compared to current
colour constancy algorithms.

We also extend our proposed method to overcome
the problem of multiple illuminants in the scene by
clustering all estimates correspond to nearest neighbour
surfaces. The proposed method is shown to work well
for an image set of outdoor images with two distinct
light sources.

In future, we can apply more complex methods of
integrating estimated surface illuminants into a unique
illumination estimate. We may also utilize spatial infor-
mation in order to improve the estimation as well as spa-
tial smoothness in the colour corrected output image. As
well, we should construct a dataset for multi-illuminant
colour constancy in order to evaluate Exemplar-Based
Colour Constancy for images with more than one light
source colour, in that this is a uniquely challenging
scenario which could produce real benefits in image
understanding.

Already, the method provides a real, substantive im-
provement over current methods, and further tests using
inter-dataset calculations are called for to see whether we
could generate a standardized and much faster pipeline
for colour constancy.
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