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Abstract— This paper is concerned with the derivation of a pro- restrictive scene assumptions. Specifically, those algorithms
gression of shadow-free image representations. First we show that are founded on the premise that scenes are 2-d planar surfaces
adopting certain assumptions about lights and cameras leads t0 a oo ngtrycted from a tessellation of uniform reflectance patches.

1-d, grey-scale image representation which is illuminant invariant - . . . L )
at each image pixel. We show that as a consequence imageén addition, the intensity of illumination across the scene is

represented in this form are shadow-free. We then extend this 1-d a@ssumed to vary only slowly and is assumed to be spectrally
representation to an equivalent 2-d, chromaticity representation. constant. Under these conditions it is possible to distinguish
We show that in this 2-d representation, it is possible to re-light changes in reflectance from changes in illumination and to

all the image pixels in the same way, effectively deriving a 2-d ¢, 0101 the Jatter out, thus deriving an intrinsic reflectance image
image representation which is additionally shadow-free. Finally, referred to as a lightness image

we show how to recover a 3-d, full colour shadow-free image ; - . .
representation by first (with the help of the 2-d representation)y ~ Estimating and accounting for the colour of the prevailing
identifying shadow edges. We then remove shadow edges fromscene illumination is a related problem which has received

the edge-map of the original image by edge in-painting, and we much attention [11], [12], [13], [14], [15], [16], [17], [18],
propose a method to re-integrate this thresholded edge map, thus [19], [20]. In this body of work the focus is not on deriving
deriving the sought-after 3-d shadow-free image. intrinsic reflectance images, but rather on obtaining a rendering
Index Terms—Shadow removal, illuminant invariance, re- of a scene as it would appear when viewed under some stand-
integration ard illumination. Often, these colour constancy algorithms
as they are called, are derived under the same restrictive
|. INTRODUCTION conditions as the lightness algorithms, and factors such as
) specularities, shading and shadows are ignored. A different
One of the most fundamental tasks for any visual systemynroach to this problem is the so-called illuminant invariant
is that of sep_arating the changes in an image which are dé}f’proach [21], [22], 23], [24], [25], [26], [27]. Instead of
to a change in the underlying imaged surfaces from changggmpting to estimate the colour of the scene illuminant,
which are due to the effects of the scene illumination. Thg,minant invariant methods attempt simply to remove its
interaction between light and surface is complex and infr@gect from an image. This is achieved by deriving invariant
duces many unwanted artefacts into an image. For examp|gantities — algebraic transformations of the recorded image
shading, shadows, specularities and inter-reflections, as well 3§,es — which remain constant under a change of illumina-
changes due to local variation in the intensity or colour of thgy \Methods for deriving quantities which are invariant to one
illumination all make it more difficult to achieve basic visuap, more of illumination colour, illumination intensity, shading
tasks such as image segmentation [1], object recognition [glq specularities have all been proposed in the literature.
and tracking [3]. The importance of being able to separate|, tnis paper we consider how we might account for
illumination effects from reflectance has been well understoQflsqows in an imaged scene: an illumination which has
for a long time. For example, Barrow and Tenenbaum [4}; 5 largely been ignored in the body of work briefly
introduced the notion of “intrinsic images” to represent thg,jewed above. That accounting for the effect of shadows on
idea of decomposing an image into two separate imagesjour constancy in images has not received more attention
one which records variation in reflectance, and another whigh o mewnat surprising since shadows are present in many
represents the variation in the illumination across the imag?mages and can confound many visual tasks. As an example,
Barrow and Tenenbaum proposed methods for deriviggnsider that we wish to segment the image in Fig. 2a into
such |ntr|n5|c images under certain simple models of imaggstinct regions each of which corresponds to an underlying
formation. In general however, the complex nature of imagg, face reflectance. While humans can solve this task easily,
formation means that recovering intrinsic images is an |I'dentifying two important regions corresponding to the grass
posed problem. More recently, Weiss [5] proposed a methgdy the path, such an image will cause problems for a
to derive an intrinsic reflectance image of a scene givensggmentation algorithm, which will quite likely return at least
sequence of images of th_e scene under a range of iIIuminat{ﬂpee regions corresponding to shadow, grass and path. In
conditions. Using many images ensures that the problemgigt identifying shadows and accounting for their effects is
well-posed, but implies that the application of the method gjfficult problem since a shadow is in effect a local change
is quite restricted. The Retinex and Lightness algorithms gf poth the colour and intensity of the scene illumination. To
Land [6] and others [7], [8], [9], [10] can also be seen agee this, consider again Fig. 2a. In this image, the non-shadow
an attempt to derive intrinsic reflectance images under cert%ion is illuminated by light from the sky and also by direct
, , . _sunlight, whereas in contrast, the shadow region is lit only by
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problem — that is, identify the colour of the scene illuminargffects such as specularities and interreflections. Furthermore,
at each pixel in the scene. the theory is developed under the assumption of an imaging

We propose three different shadow-free image represedevice with perfectly narrow-band sensors (sensors responsive
ations in this paper. We begin by summarising previous just a single wavelength of light), and we also assume that
work [28], [29] which showed that given certain assumptionsur scenes are lit by Planckian illuminants. Of course, not
about scene illumination and camera sensors it is possibleatbof these assumptions will be satisfied for an image of an
solve a restricted colour constancy problem at a single imagebitrary scene, taken with a typical imaging device. However,
pixel. Specifically, given a single triplet of sensor responsestiie theory we develop can be applied to any image, and we
is possible to derive a 1-d quantity invariant to both the colodiiscuss, ing Il, the effect that departures from the theoretical
and intensity of the scene illuminant. This in effect provides @ase have on the resulting 1-d invariant representation. A more
1-d reflectance image which is, by construction, shadow-fregetailed discussion of these issues can also be found in other
Importantly, results in this paper demonstrate that applyingorks [28], [31]. It is also important to point out that, for
the theory to images captured under conditions which fail Bbme images, the process of transforming the original RGB
satisfy one or more of the underlying assumptions, still resultspresentation to the 1-d invariant representation might also
in grey-scale images which are, to a good approximatioimiroduce some undesirable artefacts. Specifically, two or more
shadow-free. Next, we consider how to put some of the colosurfaces which are distinguishable in a 3-d representation,
back in to the shadow-free representation. We show that themay be indistinguishable (that is, metameric) in the 1-d
exists an equivalent 2-d representation of the invariant imaggpresentation. For example, two surfaces which differ only in
which is also locally illuminant invariant and therefore shadowheir intensity, will have identical 1-d invariant representations.
free. Furthermore, we show that given this 2-d representatibhe same will be true for surfaces which are related by a
we can put some illumination back into the scene. That ishange of illumination (as defined by our model). Similar
we can re-light all image pixels uniformly (using, e.g., thartefacts can be introduced when we transform an image
illumination in the non-shadow region of the original imagefrom an RGB representation to a 1-d grey-scale representation
so that the image remains shadow-free but is closer in colagince they are a direct consequence of the transformation
to a 2-d representation of the original image. This 2-d imadem a higher to lower dimensional representation. The 2-
representation is similar to a conventional chromaticity [3@nd 3-dimensional shadow-free representations we introduce
representation (an intensity invariant representation) but wisine both derived from the 1-d invariant. This implies that the
the additional advantage of being shadow-free. assumptions and limitations for the 1-d case also hold true

Finally we show how to recover a full-colour 3-d imagdor the higher dimensional cases. The derivation of the 3-
representation which is the same as the original image llitshadow-free image also includes an edge detection step.
with shadows removed. Here our approach is similar to th@hus, in this case, we will not be able to remove shadows
taken in lightness algorithms [6], [7], [8], [10]. In that workwhich have no edges, or whose edges are very ill-defined. In
the effects of illumination are factored out by working with amddition, we point out that edge detection in general is still
edge representation of the image, with small edges assunaedopen problem, and the success of our method is therefore
to correspond to the slowly changing illumination while largémited by the accuracy of existing edge detection techniques.
changes correspond to a change in reflectance. Under thséwithstanding the theoretical limitations we have set out, the
assumptions, small changes are factored out and the resultimgthod is capable of giving very good performance on real
edge-map is re-integrated to yield an illumination-free lighimages. For example, all the images in Fig. 5 depart from one
ness image. In our case we also work with an edge-map afmore of the theoretical assumptions and yet the recovered
the image but we are concerned with separating shadow edtjes 2-d and 3-d representations are all effectively shadow-
from reflectance edges and factoring out the former. To do Gee.
we employ the 2-d shadow-free image we have earlier derivedThe paper is organised as follows. §nll we summarise
We reason that a shadow edge corresponds to any edge 1-d illuminant invariant representation and its underlying
which is in the original image but absent from the invariartheory. In§ Ill we extend this theory to derive a 2-d repres-
representation, and we can thus define a thresholding operatiatation, and we show how to add illumination back in to this
to identify the shadow edge. Of course this thresholdingage, resulting in a 2-d shadow-free chromaticity image. In
effectively introduces small contours in which we have no edgelV we present our algorithm for deriving the 3-d shadow-
information. Thus, we propose a method for in-painting eddese image. Finally ir§ V we give some examples illustrating
information across the shadow edge. Finally, re-integratinige three methods proposed in this paper, and we conclude the
yields a colour image, equal to the original save for the fapaper with a brief discussion.
that it is shadow-free.

Before developing the theory of shadow-free images it is
useful to set out some initial assumptions and limitations of
our approach. The derivation of a 1-dimensional image rep-Let us begin by briefly reviewing how to derive 1-
resentation, invariant to both illumination colour and intensitgimensional shadow-free images. We summarise the analysis
is founded on a Lambertian model of image formation. Thaiven in [28] for a 3-sensor camera but note that the same
is, we assume that image pixel values are linearly relatedanalysis can be applied to cameras with more than three
the intensity of the incident light, and that images are free eénsors, in which case it is possible to account for other
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artefacts of the imaging process (e.g. in [32] a 4-sensor camer&ummarising Eq. (7) in vector form we have:
was considered and it was shown that in this case specularities )
could also be removed). X =s+ e (8)

A3 T*
We adopt a Lambertian model [33] of image formation so

o . T heres is a 2-vector which depends on surface and camera,
that if a light with a spectral power distribution (SPD) denotegut is iﬁdependent of the iIIumirF:ant ands a 2-vector which

E(\, z,y) is incident upon a surface whose surface reflectance. . .
T I$"independent of surface, but which again depends on the
function is denoted (), z, y), then the response of the camera . . : . o
) Camera. Given this representation, we see that as illumination

sensors can be expressed as: : . ,

colour changes( varies) the log-chromaticity vectoy’ for
a given surface moves along a straight line. Importantly, the
= E 1 . - L -

Pr(@,y) U(x’y)/ (A2, 9)S(A z,9)@k(ANdr - (@) direction of this line depends on the properties of the camera,

but is independent of the surface and the illuminant.

where(,(A) denotes the spectral sensitivity of theh camera It follows that if we can determine the direction of illu-

sensor,k = 1,2,3, and o(z,y) is a constant factor which . . h h q .

denotes the Lambertian shading term at a given pixel — the éGBETIant_vanat}on (.t € vectoe) t en we can .ete_rmln(;:] all—

product of the surface normal with the illumination direction. lluminant |nvar|ar/1t representation by projecting © log-

We denote the triplet of sensor responses at a given fixel) chromatlcn)ivectorx_ onto _the \{ector_orthggonal © Wh'Ch.

location byp(z,y) = [p1 (. y), pa(z,y), ps(z,y)]T. we Qenoteg . That is, our illuminant invariant representation
Given Eq. (1) it is possible to derive a 1-d illuminant® 9'VeN by a grey-scale image

invariant (and hence shadow-free) representation at a single T = X/TQL T = exp(T') 9)

pixel given the following two assumptions. First, the camera o .

sensors must be exact Dirac delta functions and second, ilfjithout loss of generality we assume th@L” = 1. Fig. 1a

mination must be restricted to be Planckian [34]. If the camell#/Strates the process we have just described. The figure shows

sensitivities are Dirac delta function§x(\) = gxd(A — \g). log-chromaticities for four different surfaces (open circles),

Then Eq. (1) becomes simply: for perfect narrow-band sensors under a range of Planckian
illuminants. It is clear that the chromaticities for each surface
pr = E(A\)S(k) gk (2) fall along a line (dotted lines in the figure) in chromaticity

space. These lines have directionThe direction orthogonal
where we have dropped for the moment the dependenpg of P ! Ve AIrectie rectl 9

. : L L . to e is shown by a solid line in Fig. 1a. Each log-chromaticity
on spatial location. Restricting illumination to be Planckian % a given surface projects to a single point along this line

more specifically, to be modelled by Wien's approximation tPegardless of the illumination under which it is viewed. These

Plancks law [34], an illuminant SPD can be parameterised l%ints represent the illuminant invariant quantfityas defined
its colour temperatur&:

in Eq. (9).
E\T) = I\ %7 3)
TN
wherec; andc, are constants, anflis a variable controlling N \\~'\~\\.,, \
the overall intensity of the light. This approximation is valid | ./ \\\ \\
for the range of typical light§” € [2500, 10000]° K. With this e ©NX N
approximation the sensor responses to a given surface can be—=—— = R e
expressed as: (@) (b) (©)
Pk = cr[cl/\,;"ie_ﬁsz()\k)qk. (4) Fig. 1. (a) An illustration of the 1-d invariant representation, for an ideal
camera and Planckian illumination. (b) The spectral sensitivities of a typical
Now let us form band-ratio 2-vector chromaticitigs digital still camera. (c) The log-chromaticities calculated using the sensitivities

from (b) and a set of daylight illuminants.
= ke{1,2,3), k£p j=12 (8

b Note that to remove any bias with respect to which colour
e.g., for an RGB imagey = 2 meansp, = G, x1 = R/G, channel to use as a denominator, we can divide by the
X2 = B/G. Substituting the expressions fpf, from Eq. (4) geometrical mearp,; = v RGB in Eq. (5) instead of a
into Eq. (5) we see that forming the chromaticity co-ordinatgsarticularp, and still retain our straight line dependence. Log-
removes intensity and shading information: colour ratios then live on a plane in 3-space orthogonal to
5 u = (1,1,1)T and form lines exactly as in Fig. 1a [35].
A e Tk S()‘k’)%. 6)  We have derived this 1-d illuminant invariant representation
)\;5(%5(%)% under quite restrictive conditions (though the conditions on the
camera can be relaxed to broad-band sensors with the addition
of some conditions on the reflectances [36]), and it is therefore
) Sk 1 ‘ reasonable to ask: In practice is the method at all useful? To
x; =logx; =log <S> + f(ek —ep), j=12 (7) answer this guestion we must first calculate the orthogonal
P projection direction for a given camera. There are a number
wheres;, = )\,;5S(Ak)qk ande, = —co /. of ways to do this but the simplest approach is to image a set of

Xi =

If we now form the logarithmy’ of x we obtain:



reference surfaces (We used a Macbeth Color Checker ChHaetween the shape and width of sensors and the degree of
which has 19 surfaces of distinct chromaticity) under a serigwariance, so that the suitability of sensors is best judged on
of n lights. Each surface producedog-chromaticities which, a camera by camera basis. In other work [39] it has been shown
ideally, will fall along straight lines. Moreover, the individualthat it is possible to find a fixe8ix 3 linear transform of a given
chromaticity lines will also be parallel to one another. O$et of sensor responses so that the 1-d image representation
course, because real lights may be non-Planckian and candedved from the transformed sensors has improved illuminant
sensitivities are not Dirac delta functions we expect there to mwariance. In addition, we also note that, for any set of camera
departures from these conditions. Fig. 1b shows the specsahsors, it is possible to find a fixedx 3 linear transform
sensitivities of a typical commercial digital still camera, and iwhich when applied to the sensors brings them closer to the
Fig. 1c we show the log-chromaticity co-ordinates calculatedeal of narrow-band sensors [40]. Finally, we point out that
using these sensitivity functions, the surfaces of a Macbdth our studies to-date we have not found a set of camera
Color Checker and a range of daylight illuminants. It isensors for which the 1-d representation does not provide a
clear that the chromaticity co-ordinates do not fall preciselyood degree of illuminant invariance.

along straight lines in this case. Nevertheless, they do exhibit
approximately linear behaviour, and so can we solve for the
set ofn parallel lines which best account for our data in a least
squares sense [28]. Once we know the orthogonal projectior
direction for our camera we can calculate log-chromaticity
values for any arbitrary image. The test of the method is then
whether the resulting invariant quantifyis indeed illuminant
invariant.

Fig. 2 illustrates the method for an image taken with the
camera (modified such that it returns linear output without a
any image post-processing) whose sensitivities are shown i
Fig. 1b. Fig. 2a shows the colour image as captured by
the camera (for display purposes the image is mapped t
sRGB [37] colour space) — a shadow is very prominent.
Figs. 2b,c show the log-chromaticity representation of the
image. Here, intensity and shading are removed but the shado
is still clearly visible, highlighting the fact that shadows
represent a change in the colour of the illumination and not
just its intensity. Finally Fig. 2d shows the invariant image (a © (d)
function of 2b and 2c) defined by Eq. (9). Visually, it is clearig. 2. An example of the 1-d illuminant invariant representation. (a) The
that the method delivers very good illuminant invariance: thasiginal image; (b) and (c) log-chromaticity representatiogs’(and x2");
shadow is not visible in the invariant image. This image {§ the 1-d invarianZ.
typical of the level of performance achieved with the method.
Fig. 5 illustrates some more examples for images taken with
a variety of real cameras (with non narrow-band sensors). We
note that in some of these examples, the camera sensors were
unknown and we estimated the illumination direction using !N the 1-d invariant representation described above we
an automatic procedure described elsewhere [35]. In all ca§@dioved shadows but at a cost: we have also removed the
shadows are completely removed or greatly attenuated. colour information from the image. In the rest of this paper we

In other work [28] we have shown that the 1-d invarianfivestigate how we can put this colour information back in to
images are sufficiently illuminant invariant to enable accuratBe image. Our aim is to derive an image representation which
object recognition across a range of illuminants. In that worl® shadow-free but which also has some colour information.
histograms derived from the invariant images were used W& begin by observing that the 1-d invariant we derived
features for recognition and it is notable that the recognitidd Ed. (9) can equally well be expressed as a 2-d log-
performance achieved was higher than that obtained usingfgomaticity. Looking again at Fig. 1 we see that an invariant
colour constancy approach [38]. It is also notable that tfwantity is derived by projecting 2-d log-chromaticities onto
images used in that work were captured with a camera whd8g line in the directior. Equally, we can represent the point
sensors are far from narrow-band, and under non-Plancki@vhich a pixel is projected by its 2-d co-ordinates in the log-
illuminants. An investigation as to the effect of the shapghromaticity space, thus retaining some colour information.
of camera sensors on the degree of invariance has also bEBat is, we derive a 2-d colour illumination invariant as:
carried out [31]. That work showed that good invariance was Py (10)
achieved using Gaussian sensors with a half bandwidth of up X et X
to 30nm, but that the degree of invariance achievable wasereP,. is the2 x 2 projector matrix:
somewhat sensitive to the location of the peak sensitivities of N
the sensors. This suggests that there is not a simple relationship P = QLQLT (12)

W
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P.. takes log-chromaticity values onto the direction orthamust put the illumination back into the representation [41]. Of
gonal toe but preserves the resulting quantity as a 2-vectepurse, we don’t want to add illumination back on a pixel-by-
x’. The original 1-d invariant quantit§’ is related toy’ by:  pixel basis since this would simply reverse what we have just
o ;o o done and result in an image representation which once again
T'=x"-e (12)  contains shadows. To avoid this we want to re-light each pixel

To visualise the 2-d invariant image it is useful to expred#liformly by “adding back” illumination. To see how to do
the 2-d chromaticity information in a 3-d form. To do sothis, consider again the 2-d chromaticity representation defined
we write the projected chromaticity 2-vectgt that lies in a in Eg. (10). In this representation illumination is represented
plane orthogonal ta; = (1,1,1)7 in its equivalent 3-space by a vector of arbitrary magnitude in the directien
co-ordinatesy’. We do this by multiplying by thé x 2 matrix

UT which decomposes the projector onto that plane:
F—UTy (13) We can put .this Iight back into the iIIuminqnt invariant repres-
£ & entation defined in Eq. (10) by simply adding the chromaticity
where UUT = T — wu”/||u/|?> and the resultingy’ is a 3- of the light to the invariant chromaticities:
vector. Note, this transformation is not arbitrary: any 2-d log-
chromaticity co-ordinates are othogonal(tig 1, 1) (intensity)
and so we must map 2-d to 3-d accordingly. Finally, by exparhe colour of the light we put back in is controlled by the value
nentiating Eq (13), we recover an approximation of colour: of ¢ ;. To determine what light to add back in we observe that
5= exp(7) (14) the pixels in the original _image that are brightest, corres_,pond
- to surfaces that are not in shadow. It follows then that if we
Note that Eqg. (14) is a 3-dimensional representation of 2kdhse our light on these bright pixels then we can use this light
information: p contains no brightness or shading informatioro re-light all pixels. That is, we find a suitable value of
and so is still effectively a chromaticity representation. Thigy minimising
usual way to derive an intensity independent representation of HX; — (547 +ape) (18)
3-d colour is to normalise a 3-d sensor responsy the sum a o
of its elements [30]. We take our 3-d representation into thighere x, and x; correspond to the log-chromaticity and

illumination = /. = age (16)

X =X+ =X +ase a7

form by applying an L normalisation: the invariant log-chromaticity of bright (non-shadow) image
i pixels. Once we have added the lighting back in this way we
p =101, p2, p3}" /(p1 + p2 + p3) (15)  can represent the resulting chromaticity information in 3-d by

This representation is bounded jf, 1] and we have found PPlying EQ. (15). , o _ _
that it has good stability. Fig. 3c shows the resulting chromaticity representation with

An illustration of the method is shown in Fig. 3. Fig. 3dighting added back in. Here we fourd; by minimising the
shows the L chromaticity representatiom of an image, ©€rmin Eq. (18) for the brightest 1% of pixels in the image.
with intensity and shading information factored out: — The colours are now much closer to those in the conventional
{R,G,B}Y/(R + G + B). It is important to note that in Chromaticity image (Fig. 3a) but are still not identical. The
this representation the shadow is still visible — it represerfi@Maining difference is due to the fact that when we project
a change in the colour of the illumination and not just itghroman_cme:_; o_rthogonally to the illuminant direction we
intensity. Fig. 3b shows the illumination invariant chromatif®moVve illumination, as well as any part of a surface’s colour
city representation derived in Egs. (10)-(15) above. Now tHéh'.Ch is in this Q|rect|on. This part of the object colour is not
shadow is no longer visible, indicating that the method h&&sily put back into the image. Nevertheless, for many surfaces
successfully removed the shadow whilst still maintaining sonf@e resulting chromaticity image is close to the original,

colour information. Comparing Figures 3a and 3b we see tH4th the advantage that the representation is shadow-free.
Fig. (5) shows this shadow-free chromaticity representation

for a variety of different images. In all cases, shadows are
successfully removed.

IV. 3-D SHADOW-FREE IMAGES

The 2-d chromaticity representation of images is often very
(@) (b) (c) useful. By additionally removing shadows from this repres-
entation we have gained a further advantage and increased
fhe value of a chromaticity representation. However, there is
still room for improvement. Chromaticity images lack shading
and intensity information and are also unnaturally coloured.
the colours in the two images are quite different. This is béa some applications an image which is free of shadows, but
cause the representation in Fig. 3b has had all its illuminati@rhich is otherwise the same as a conventional colour image
removed and thus it is in effect an intrinsic reflectance imageould be very useful. In this section we consider how such
To recover a colour representation closer to that in Fig. 3b va@ image might be obtained.

Fig. 3. (@) A conventional chromaticity representation. (b) The 2-d invarial
representationy). (c) The 2-d invariant with lighting added back in.



A. The Recovery Algorithm wherei € {z,y} andr is the chosen threshold value.

Our method for obtaining full-colour shadow removal has N our case the goal is not to remove illuminatjoer se(the
its roots in methods of lightness recovery [8], [9], [7], [10];small values in (21) above) but rather we wish only to remove
[6]. Lightness algorithms take as their input a 3-d colour imagd@dows. In fact we actually want to keep the illuminant
and return two intrinsic images: one based on reflectance (#fdd and re-render the scene as if it were captured under
lightness image) and the other based on illumination. Ligrf¢ same single non-shadow illuminant. To do this we must
ness computation proceeds by making the assumption tfgtor out changes in the gradient at shadow edges. We can
illumination varies slowly across an image whereas changé@ this by modifying the threshold operator defined in (21).
in reflectance are rapid. It follows then that by thresholdingy Principle, identifying shadows is easy: we look for edges
a derivative image to remove small derivatives, slow changsthe original image which are not present in the invariant
(due, by assumption, to illumination) can be removed. |nteéepresentation. However, in practice the procedure is somewhat
rating the thresholded derivative image results in the lightne®9re complicated than this. For now, let us assume that we
intrinsic image. have identified the shadow edge and leave a discussion of how

Importantly, a lightness scheme will not remove shadow¥e find it to the next section. Let us define a functigi, y)
since, although they are a change in illumination, at a shad¥ich defines the shadow edge:

edge the illumination change is fast, not slow. Given their 1 if (z,y) is a shadow edge
assumptions, lightness algorithms are unable to distinguish gs(z,y) = (22)
shadow edges from material edges. However, in our case we 0 otherwise

have the original image which contains shadows and we are . . )
able to derive from it 1-d or 2-d images which are shadovyy? can then remove shadows in the gradients of the log image

free. Thus by comparing edges in the original and the shado?'"9 the threshold functiof’s (-):

free images we can identify those edges which correspond to 0 if ¢s(z,y) =1
a shadow. Modifying the thresholding step in the lightness 74(V,p},qs(x,y)) = (23)
algorithm leads to an algorithm which can recover full-colour V.p} —otherwise

shadow-free images. There are two important steps which mu%t - _ . .

be carefully considered if the algorithm is to work in practicé’v eré again € {z,y}. That is, wherever we ha}ve |Qent|f|ed
First, the algorithm is limited by the accuracy with Whicl'}hat there is a s_hadpw_ edge we set the gradient in the Io.g-
we can identify shadow edges. Second, given the location'B29€ to zero, indicating that there is no change at this

the shadow edges we must give proper consideration to h RNt (Wh_iCh is true f_or the _underlying reflectance). After
this can be used in a lightness type algorithm to recover t esholding we obtain gradients where sharp changes are

shadow-free image Indicative only of material changes: there are no sharp changes

Let us begin by defining the recovery algorithm. We use tifi¢/€ 0 illumination and so shadows have been removed.
notationp; (z, /) to denote the grey-scale image corresponding W& NOW Wwish to integrate edge information in order to
to a single band of the 3-d colour image. Lightness algorithrfec0Ver @ log-image which does not have shadows. We do
work by recovering an intrinsic image from each of these thré@'S b first taking the gradients of the thresholded edge maps
bands separately, and combining the three intrinsic images{§ Nave just defined to form a modified (by the threshold
form a colour image. We observe in Eq. (4) that under tl%oerator) Laplacian of the log-image:
assumption of Dirac delta function sensors, sensor response is V2l () = VaTs (Vepi(z,v),qs(x,y)) (24)

a multiplication of light and surface. Let us transform sensor ¥ TsPk\*:Y) = +VyTs (Vypl(z,y), gs(x,y))
responses into log space so that the multiplication becomes

addition: l\?c?w, let us denote the shadow-free log-image which we wish

to recover ag’(x, y) and equate its Laplacian to the modified
(@ y) =o' (z,y) + E' Mg, z,y) + S’ (A, 2,y) + ¢, (19) Laplacian we have just defined:

In the original lightness algorithm the goal is to remove V25 (x,y) = V%SPZ(%Z/) (25)

illumination and, as a first step towards this, gradients are ] ] )
calculated for the log-image: Equation (25) is the well known Poisson equation. The

shadow-free log-image can be calculated via:
Vaepi(z,y) = =—pl(z, . 1
Pul9) = pgpel®:y) 5 (@y) = (V) 7 Vi dhley) (26)

Vyoe(z,y) = 2p}c(a:,y) (20) However, since the Laplacian is not defined at the image

Oy boundary without boundary conditions, we must specify these

These gradients define edge maps for the log image. Nex§op uniqueness. Blake [8] made use of Neumann boundary
threshold operatdf'(-) is defined to remove gradients of smalkonditions, in which the normal derivative of the image is

magnitude: specified at its boundary. Here we use homogeneous Neumann
0 if | Viph(z,y)|| <7 conditions: the directional derivative at the boundary is set to
T(Viph(2,9)) = zero.
Vip,(z,y) otherwise There are two additional problems with recoverjig(z, v)

(21) according to Eqg. (26) caused by the fact that we have removed



shadow edges from the image. First, because we have moditieel Discrete Fourier Transform (DFT). The projection step
the edge maps by setting shadow edges to zero, we candeoving Z(u,v) follows [43], but for a forward-difference
longer guarantee that the edge map we are integrating satis@ipsrator.

the integrability condition. For the edge map to be integrable

the following condition should be met (cf. [42]): 4.0 [[(Vap ) = (Vo) + (Vo) = (Vo) > €

t —t+1, goto 2.
VyVapr(z,y) = Vo Vypr(z,y) @n ' 1 9ot

The second problem is caused by the fact that to enswyBeree defines the stopping criterion.

shadows are effectively removed, we must set to zero, edge&inally, we then solve the Poisson equation (26) using a
in quite a large neighbourhood of the actual shadow edd#al round of enforcing integrability by projection as above,
As a result edge information pertaining to local texture in th&ith the re-integrated image given by

neighbourhood of the shadow edge is lost and the resulting ~ 1

(shadow-free) image is unrealistically smooth in this region. Pl y) = F [ Z(u,v)] (28)
To avoid this problem, rather than simply setting shadow edg@g actually operate on an image four times the original
to zero in the thresholding step, we apply an iterative diffusiafize, formed by symmetric replication in and 3, so as to
process whichfills in the derivatives across shadow edgegnforce periodicity of the data for the DFT and homogeneous
bridging values obtained from neighbouring non-shadow edgRumann boundary conditions.

pixels. We also deal with the problem of integrability at Eq. (28) recoversp) (z,y) up to an unknown constant
this stage by including a step at each iteration to enforeg integration. Exponentiating, (=, y), we arrive at the re-

integrability, as proposed in [43]. constructed grey-scale imag#(z,y) (up to an unknown
This iterative process is detailed below wherelenotes multiplicative constant). Solving (26) for each of the three
artificial time: colour bands results in a full colour image= {51 p2 p3}”
o where the shadows are removed.

1. Initialisation,? = 0, calculate: To fix the unknown multiplicative factors, we apply a map-
Vaph (2,9)) — Ts(Vapl(z,9), ¢s(x, y ping to each pixel which maps the brightest pixels (specifically,
( k(@) ( #(®9), 4:(2,9)) the 0.005-percentile of pixels ordered by brightness) in the
(Vo0 (,9)t = Ts(Vyph(x,y), 45 (2, ) _recovered image to the corresponding pixels in the original

image.

2. Update shadow edge pix€ls j):

(Vapy(i,5))" — B. Locating shadow edges

) NV . _ To complete the definition of the recovery algorithm we
(Vaph(i = 1,5) "+ (Vapl (i, — 1) ’ y a9

must specify how to identify shadow edges. The essential idea
is to compare edge maps of the original image to those derived

! (s \\t—1 ! (s 4 t—1
(Vapi(i41,5))7" + (Vaph(id + 1)) from an invariant image, and to define a shadow edge to be any

(Vyph (i, 7)) — edge in the original which is not in the invariant image. We
could start by calculating edge maps as simple finite difference
(Vi (i = 1, ) 4 (Vypl (3,5 — 1)) approximations to gradients,

+(Vyp;€(l 41 j))t—l + (vyp;C(Z ] 4 1))t—1 V”I'p](x7y) = p](xvy) Y {717 07 1}T/2
3. Enforce integrability by projection onto integrable edge Vypr(z,y) = pr(z,y) @ {-1, 0, 1}/2 (29)

map [43], and integrate: where p;(z,y) is the intensity image, taken here as the L

Fy(u,v) = FIVap,], Fy(u,v) = F[V,0,, norm of the original imagep; = (1/3)(p1 + p2 + p3). Un-
fortunately, as Fig. 4a illustrates, finite differencing produces
a, = e2miu/N _ 1, ay = e2miv/M _ q non-zero values at more locations than those at which there
. . are true edges. Thus, while in the example in Fig. 4a the edges
Z(u,v) = az Fy (u, 0) + ay Fy (u, v) 2(0,0) =0 of the road and the shadow are clear, so too are many edges
’ laz|? 4 |ay|? ’ ’ ’ due to the texture of the imaged surfaces as well as noise in
(Vap) = F ' [anZ], (Vyo') = F ' [a,2] the image. Obtaining the true edges in which we are interested

from these edge maps is non-trivial, as evidenced by the large
where image size i/ x N and F[] denotes the Fourier literature on edge detection (see [44] for a review).
Transform. Here we use forward-difference derivatives For a more careful approach, we begin by applying a
{-1,1}7, {-1,1} corresponding to the.,a, above in the smoothing filter (specifically the Mean-Shift algorithm pro-
Fourier domain: i.e., the Fourier transform of a derivativposed in [45]) to both the original image and the 2-d invariant
V.Z in the spatial domain corresponds to multiplication bymage derived by exponentiating the invariant log image. This
a;(u) in the Fourier domain — this result simply followshas the effect of suppressing features such as noise and high
by writing p’'(n + 1) — p/(n) in terms of Fourier sums in frequency textures so that in subsequent processing fewer



spurious edges are detected. Then, we replace simple difisilge map is defined as:
encing by the Canny edge detector [46], returning estimates L e & IS
for the strength of horizontal and vertical edges at each image it Vil > 7 VIl <2

location: ~ S Ve xl
IVapi(z,y)ll = Cu [pi(z, y)] ¢s(2,y) = or |{Fet — g | > 7 (33)
) (30) N
[Vypi(z, )l = Cy [pi(z, )] 0 otherwise

where C;[] and C,y[] denote the Canny (or any other wellyynere - 7 andr, are thresholds whose values are para-

behaved) operators for determining horizontal and verticglatars in the recovery algorithm. As a final step, we employ

edges respectively. S a morphological operation (specifically, two dilations) on the
We determine an edge map for the invariant image Binary edge map to “thicken” the shadow edges:
a similar way, first calculating horizontal and vertical edge

strengths for each channel of the 2-d invariant image: qs(z,y) — (gs(v,y) © D) © D (34)
IVaxk(@,y)| = Ca [xe(z,y)] where ¢ denotes the dilation operation ard denotes the
(31) structural element, in this case the 8-connected set. This
IV, y)ll = Cy [xa (@, y)] dilation has the effect of filling in some of the gaps in

~ the shadow edge. Fig. 4d illustrates a typical example of a
The edge maps from the two channels are then combined fe¢overed shadow edge mag, »). It is clear that even after

a max operation: the processing described, the definition of the shadow edge is
- B _ _ imperfect: there are a number of spurious edges not removed.
[Vax(z,y)l| = max(Cy[x1(z, y)], Cu[X2(2, y)]) However, this map is sufficiently accurate to allow recovery
. ~ ~ (32) of the shadow-free image shown in Fig. (4e) based on the
[Vyx(z,y)| = max(Cy[X1(z, y)], Cy[X2(z,y)]) integration procedure described above.
where max:,-) returns the maximum of its two arguments
at each locationx,y). Figs. 4b and 4c show the resulting V. DiscussION

We have introduced three different shadow-free image rep-
resentations in this paper: a 1-d invariant derived from first
principles based on simple constraints on lighting and cameras,
a 2-d chromaticity representation which is equivalent to the 1-d
representation but with some colour information retained and,
finally, a 3-d full colour image. Fig. 5 shows some examples
of these different representations for a number of different
images. In each example all three representations are shadow-
free. The procedure for deriving each of the three represent-
ations is automatic, but there are a number of parameters
which must be specified. In all cases we need to determine
the direction of illumination change (the vecterdiscussed
in § II). This direction can be found either by following the
(d) (e) calibration procedure outlined #ll above or, as has recently

Fig. 4. (a) An edge-map obtained using simple finite differencing operatobeen proposed [35] by using a procedure which determines

(b) Edges obtained using the Canny operator on the Mean-Shifted ongiﬁEe illuminant direction from a single image of a scene having
image. (c) Edges obtained using the Canny operator on the Mean-Shifted g8ladow and non-shadow regions. The examples in Fig. 5 were

i”"la”a'?‘ image. (d) The final shadow edge. (€) The recovered shadow-figgained based on the latter calibration procedure. In addition
colotr image. to the calibration step, in the 2-d representation we also have
a parameter to control how much light is put back in to the
edge maps for the original image (calculated by (30)) arithage. We used the procedure described IH to determine
the invariant image (calculated by (31)-(32)). While still nothis parameter for the examples in Fig. 5.
perfect, the real edges in each image are now quite strong an®ecovering the 3-d representation is more complex and
we can compare the two edge maps to identify shadow edggre are a number of free parameters in the recovery al-
We use two criteria to determine whether or not a givegorithm. As a first step the original full-colour images were
edge corresponds to a shadow. First, if at a given location thecessed using the mean shift algorithm which has two free
original image has a strong edge but the invariant image haparameters: apatial bandwidthparameter which was set to
weak edge, we classify that edge as a shadow edge. Seconil§ifcorresponding to a 1¥ 17 spatial window), and eange
both the original image and the invariant image have a stropgrameter which was set to 20. The process of comparing the
edge, but the orientation of these edges is different, then e edge maps is controlled by three thresholds: and
also classify the edge as a shadow edge. Thus our shadgwr; and, relate to the edge strengths in the original and
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Fig. 5. Some example images. From left to right: original image, 1-d invariant representation, 2-d representation, and recovered 3-d shadow-free image.




