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Abstract. In this paper we propose a new log-chromaticity 2-D colour space,
an extension of previous approaches, which succeeds in removing confounding
factors from dermoscopic images: (i) the effects of the particular camera char-
acteristics for the camera system used in forming RGB images; (ii) the colour
of the light used in the dermoscope; (iii) shading induced by imaging non-flat
skin surfaces; (iv) and light intensity, removing the effect of light-intensity falloff
toward the edges of the dermoscopic image. In the context of a blind source sep-
aration of the underlying colour, we arrive at intrinsic melanin and hemoglobin
images, whose properties are then used in supervised learning to achieve excel-
lent malignant vs. benign skin lesion classification. In addition, we propose using
the geometric-mean of colour for skin lesion segmentation based on simple grey-
level thresholding, with results outperforming the state of the art.

1 Introduction

The three most common malignant skin cancers are basal cell carcinoma (BCC), squa-
mous cell carcinoma (SCC), and melanoma, among which melanoma is the most deadly
with a high increasing rate in most parts of the world. Melanoma is often treatable if
detected in the early stage, particularly before the metastasis phase. Therefore, there is
an increasing demand for computer-aided diagnostic systems to catch early melanomas.

Colour has played a crucial role in the diagnosis of skin lesions by experts in most
clinical methods (see e.g. [1]). For instance, the presence of multiple colours with an
irregular distribution can signal malignancy.

Few studies have investigated the use of colour features representing biological prop-
erties of skin lesions. In particular, the work of Claridge et al. has figured prominently,
with emphasis on the use of intermediate multispectral modelling to generate images
disambiguating dermal and epidermal melanin, thickness of collagen, and blood [2].
At the same time, another stream of work has focused on using Independent Compo-
nent Analysis (ICA) [3] in the context of 3-channel RGB images with no intermediate
spectral-space model, aimed both at non-medical images and dermoscopic images of
skin [4].

Here we concentrate on the latter, simpler, approach to utilizing colour and consider
only RGB, not multispectral image modelling. We show that, combined with texture
features, one can successfully carry out classification, disambiguating Malignant vs.
Benign; Melanoma vs. Benign; and Melanoma vs. Spitz Nevus.
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2 Method

We first adopt the ICA-based idea [4] in spirit and show that, in a particular novel
colour space, pixel triples live on a plane, with (non-orthogonal) basis vectors assumed
attributable to melanin and hemoglobin only.

Here, in an innovative step, we introduce a new colour 2-D chromaticity which re-
moves (i) the effects of the particular camera characteristics for the camera system used
in forming RGB images; (ii) the colour of the light used in the dermoscope; (iii) shading
induced by imaging non-flat skin surfaces; (iv) and also light intensity, removing the ef-
fect of light-intensity falloff toward the edges of the image. The output from this colour
processing is a set of two 1-D-colour chromaticity images, one for melanin content and
one for hemoglobin content.

Together with the above colour space features, we also employ greyscale and texture
features, including all features in a final 25-D feature-space vector. Such vectors are
then amenable to machine learning techniques for effective skin lesion classification. In
this paper we achieve comparable to state of the art results for distinguishing malignant
from benign lesions.

2.1 Colour Space Image Formulation

Tsumura et al. first suggested using a simple Lambert-Beer type of law for radiance
from a multilayer skin surface, resulting from illumination by polarized light [5]. That
is, employing a model similar to a simple logarithm model based on optical densities
for accounting for light passing for example through multilayer slide film. The transmit-
tance through each colour layer is proportional to the exponential of the negative optical
density for that layer. Such a simple model stands in contradistinction to a considerably
more complex model based on Kubelka-Monk (KM) theory such as used in [2]. In the
latter, full modelling of interreflection inside each layer is used to set up equations de-
tailing light transport. This uses estimates of the absorptionK and scattering S in each
layer to predict overall transmittance and reflection [6]. KM theory has been found to
be useful in tasks such as visualizing different components including surface and deep
melanin etc. [2]. Here, we are simply focused on the classification task, and make use
of the simpler model.

In the simpler approach, then, we utilize the model developed by Hiraoka et al. [7],
which formulates a generalization of the Lambert-Beer law. In [7], the spectral reflec-
tion of skin (under polarized light) at pixel indexed by (x, y) is given by

S(x, y, λ) = exp{−ρm(x, y)αm(λ)lm(λ) − ρh(x, y)αh(λ)lh(λ) − ζ(λ)} (1)

where ρm,h are densities of melanin and hemoglobin respectively (cm−3), and are as-
sumed to be independent of each other. The cross sectional areas for scattering ab-
sorption of melanin and hemoglobin are denoted αm,h (cm2) and lm,h are the mean
pathlength for photons in epidermis and dermis layers, which are used as the depth of
the medium in this modified Lambert-Beer law. These quantities are used as well in [4].
Finally, we also extend the model by including a term ζ standing for scattering loss and
any other factors which contribute to skin appearance such as absorbency of other chro-
mophores (e.g. β-carotene) and thickness of the subcutis. The reason we can extend the
model will become clear below, when we form logarithms of ratios in a novel step.
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In keeping with [8] we adopt a standard model in computer vision for colour image
formation. Suppose the illuminant spectral power distribution is E(λ) and, in any re-
flective case, the spectral reflectance function at pixel (x, y) is S(x, y, λ), e.g. as given
in eq. (1) above. Then measured RGB values are given by

Rk(x, y) = ω(x, y)

∫
E(x, y, λk)S(x, y, λk)Qk(λ)dλ, k = 1..3 (2)

where ω denotes shading variation (e.g., Lambertian shading is surface normal dotted
into light direction, although we do not assume Lambertian surfaces here); and Qk(λ)
is the camera sensor sensitivity functions in the R,G,B channels.

Following [8] we adopt a simple model for the illuminant: we assume the light can
be written as a Planckian radiator (in Wien’s approximation):

E(x, y, λ, T ) � I(x, y)k1λ
−5exp (−k2/(Tλ)) (3)

where k1 and k2 are constants, T is the correlated colour temperature characterizing
the light spectrum, and I is the lighting intensity at pixel (x, y), allowing for a possible
rolloff in intensity towards the periphery of the dermoscopic image. We assume light
temperature T is constant across the image (but is, in general, unknown).

Finally, with [8] we assume camera sensors are narrowband or can be made narrow-
band via a spectral sharpening operation [9]. In this approximation. sensor curveQk(λ)
is simply assumed to be a delta function: Qk(λ) = qkδ(λ − λk), where specific wave-
lengths λk and sensor-curve heights qk are properties of the camera used. Simplifying
by taking logs (cf. [4]), we arrive at a model for pixel log-RGB as follows:

logRk(x, y) = −ρm(x, y)σm(λk)− ρh(x, y)σh(λk)− ζ(λk)
+ log(k1I(x, y)ω(x, y)) +

[
log(1/λ5k)− k2/(λkT )

] (4)

where we have lumped terms σm(λk) = αm(λk)lm(λk), σh(λk) = αh(λk)lh(λk). For
notational convenience, denote uk = log(1/λ5k), ek = −k2/λk, mk = σm(λk), hk =
σh(λk), ζk = ζ(λk).

Now let us move forward from [4] by making the novel observation that the same
type of chromaticity analysis as appears in [8] can be brought to bear here for the
skin-reflectance model (4) [but N.B., [8] does not use the density model (1)]. Chro-
maticity is colour without intensity, e.g. an L1-norm based chromaticity is {r, g, b} =
{R,G,B}/(R + G + B). Here, suppose we instead form a band-ratio chromaticity
by dividing by one colour-channel Rp, e.g. Green for p = 2. [In practice, we shall in-
stead follow [8] and divide by the geometric-mean colour, μ = 3

√
R ·G · B, so as not

to favour one particular colour-channel, but dividing by Rp is clearer in exposition.]
Notice that dividing removes the effect of shading ω and light-intensity field I .

Defining a log-chromaticity χ(x, y) as the log of the ratio of colour component Rk

over Rp, we then have

χk(x, y) = log (Rk(x, y)/Rp(x, y))
= −ρm(x, y)(mk −mp)− ρh(x, y)(hk − hp) + wk − (ek − ep)(1/T )

(5)

with wk ≡ (uk − up) − (ζk − ζp). The meaning of this equation is that, if we were
to vary the lighting (in this simplified model) then the chromaticity χ would follow a
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straight line as temperature T changes. In fact, this linear behaviour is also obeyed by
the mean χ̄ over the image of this new chromaticity quantity:

χ̄k = −ρ̄m(mk −mp)− ρ̄h(hk − hp) + wk − (ek − ep)(1/T ) (6)

Now we notice that we can remove all terms in the camera-offset term wk and the
illuminant-colour term T by subtracting the mean fromχ. Letχ0 be the mean-subtracted
vector χ0

k(x, y) = χk(x, y) − χ̄k. We then arrive at a feature which depends only on
melanin m and hemoglobin h:

χ0
k(x, y) = −(ρm(x, y)− ρ̄m)(mk −mp)− (ρh(x, y)− ρ̄h)(hk − hp) (7)

If we apply the assumption that m and h terms can be disambiguated using ICA, then
from the new feature χ0 we can extract the melanin and hemoglobin content in dermo-
scopic images, where we take vectors (mk − mp) and (hk − hp) as constant vectors
in each image. The log-subtraction step removes intensity and shading, and the mean-
subtraction removes camera-offset and light colour, as opposed to [4] where one must
attempt to recover approximations of these quantities.

As an example, consider Fig. 1(a) showing a Melanoma lesion, and the ρm and
ρh components in Figs.(b,c). Below, we show how these two new image features,
ρ0m(x, y) = (ρm(x, y) − ρ̄m) and ρ0h(x, y) = (ρh(x, y) − ρ̄h), can be used in lesion
classification. In computer vision, images with lighting removed are denoted “intrinsic
images”, and thus our two new features are indeed intrinsic.

Geometric Mean Chromaticity. To not rely on any particular colour channel, we
divide not by Rp but by the geometric mean μ at each pixel, for which the invariance
properties above persist: ψk(x, y) ≡ log[Rk(x, y)/μ(x, y)]. Then ψ is a 3-vector; it
is orthogonal to (1, 1, 1). Therefore instead of 3-vectors one can easily treat these as
2-vector values, lying in the plane orthogonal to (1, 1, 1): if the 3×3 projector onto that
2-D subspace is P , then the singular value decomposition of P = UUT , whereU is a
3× 2 matrix. We project onto 2-D vectors φ in the plane coordinate system via UT :

ψk(x, y) = log[Rk(x, y)/μ(x, y)]; φ = UTψ (8)

where φ is 2-D. The mean-subtraction above still holds in projected colour, and we
therefore here propose carrying out ICA in the plane: feature = η = ICA(φ− φ̄).

2.2 Texture and Colour Feature Vectors

So far, we have discarded the luminance (intensity) part of the input image, focusing on
intrinsic colour. However, we can go on to include the greyscale geometric-mean image
(Fig. 1(d)) information μ as well. Thus, we extract features for each of {μ, η1, η2}.

As colour features, we generate mean; standard deviation; the ratio of these; and
entropy of each channel, in addition to |var(η1)−var(η2)|, adding up to a 13-D colour
feature vector. Further, we add texture features to our colour feature-vectors, in a similar
fashion as in [10]: four of the classical statistical texture measures of [11] (contrast,
correlation, homogeneity and energy) are derived from the grey level co-occurrence
matrix (GLCM) of each channel. This is an additional 12-D texture feature vector; thus
we arrive at a 25-D feature vector.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 1. (a): Input image (Melanoma); (b): melanin component; (c): hemoglobin component; (d):
greyscale geometric mean. Blue border: expert segmentation, Red border: our segmentation.
(e-h): BCC. (i-l): Spitz Nevus.

3 Image Masks

Each of the features calculated above is applied only within a mask surrounding the
lesion, normalized accordingly. For automatic segmentation of lesions, we found that
using the geometric-mean μ is as good as or better than the state of the art [12] for these
dermoscopic images, in a much simpler algorithm. Here we simply apply Otsu’s method
[13] for selecting a grey-level threshold. Note that Otsu’s method (and also most com-
mercially available automated systems) fail in segmenting low contrast lesions. How-
ever our approach achieved very high precision and recall, since we discovered that
geometric-mean greyscale highlights the lesion from its surrounding.

We tested our method on a dataset of images used by Wighton et al. [12]. They
presented a modified random walker (MRW) segmentation where seed points were set
automatically based on a lesion probability map (LPM). The LPM was created through
a supervised learning procedure using colour/texture properties. Table 1 shows results
for our method compared to results in [12]. While our method for segmentation uses a
much simpler algorithm and does not require learning, it achieves competitive results.
It is worth mentioning [12] also applied Otsu’s method on their lesion probability maps.
Their result included in Table 1 under ‘Otsu on LPM’, with results not nearly as good
as ours. In another test on 944 test images, we achieved precision 0.86, recall 0.95,
and f-measure 0.88 (with STD 0.19, 0.08 and 0.15 respectively) compared to expert
segmentations.

4 Experiments

We applied a Logistic classifier to a set of 500 images, with two classes consisting of
malignant (melanoma and BCC) vs. all benign lesions (congenital, compound, dermal,
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Table 1. Comparing our segmentation method to the modified random walker (MRW) algorithm
and Otsu’s thresholding, on lesion probability map (LPM)[12]. The dataset is divided into a set
of 20 easy-to-segment images, and another 100 images that pose a challenge to segmentation
methods. Note that our method consistently produces higher f-measures.

ImageSet n Method Precision Recall F-measure

simple 20
MRW on LPM 0.96 0.95 0.95
Otsu on LPM 0.99 0.86 0.91
Our Method 0.94 0.97 0.95

(STD) (0.04) (0.04) (0.02)

challenging 100
MRW on LPM 0.83 0.90 0.85
Otsu on LPM 0.88 0.68 0.71
Our Method 0.88 0.90 0.88

(STD) (0.15) (0.1) (0.09)

whole 120
MRW on LPM 0.87 0.92 0.88
Otsu on LPM 0.91 0.74 0.78
Our Method 0.89 0.90 0.89

(STD) (0.13) (0.09) (0.09)

Table 2. Results of classifying the dataset using different colour spaces. MHG is our proposed
colour space; We win and improve the f-measure somewhat, but the AUC is substantially boosted.
Since our dataset is unbalanced, a classifier trained on e.g. RGB achieved high score while as-
signed benign label to most malignant instances. We on the other hand produced equally high and
steady results for both classes; improving e.g. recall for malignant cases up to 23%. Since same
feature-set & classifier is used, the improvement is the result of using our proposed colour-space.

Colour Space Class n Precision Recall F-measure AUC

MHG
Malignant 135 0.806 0.8 0.803

0.953Benign 365 0.926 0.929 0.927
Weighted Avr. 500 0.894 0.894 0.894

RGB
Malignant 135 0.895 0.57 0.697

0.773Benign 365 0.86 0.975 0.914
Weighted Avr. 500 0.869 0.866 0.855

HSV
Malignant 135 0.807 0.652 0.721

0.797Benign 365 0.88 0.942 0.91
Weighted Avr. 500 0.86 0.864 0.859

LAB
Malignant 135 0.837 0.57 0.678

0.765Benign 365 0.858 0.959 0.906
Weighted Avr. 500 0.852 0.854 0.844

Clark, Spitz and blue nevus; dermatofibroma; and seborrheic keratosis). Table 2 results
are averaged over 10-fold cross-validation. We achieve f-measure: 89.4% and AUC:
0.953, an excellent performance. For comparison, we compare using our feature set
on RGB, HSV, and CIELAB colour spaces. We see that our proposed colour space,
{η1, η2, μ} (denoted MHG for melanin, hemoglobin and geometric-mean), improves
accuracy (f-measure) as well as the performance (AUC) of classification, particularly
formative for malignant lesions, where the results show significantly higher precision
and recall for our method.
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Table 3. Results of classifying the dataset using different subsets of our feature-set
(colour/texture), and different channels of our proposed colour space MHG

Description n Precision Recall F-measure AUC
Colour Features Only on MHG

500

0.728 0.754 0.72 0.731
Texture Features only on MHG 0.855 0.854 0.842 0.858

Colour+Texture on Melanin only 0.783 0.794 0.786 0.831
Colour+Texture on Hemoglobin only 0.765 0.78 0.766 0.829

Colour+Texture on Geo-mean only 0.817 0.824 0.817 0.877
Colour+Texture on MHG 0.894 0.894 0.894 0.953

Table 4. Classification results for skin cancer categories using our proposed feature space

Classification Task n Precision Recall F-measure AUC
Malignant vs. Benign 500 0.894 0.894 0.894 0.953
Melanoma vs. Benign 486 0.897 0.899 0.897 0.946

Melanoma vs. Spitz Nevus 167 0.915 0.916 0.916 0.96

To judge the effect of colour vs. texture and the different channels of our proposed
colour space MHG, Table 3 shows that 1)texture features have higher impact than colour
features; 2)the three channels of MHG contribute more than each individually; best
overall is from combining all.

To further analyze the robustness and effectiveness of our method, we tried different
classifiers using Weka [14]. On the main classification task of malignant vs. benign, Lo-
gistic Regression produced the highest result (Table 4) whereas e.g. using support vec-
tor machine (SVM) we attained precision 0.872, recall 0.87, f-measure 0.871 and AUC
0.828; sequential minimal optimization (SMO) produced 0.892, 0.891, 0.888, 0.883 re-
spectively. Table 4 shows results for classifying melanoma vs. benign and melanoma
vs. Spitz nevus, as well as malignant vs. benign, with excellent results for these difficult
problems. Spitz nevus is a challenging classification, to the extent that expert dermatol-
ogists usually have to take into consideration other criteria such as patient’s age.

5 Conclusion

We have proposed a new colour-feature η which is aimed at apprehending underlying
melanin and hemoglobin biological components of dermoscopy images of skin lesions.
The advantage of the new feature, in addition to its biological underpinnings, lies in
removing the effects of confounding factors such as light colour; intensity falloff; shad-
ing; and camera characteristics. The new colour-feature vectors {η1,η2} combined with
geometric-mean vector, μ, is proposed as a new colour-space MHG (abbreviation of
melanin, hemoglobin and geometric-mean). In our experiments, MHG is shown to pro-
duce excellent results for classification of Malignant vs. Benign; Melanoma vs. Benign;
and Melanoma vs. Spitz Nevus. Moreover, in the lesion segmentation task, μ is shown
to improve accuracy of segmentation. Future work will include i) Exploration of effects
and contributions of other colour and texture features, combined with those reported
here. ii) Experimenting with different learning algorithms and strategies, in particular
the possibility of multi-class classification. iii) Examination of the extracted melanin
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and hemoglobin colour components as a set of two full-colour images, since the equa-
tions leading to (8) are in fact invertible for each component separately. As 3-D colour
features these will support descriptors such as colour histograms and correlograms,
which may lead to even more improvement.
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