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Abstract
Removing the effect of illumination variation in images has

been proved to be beneficial in many computer vision applica-
tions such as object recognition and semantic segmentation. Al-
though generating illumination-invariant images has been stud-
ied in the literature before, it has not been investigated on real
4-channel (4D) data. In this study, we examine the quality of
illumination-invariant images generated from red, green, blue,
and near-infrared (RGBN) data. Our experiments show that the
near-infrared channel substantively contributes toward removing
illumination. As shown in our numerical and visual results, the
illumination-invariant image obtained by RGBN data is superior
compared to that obtained by RGB alone.

Introduction
Images captured by cameras/sensors are the product of an

interaction between illumination sources, objects’ surfaces, and
the image acquisition device. In regular images, light from
sun/sky/an artificial illumination source impinges upon an object
and the object’s surface reflects the light, with a camera recording
the reflected energy. The captured image may include shadows,
which indeed represent a change in the illumination of the scene
(at least one object under two different illumination conditions).

In one research stream, removing illumination effects from
regular RGB color images has been done via log-chromaticity
with camera calibration [1] and entropy minimization [2]. In ad-
dition, recently, deep learning-based methods have been used to
remove shadows [3].

However, removing illumination has not been investigated
in RGBN images. These images have an extra channel of near-
infrared (N) compared to regular images, which are in the visible
spectrum (RGB) only. The N channel usually covers the spec-
trum in the range of 800− 1000nm. RGBN images have been
widely used in many fields such as remote sensing [4] , medical
imaging[5], and computer vision [6].

In this work, we investigate the effectiveness of the N chan-
nel in the process of shadow removal. Our experiments show
that having the N channel allows generating a better illumination-
invariant image than that obtained by visible channels alone. As
a result of this benefit, the performance of shadow removal pro-
cess improves.

Previous Works
Several studies have been conducted to address the problem

of shadow detection and removal in RGB images [7, 8, 9, 10].
However, the number of research works which address those
problems by considering near-infrared data is limited. For in-
stance, Rüfenacht et al. [11] have used the information in near-
infrared channel to detect shadows. The authors have noticed
that many objects which are dark in the visible image are brighter
in the N image. They have used this observation to distinguish
dark objects from shadows, which are dark in both visible and

near-infrared channels. The authors in [12] have utilized a near-
infrared channel to extract a shadow probability map to find the
location of penumbra and umbra shadows. They have, then, re-lit
those areas in RGB images to match the lightness (L channel in
CIELab color space) of non-shadow areas.

Methodology
The energy reflected from an object is captured by a camera

to form an image. If the object’s surface is modeled as a Lamber-
tian surface, for each pixel of this image, the following equation
obtains:

Rk = σ

∫
E(λ ,T )S(λ )Qk(λ )dλ , k ∈ {1,2,3,4} (1)

where Rk and σ denote the intensity of a pixel for channel k of
the image and the shading coefficient, respectively. E(λ ), S(λ ),
and Qk(λ ) represent the spectral power distribution of the illu-
mination at wavelength λ , the surface spectral reflectance of the
object’s surface, and the sensitivity response of the camera, re-
spectively. T is the temperature or color of the light.

Since the sensitivity of narrow-band cameras, Qk, are usu-
ally approximated with a delta function with a magnitude of qk at
the central wavelength of each channel (λk), Eq. (1) is simplified
to:
Rk = σ

∫
E(λ ,T )S(λ )qkδ (λ −λk)dλ = σE(λk,T )S(λk)qk (2)

Another approximation to have a simple model for image
formation is that the illumination is restricted to the Planckian
locus [13]. Based on Wien’s approximation for temperatures be-
tween 2500K to 10000K:

E(λ ,T )' Ia1λ
−5e−

a2
λT (3)

where a1, a2, and I denote the Planck constant, the Boltzmann
constant, and a multiplicative coefficient I to represent the inten-
sity of the light. By substituting Eq. (3) in Eq. (2), the intensity
at each pixel is as follows:

Rk = σ Ia1λ
−5
k e−

a2
λkT S(λk)qk (4)

Each image pixel, with four values corresponding to the four
channels of RGBN, satisfies Eq. (4). We can eliminate the ef-
fect of shading and light intensity in the image by dividing pixel
values by one of the R, G, B, N values. For instance by dividing
by the G channel:

Rk

RG
= (

λk

λG
)−5e

−a2
T ( 1

λk
− 1

λG
) S(λk)qk

S(λG)qG
(5)

By taking logarithms on both sides of Eq. (5), we form the
band-ratio chromaticities [9]:

Ψk≡ log(
Rk

RG
)=
−a2

T
(

1
λk
− 1

λG
)+ log(

S(λk)qkλ
−5
k

S(λG)qGλ
−5
G

) (6)

We can form another version of chromaticity to have even
a simpler and more convenient equation than Eq. (6). Instead of



Figure 1: Illumination-invariant image formation, (a) RGB image, (b) Near-infrared channel, (c) luminance image obtained by
(R+G+B+N)/4, (d) histogram of (c), (e) entropy variation w.r.t. azimuth and elevation angles, which shows the entropy of the
projected data onto all of the possible q vectors, (f) mapped log-chromaticities in 3D space, the vector in dashed green line depicts
the optimal projection vector, (g) grayscale illumination-invariant image, (h) histogram of (g), (i) projected log-chromaticities onto the
optimal projection vector, (l) and (o) projection of the data onto two non-optimal examples of q (dashed red vectors), (j) and (m) the
corresponding invariant images as the result of non-optimal projections, (k) and (n) histograms of (j) and (m). The entropy obtained by
q vectors from (i), (l), and (o) is 5.16, 6.58, and 5.64, respectively.



dividing pixel values by one of the channels, we divide them by
the geometric mean of the pixels. This approach not only avoids
bias towards one of the channels but also leads to a format in
which log-chromaticities can be further simplified.

The geometric mean of an image at each pixel is defined as:

Rm =

( Nk

∏
k=1

Rk

) 1
Nk

(7)

where Nk = 4 for RGBN images. Forming a log-chromaticity
space by dividing pixel values by the geometric mean and taking
logs, we will have the following equation:

Φk≡ log(
Rk

Rm
)=
−a2

T
(

1
λk
− 1

λm
)+ log(

S(λk)qkλ
−5
k

S(λm)qmλ
−5
m

) (8)

where λm and qm denote the geometric mean of central wave-
lengths and geometric mean of camera sensitivity magnitudes,
respectively. This equation can be rewritten as follows:

Φk =
1
T
(ek− em)+ log(

sk

sm
), (9)

ek =
−a2

λk
, em =

−a2

λm
, sk = S(λk)qkλ

−5
k ,

sm = S(λm)qmλ
−5
m

This formulation shows these important points: (1) log-
chromaticty values of an image at a certain type of surface in-
deed live on a line (in a 4D space) parametrized by T , with slope
ek − em; (2) all pixels belonging to one surface, under multiple
illumination colors (multiple T ), are located on that line; (3) the
offset of the line (log(sk/sm)) is independent of the illumination
and represents only surface characteristics.

Having used geometric means for getting chromaticities, the
log-chromaticities satisfy the following criteria at each pixel in
4D space: Φ1 +Φ2 +Φ3 +Φ4 = 0. This, in fact, is the equa-
tion of a subspace in 4D space orthogonal to the normal vec-
tor u = [1,1,1,1]T /

√
4. To get the equivalent location of log-

chromaticity values in the 3D space, we project them onto the
subspace orthogonal to u. This leads to a dimension reduction
from 4D to 3D, (Φk ∈ R4→Φ′l ∈ R3).

Having mapped log-chromaticities in 3D, they can be used
to remove the effect of illumination in the image. This is done
via projecting Φ′l onto a vector orthogonal to the direction of
v = ek− em. The result of this projection is a grayscale image in
which the same surfaces under two illumination would have the
same values values as each other. That is why this image is called
the grayscale illumination-invariant, or intrinsic, image. In other
words, shadows will be removed in the invariant image (since
shadow areas in an image are caused by different illumination
conditions from non-shadow parts):

I = Φ
′
l(v
⊥)T (10)

where I and v⊥ denote the projected image and the vector orthog-
onal to illumination change, respectively.

Since the exact direction of v is unknown, following [14],
we can address this problem by searching over all possible pro-
jection vectors and find out which of those leads to minimum
entropy in the projected image:

qopt = argmin
q

(
−

1

∑
i=0

pi(Φ
′
lq

T )log(pi(Φ
′
lq

T ))

)
(11)

where q and qopt represent projection vector and the optimal pro-
jection vector, respectively. pi denotes the probability of having
pixel values equal to i in the projected image. To attenuate noise,
entropy is calculated using only 90% of the data—excluding first

Figure 2: Invariant RGB image formation, (a) illumination-
invariant image, (b) first three channels of the L1-chromaticity,
(c) invariant RGB image obtained by projection (Eq. (13), (d)
invariant RGB image obtained by multiplication ( Eq. (14)).

and last five percentiles of the data. In addition, the number of
possible bins (discrete values of i) is limited by Scott’s Rule [15].

Re-identifying q in polar coordinates rather than Cartesian
limits the search space for entropy minimization. Therefore, in-
stead of finding three unknown parameters in q = [q1,q2,q3]

T ,
we search for two unknown angles of elevation and azimuth in
q = [cosel cosaz,cosel sinaz,sinel]T (radius is set to 1).

After finding the proper vector, the grayscale invariant im-
age is obtained by:

Iinv = exp(Φ′lq
T
opt) (12)

All of the described steps are illustrated in Fig. (1). To get a
shadow-free version of the image in 3D space, we need to project
Φ′l onto the found vector qopt while preserving the final coordi-
nates in 3D. This is done via a 3×3 projector (Pqopt ):

Φ̃
′
l = Φ

′
lPqopt , Ĩ = exp(Φ̃′l) (13)

Ĩ represents a shadow-free RGB image (illustrated in Fig. 2(c)).
We have found that with a simple modification we can get a visu-
ally nicer shadow-free RGB image. First, the following equation
is solved to find a 3×3 transformation matrix M which maps the
obtained Ĩ to the first three channels of L1-chromaticity of the
original image (ρ = {R,G,B}/(R+B+G+N)): ρ ≈ ĨM. Then,
we calculate the approximated image and multiply each channel
of it by the illumination-invariant image. This way, the values
are forced to mimic/copy the patterns in invariant image, which
leads to a better recovered shadow-free RGB image:

Ĩaprx = ĨM, Irec = Iinv Ĩaprx (14)

where Irec represents the final shadow-free RGB image (Fig.
2(d)).

Experimental Results
To quantify the contribution of the N channel to shadow re-

moval in an image, we have compared the illumination-invariant
image obtained by RGBN to that of obtained by RGB. If a
shadow area is perfectly removed, regions inside that area should
be similar to their adjacent non-shadow regions. In other words,
two sub-regions belonging to a surface—under two different
illuminations—should share similar qualities.



We have selected 6 images from the RGB-NIR public
dataset [16] to conduct our experiments. The images of this
dataset have been captured by Nikon D90 and Canon T1i cam-
eras. For each scene, there are two images: (1) an RGB im-
age captured by B+W 486 (visible) filter, (2) a grayscale near-
infrared image captured by a 093 filter.

We have utilized the root mean squared error (RMSE) to
measure the similarity of two adjacent sub-regions:

D = Ish
inv− Inonsh

inv , RMSE=

√
(1/M)∑

M
i=1 D2

i (15)

where RMSE denotes the error between two same size sub-
regions in illumination-invariant image: one inside shadow (Ish

inv)
and the other one outside shadow (Inonsh

inv ). M represents the total
number of pixels existing in a sub-region.

The RMSE is calculated for the illumination-invariant im-
age of RGBN and RGB. Table 1 shows the numerical results.
According to this table, in all of the tested images the error be-
tween a shadow region and its neighbourhood non-shadow one
is smaller in the 4D invariant image than that from a 3D image.
Fig. 3 illustrates some of the visual results. In this figure, clearly,
the contrast between shadow and non-shadow areas are less vis-
ible in the invariant images obtained by 4D data (bottom row)
than the ones obtained by 3D data (middle row). In addition, the
edge artifact (between shadow and non-shadow area) formed in
an invariant image is less observable in the image obtained from
4D than the one obtained form 3D. The reason for having such
an artifact is that an optimal projection vector is selected in order
to minimize the entropy in the entire image. However, this very
vector might not be a proper value for the regions in immediate
adjacency to shadow areas. This suggests that further consider-
ations in the optimization process are required for removing this
artifact in the regions close to the boundary between shadow and
non-shadow areas.
Table 1: Quantitative evaluation of shadow removal in
illumination-invariant images (in %). Bold numbers indicate
lower RMSE.

Image Name RMSE of RGBN RMSE of RGB

country 0010 5.078 18.055

field 0052 0.516 0.590

mountain 0026 3.755 10.497

old building 0004 0.904 1.206

street 0001 0.334 0.457

urban 0053 1.572 20.953

Summary and Conclusions
The effectiveness of using a near-infrared channel in the

shadow removal process has been investigated in this paper.
Illumination-invariant images obtained by the 4D RGBN inputs
numerically and visually deliver better quality than that of RGB
inputs. This indicates that having more spectral data (such as
near-infrared) helps to remove the illumination effects in a scene.

Future Works
Since removing shadows is an important pre-processing

step in many remote sensing applications, employing the pro-
posed method on multispectral satellite images could be a future
direction. Additionally, a more sophisticated optimization algo-
rithm for finding the optimal projection vector could be utilized.
This could be beneficial for removing the edge artifacts observed
in Fig. 3.

Figure 3: Some examples of illumination-invariant images. The
sub-regions selected to calculate error are displayed in yellow
and green boxes.
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