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Spectral sharpening with positivity
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Spectral sharpening is a method for developing camera or other optical-device sensor functions that are more
narrowband than those in hardware, by means of a linear transform of sensor functions. The utility of such
a transform is that many computer vision and color-correction algorithms perform better in a sharpened space,
and thus such a space can be used as an intermediate representation for carrying out calculations. In this
paper we consider how one may sharpen sensor functions such that the transformed sensors are all positive.
We show that constrained optimization can be used to produce positive sensors in two fundamentally different
ways: by constraining the coefficients in the transform or by constraining the functions directly. In the
former method, we prove that convexity can be used to constrain the solution exactly. In a sense, we are
continuing the work of MacAdam and of Pearson and Yule, who formed positive combinations of the color-
matching functions. However, the advantage of the spectral sharpening approach is that not only can we
produce positive curves, but the process is ‘‘steerable’’ in that we can produce positive curves with as good or
better properties for sharpening within a given set of sharpening intervals. At base, however, it is positive
colors in the transformed space that are the prime objective. Therefore we also carry out sharpening of sensor
curves governed not by positivity of the curves themselves but of colors resulting from them. Curves that
result have negative lobes but generate positive colors. We find that this type of constrained sharpening gen-
erates the best results, which are almost as good as for unconstrained sharpening but without the penalty of
negative colors. All methods discussed may be used with any number of sensors. © 2000 Optical Society of
America [S0740-3232(00)00308-2]

OCIS codes: 330.1690, 330.1710, 330.1720, 330.1730, 040.1490.
1. INTRODUCTION
Spectral sharpening is a method of transforming pixel
values of multispectral images produced by a color cam-
era, scanner, or other optical device into new values that
would have resulted from sensors with more-narrowband
spectral sensitivities.1 The utility of such a transform is
that for many computer vision and color image processing
algorithms, sharper sensors result in better performance.
For example, consider the simplest form of color correc-
tion, the von Kries diagonal transform for correcting from
red/green/blue (RGB) values under one illuminant to
those under a second illuminant. Theoretical sensors
that act as delta functions would exactly obey a diagonal
transform, and it was shown in Ref. 1 that spectral sharp-
ening could greatly benefit such a color-constancy strat-
egy.

However, since spectral sharpening need not produce
positive sensor curves, it is entirely possible that trans-
formed RGB triples may include negative values. This
presents no problem if a particular algorithm may use
negative values in the transformed space, since one can
then simply transform results back using an inverse
transform.

Suppose r E,S denotes the camera triple @RGB# t for a
surface S(l) viewed under E(l). We would like to find
the RGB 3-vector r that would be produced under a sec-
ond illuminant E8. The simplest approach to this prob-
lem involves a matrix transform:
0740-3232/2000/081361-10$15.00 ©
r 5 T21D E,E8Tr E,S. (1)

In Eq. (1), T is a fixed 3 3 3 matrix and D E,E8 is an
illuminant-dependent diagonal matrix. It is important
to note that r need not equal r E8,S, though it will gener-
ally be quite similar. For our purposes, Eq. (1) can be
usefully simplified by premultiplying both sides of it by T,
yielding

Tr 5 D E,E8Tr E,S. (2)

In Eq. (2) the linear transform can be thought of as de-
fining new sensor functions r8(l), g8(l), and b8(l):

F r8~l!

g8~l!

b8~l!
G 5 F t11 t12 t13

t21 t22 t23

t31 t32 t33

G F r~l!

g~l!

b~l!
G . (3)

If we denote the RGB response for r8(l), g8(l), and
b8(l) as r8, it follows that

r8 5 D E,E8r8E,s. (4)

Thus the effect of the illumination can be modeled by
simple scalar multipliers operating individually on each
of the R, G, and B (the diagonal matrix has only three
nonzero terms). In comparison, the relationship between
corresponding r’s in the untransformed color space is
much more complex.
2000 Optical Society of America
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However, many color-constancy algorithms are predi-
cated on positive RGB values, e.g., those that utilize a
maximum value in an image (see, e.g., Ref. 2), and these
could therefore not be used directly in a transformed
space. As well, computer vision algorithms that rely on a
factor model of color (see, e.g., Ref. 3) often perform better
using sharpened values yet rely on positive values. Per-
haps the most compelling reason for sharpening with
positivity is color-ratio stability: If an algorithm uses
color ratios, as in Ref. 4, then if values fall close to zero or
change sign, color ratios can vary substantially. As well,
if we consider log-based homomorphic filtering for image
enhancement, then the advantage of positive values is
evident.

Therefore it is worthwhile to guarantee nonnegative
output values of the camera or other device. In this pa-
per we first approach the problem from the straightfor-
ward viewpoint that transformed sensors should be posi-
tive. This naturally forces RGB color values in the
‘‘sharpened’’ space to be positive. The most direct
method for producing positive sensors is to insist that the
scalar coefficients that multiply sensor functions in a lin-
ear transform be themselves positive. We investigate
this premise both analytically and by use of numerical op-
timization techniques. This work is in a sense the natu-
ral completion of that begun by MacAdam and by Pearson
and Yule.5 These authors formed linear combinations of
the human color-matching functions, adding various pro-
portions of the curves until negatives resulted. Here we
use a straightforward optimization technique instead, but
in addition we make the Pearson–Yule procedure steer-
able, as it were, by also insisting that the optimization
concentrate each curve’s energy within a given sharpen-
ing interval. We show that it is possible to prove useful
theorems about just where solutions must be found, and
this narrows the range of numerical calculations that
must be done.

Another approach that is possible is to constrain not
the scalar coefficients that multiply sensors but the out-
put sensors themselves. Here, only numerical methods
can be brought to bear. We examine different objective
functions and different norms for these tasks.

Finally, we relax the requirement that sensors be non-
negative and insist only that output values be nonnega-
tive; i.e., we do not insist on positive curves but only on
positive results. We show that it is possible to use only
the convex hull of a representative set of channel values,
over a sample database of surfaces and illuminants, to
constrain the representative transformed values to the
nonnegative range. It turns out (at least in the cases we
have studied) that this less stringent optimization actu-
ally results in sharper, and hence more successful, sensor
sets.

2. ANALYTICAL METHODS
We begin by developing sharpening transforms based on
analytic methods and then go on in Section 3 to extend
these methods to optimization techniques based on nu-
merical methods. In the following, we investigate how
sharpening proceeds in the cases where we minimize an
optimization objective based on the sum of the sensor—an
L1 objective—or based on the sum of squares of the
sensor—an L2 objective. In either case we may choose to
normalize the new sensor by adding a Lagrange multi-
plier term that is itself based on an L1 or an L2 summa-
tion. An L2 normalization is naturally associated with
an L2 objective, and an L1 normalization with an L1 objec-
tive; nevertheless we show below that it is useful to also
consider an L2 objective and an L1 normalization.

A. Unconstrained L2–L2 Optimization
Spectral sharpening means choosing three specific sharp-
ening intervals within the visible spectrum, in which we
would like energy in sensor curves to be concentrated.
Spectral sharpening in its original form1 makes use of an
optimization based on an L2 objective with an L2 normal-
ization term to set a scale, but it is not constrained by any
inequality constraints.

Suppose that in general the number of sensors in use is
p, with p not necessarily 3, and suppose that we measure
s samples for each filter-plus-optical-system sensor func-
tion. For example, s could be 31 if the visible is from 400
to 700 nm and we measure every 10 nm. A three-filter
camera or scanner would have p 5 3. Let matrix Q be
the s 3 p matrix of sensor sensitivity values. We wish to
determine the p 3 p matrix T that maximizes the energy
within a set of p chosen sharpening intervals ck , k
5 1 ... p. Thus a sensor set Q is transformed into a new
set Q8 by

Q8 5 QT. (5)

If the visible spectrum consists of wavelengths v, then
our objective is to decrease the amount of energy for
wavelengths f 5 $v% 2 $c% outside the sharpening inter-
val ck . We may choose a different sharpening interval
for each of the p filters and hence carry out a separate
minimization for each of the p color channels.

Thus spectral sharpening consists of finding a
p-component vector t, the kth column of matrix T, that
minimizes the least-squares summation

min (
lPfk

@Q~l!t#2 1 mH (
lPv

@Q~l!t#2 2 1J ,

k 5 1 ... p, (6)

where m denotes a Lagrange multiplier and t is a p-vector
to be solved for.

Let us define an operator Da that picks out wavelength
indices in the sharpening interval a within any sum. For
example, the operator Dck

picks out wavelength indices in
the sharpening interval ck ; i.e., Da is a projection opera-
tor.

When this operator is used, it is further useful to define
a p 3 p matrix involving the summation

L~a! 5 (
lPa

Qt~l!Q~l! 5 QtDaQ. (7)

Then taking partial derivatives with respect to the un-
known vector t and equating to the zero vector produces
the Euler equation, which can be written as

L~ fk!t 1 m@L~v!t# 5 0. (8)
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Note that here L (v) is just QtQ.
Differentiating Eq. (6) with respect to m simply sets the

scale of the resulting sensor to unity in the L2 norm:

(
lPv

@Q~l!t#2 5 ttL~v!t 5 1. (9)

Rearranging Eq. (8), we see that solving for t (and conse-
quently for the sharpened sensor) is an eigenvector prob-
lem:

@L~v!#21L~ fk!t 5 2mt. (10)

There are p solutions of the above equation, each solution
corresponding to a stationary value, so we choose the ei-
genvector that minimizes (lPfk

@Q(l)t#2. The vector t
derived in this way is always a real-valued vector since
the matrix in Eq. (10) is the product of two symmetric
positive definite matrices. We can take condition (9) into
account by rescaling t.

The preceding statement of spectral sharpening is de-
noted sensor-based sharpening, in that only the sensors
themselves are used to determine the sharpened sensors;
this is in contradistinction to data-based sharpening,
which employs the idea of deriving a sensor transform
from the behavior of a set of RGB data under an illumi-
nation change instead (see Section 4 below).

As an exemplar set of sensors, consider the sensors for
the Kodak DCS-420 digital camera,6 shown in Fig. 1.
Here we have reset the sensors’ scaling such that each
function sums to unity; i.e., the sensor is normalized in
the L1 norm. Since this camera has three sensors, for
this device p 5 3.

We can see that in fact this camera is sorely in need of
sharpening: the blue channel in particular does not give
a clear blue response. So we need to sharpen, but how do
we know where to sharpen? Various studies have shown
that the regions of the visible spectrum most important
for the human visual system are the so-called prime in-
tervals: around 450, 540, and 610 nm. These particular
wavelengths were shown to be the set of spikes closest to
the human color-matching functions for a collection of
uniformly distributed spectra, and they have important
efficiency characteristics for displays. The reasons these
wavelengths are so important is not yet completely under-
stood. The interested reader is referred to Refs. 7 and 8.
It is reasonable to sharpen in these intervals since ulti-
mately the output from a camera is used to drive a dis-
play that is viewed by an observer. We must therefore
capture the information that is most relevant to the hu-
man visual system.

Results will depend to some degree on the specific
sharpening intervals chosen. Here we choose [430–470]
for blue, [520–560] for green, and [610–650] for red.
Then sensor-based sharpening of the DCS-420 results in
the sharpened sensors of Fig. 2. As can be seen, substan-
tial negative lobes are introduced, although the sensor
functions are indeed much more narrowband than the
original set. As well, while the blue sensor retains a
small bump in the green–red, it is much improved over
the original. Here again, the new sensors are scaled
such that each sums to unity.

We can define a degree-of-sharpness goodness measure
e showing how much energy is concentrated in the sharp-
ening interval c. Each sensor k 5 1 ... 3 will employ a
different ck . If e measures the amount of energy con-
tained in c relative to in the entire visible spectrum v, we
may define

e 5 100

(
lPck

uqk~l!u2

(
lPv

uqk~l!u2
(11)

Fig. 1. Original sensors for Kodak DCS-420 digital camera.

Fig. 2. Sensors sharpened by sensor-based L2–L2 unconstrained
sharpening.
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for each of the k 5 1 ... p sensors, where qk(l) is the lth
component of vector q k . Table 1 shows how uncon-
strained sensor-based spectral sharpening with an L2 ob-
jective and L2 norm behaves with respect to the goodness
measure. We note that spectral sharpening greatly im-
proves the energy concentration.

Another useful feature of sharpened sensors is that any
cross talk between sensors is usually diminished. Let us
define cross talk k between channels i and j by the angle

k 5 cos21H uqi
tqju

iqiiiqji
J , (12)

where qi is the ith column of Q and i•i is the L2 norm.
The idea of cross talk is important since it captures one

essential aspect of sharpness. In particular, sensors that
are perfectly sharp (delta functions) have a cross talk of
90°. That is, the sensors measure orthogonal (hence in-
dependent) parts of the visible spectrum.

Thus the ideal value for k is 90°; however, a small pen-
alty on k would be acceptable for a good increase in e.
Table 2 shows that the value for the cross talk between
channels is actually improved substantially with sharp-
ening.

B. Unconstrained L2–L1 Optimization
Since the first term in Eq. (6) is equivalent to a sum over
all wavelengths minus those inside the sharpening inter-
val, fk 5 $v% 2 $ck%, it is equivalent to extremizing
(maximizing) the energy within the sharpening interval.
The Lagrange multiplier term serves to set a scale for the
new sensor, given via a column of Eq. (5).

Thus it is reasonable to explore how the L2 minimiza-
tion behaves if instead of using Eq. (5) we substitute an L1
normalization condition SlPvQ (l)t 5 1. A problem
with this notion, however, is that since we are aiming at
maximizing the ratio e defined in Eq. (11), every candi-
date transformed sensor will have a different L2 norm,
and therefore although arriving at the optimum that ex-
tremizes our objective, we may not derive the best pos-
sible value of e.

Nonetheless we consider this L2–L1 case because it is
tractable and in fact produces less-negative or entirely
nonnegative solutions.

Such an L2–L1 optimization consists of minimizing

min (
lPfk

@Q~l!t#2 2 mH (
lPv

Q~l!t 2 1J ,

k 5 1 ... p. (13)

Notice that now we are using a sum, rather than a sum of
squares, for the normalization condition.

Taking partial derivatives with respect to vector t, we
arrive at the Euler equation

L~ fk!t 5 mf ~ v!, (14)

where the ith component of f(v) is defined as the L1 norm
(the sum) of the ith column of sensors Q(l) over all wave-

Fig. 3. Sensors sharpened by sensor-based L2–L1 unconstrained
sharpening. Original sensors are also shown, by the dotted
curves.

Table 1. Energy Concentration in Sharpening
Intervals for Original DCS-420 Sensors and for

Sensors Sharpened with Unconstrained
L2–L2 Optimizationa

Algorithm

Energy Concentration

R G B

e0 : No Sharpening 74.34% 61.21% 21.96%
e: L2–L2 Sensor-Based 87.78% 71.93% 57.67%
e/e0 1.181 1.156 2.626

a Ratios e/e0 are sharpened over unsharpened.

Table 2. Cross talk k for Original DCS-420
Sensors and for Sensors Sharpened with

Unconstrained L2–L2 Optimization

Algorithm

Cross Talk (°)

(R,G) (R,B) (G,B)

No Sharpening 53.20 42.91 43.53
L2–L2 Sensor-Based 85.81 89.13 81.57

Table 3. Ratio of Energy Concentration in
Sharpening Intervals for Sensors Sharpened with
Unconstrained L2–L1 Optimization Compared with

Original DCS-420 Sensors

Algorithm

Energy Concentration Ratios

R G B

L2–L2 Unconstrained 1.181 1.156 2.626
L2–L1 Unconstrained 1.136 0.957 1.826
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lengths v. (For sensors that are already L1 normalized,
every component of f (v) is 1.)

Solving, we have

t 5 m@L~ fk!#21 f ~v!. (15)

Taking the derivative with respect to the Lagrange mul-
tiplier m, we get the auxiliary condition

f ~v!tt 5 1. (16)

Thus a solution is obtained by using Eq. (15) with m set
equal to 1 and then rescaling that solution for t by simply
dividing every component by f (v) tt so that Eq. (16) is sat-
isfied. An extremely useful benefit of having analytic so-
lutions available is as a check on numerical optimization
methods, which we examine below.

Figure 3 shows the results of using this method. We
note that the sensors arrived at are similar to the original
ones, shown dotted, except that the blue sensor is some-
what improved. We also note the encouraging feature
that these sharpened sensors are nearly nonnegative.
The second line of Table 3 shows the results for the en-
ergy concentration statistic (the first line repeats the last
line in Table 1). We see that, in comparison with the re-
sults for L2–L2 unconstrained sharpening, we have not
done as well as using sensors with negative lobes. How-
ever, the energy concentration has at least improved over
the original sensors in the red and blue, while it has de-
creased in the green.

3. OPTIMIZATION METHODS
With the guiding background of analytic methods, we can
now turn to consideration of numerical optimization tech-
niques for solving for a spectral sharpening transform
with positivity. The methods introduced in this paper
can be solved using either linear or quadratic program-
ming: Quadratic optimization with quadratic con-
straints can proceed by iterated quadratic programming.9

We can ensure positivity of spectrally sharpened sen-
sors in two different ways, and each of these ways gives
rise to a different approach to sharpening. First, since
we start with positive sensor curves, the simplest ap-
proach to developing a transform with positivity is to con-
strain the optimization to a solution with positive, or non-
negative, weights.

A second approach is to relax the above condition by al-
lowing positive or negative weights but directly constrain-
ing the optimization so that the resulting sensors them-
selves (i.e., the spectral curves) are nonnegative.

We refer to the first approach as an optimization
method with constrained coefficients and the second ap-
proach as an optimization method with constrained sen-
sors.

Here, using numerical optimization schemes, we inves-
tigate the effect of using an L1 objective with an L1 con-
straint, and an L2 objective with both L1 and L2 con-
straints.

A. L1–L1 Optimization: Constrained Coefficients
In this case our objective is to carry out a numerical opti-
mization with the objective function
min (
lPfk

@Q~l!t#

with constraints

H (
lPv

@Q~l!t# 5 1 L1 normalization

t > 0 nonnegative coefficients

. (17)

1. Proof of Convexity
First, it is useful to show that in fact the above minimi-
zation need not be carried out throughout the t-space.

Theorem 1. Convexity implies that the solution for
L1–L1 sharpening, with coefficients constrained to be non-
negative, lies on the boundary of the set of possible vec-
tors t.

Proof: Without loss of generality we may assume that
each sensor sums to unity. Then we seek a linear com-
bination of sensors that also sums to unity, and is all non-
negative, with nonnegative weights. This is a convex set.
If there are p sensors, then the convex set has p 2 1 de-
grees of freedom.

The valid range of components of p-vector t is [0 ... 1],
since the composed sum of spectra whose sum is unity
times these (nonnegative) weights must also sum to
unity; as well, the components of each p-vector t must
sum to 1.

We wish to prove that the solution yielding the largest
sum in the sharpening interval must lie on the boundary
of possible p-vectors t. Suppose that q1 and q2 are
boundary functions (all nonnegative s-vectors) such that
(q1 5 1 and (q2 5 1. That is, if the coefficient vectors
for q1 and q2 are t1 and t2 , and if the s 3 p collection of
sensors is matrix Q, then q1 5 Qt1 , q2 5 Qt2 . Further-
more, let the sum in the sharpening interval be S1 and
S2 . Any convex combination of q1 and q2 also sums to 1
(since the weighting coefficients themselves must sum to
1). It follows that the sum in the sharpening interval is a
convex sum of S1 and S2 and so is no larger than S1 and
S2 (we are basically calculating a weighted average). j

What this is saying is that a convex contribution aq1
1 (1 2 a)q2 takes on a maximum sum S in the sharp-
ening interval at the end a 5 0 or a 5 1. Figure 4 illus-
trates the situation, in the special case p 5 3; the figure
shows how S changes, over a convex combination of q1
and q2 (the situation might well be reversed, with S maxi-
mized at a 5 0).

Thus one can see that S must necessarily be maximized
by continuing along the (t1 2 t2) direction until t lies on
the boundary of possible p-vectors.

Since the same situation applies along each of the
boundary lines around the polygon (1, 0, 0), (0, 1, 0), (0, 0,
1), one sees that L1–L1 optimization must necessarily
drive solutions q to the original sensors themselves. (A
special case would obtain if two or more of the original
sensors had equal contributions in a sharpening interval.)

Therefore one arrives at the following lemma:
Lemma 1. The solution for L1–L1 sharpening, with co-

efficients constrained to be nonnegative, must be one of
the original sensors themselves.
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2. Implementation
Using the same choices for sharpening intervals as in
Subsection 2.A, we can validate Lemma 1 by implement-
ing optimization (17), using linear programming with an
equality constraint (the L1 normalization). The nonnega-
tivity constraint on coefficients t is inserted by means of a
lower bound of (0,0,0) t.

The resulting transformed sensors are indeed on the
boundary on the convex set of linear combinations, as pos-
tulated in Theorem 1; moreover, the set of solution vec-
tors are simply (1,0,0) t, (0,1,0) t, and (0,0,1) t for k
5 1,2,3, so we find that the optimization is in fact best
satisfied by the original sensors themselves.

Therefore this constrained optimization method, with
constrained coefficients, does not help us. However, con-
straining every component of the sensors does produce
new curves.

B. L1–L1 Optimization: Constrained Sensors
We may continue to use only linear programming meth-
ods and still constrain the entire sensor function result, in
the L1–L1 case. That is, we may allow coefficients t to
take negative values but constrain the resulting sensor
function itself to nonnegative values.

In this case Eq. (17) is modified. We no longer use a
lower-bound constraint on t but instead constrain Qt:

min (
lPfk

@Q~l!t#

with constraints

H (
v

@Q~l!t# 5 1 L1 normalization

Q~l!t > 0 nonnegative sensor result

. (18)

Fig. 4. Convexity drives an L1–L1 constrained-coefficient solu-
tion to the boundary of the set of possible coefficients and thence
to the original sensor itself. Shown here is the simplest, p
5 3, case. The surface S represents the contribution of a com-
bination of sensors to the sharpening interval.
This is a linear programming problem with one equality
constraint and s inequality constraints (e.g., s may be 31).

The results of this type of sharpening are shown in Fig.
5. The energy concentration is shown in the first line of
Table 4. We can see that while we have increased the en-
ergy concentration, Table 1 shows that unconstrained op-
timization that allows negative lobes does better.

C. L2–L2 Optimization: Constrained Coefficients
The L2–L2 case is the same as original spectral sharpen-
ing but makes use of constrained optimization. In this
case, as in Theorem 1 for the L1–L1 case, we have a con-
vexity result that allows us to examine only the boundary
of possible values of vector t.

1. Proof of Convexity
Theorem 2. Convexity implies that the solution for L2–L2
sharpening lies on the boundary of the set of possible vec-
tors t, if those coefficients are constrained to the non-
negative range.

Fig. 5. Sensors sharpened by constrained L1–L1 sharpening
with the sensor result constrained to nonnegativity. Original
sensors are also shown, by the dotted curves.

Table 4. Ratio of Energy Concentration in
Sharpening Intervals for Sharpened Sensors

Compared with Original DCS-420 Sensors

Algorithm

Energy Concentration Ratios

R G B

L1–L1 Constrained Sensors 1.167 1.062 1.612
L2–L2 Constrained Sensors 1.167 1.062 1.612
L2–L1 Constrained Coefficients 0.976 0.927 1.000
L2–L1 Constrained Sensors 1.136 0.941 1.242
L2–L2 Data-Driven 1.181 1.152 2.596
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Proof: Let q1 5 Qt1 and q2 5 Qt2 be two s-vectors
such that each has norm 1 in the L2 norm. That is, each
of t1 and t2 is on the p-dimensional ellipsoid with qua-
dratic form

L~v! 5 QtQ. (19)

It is helpful to also recall that the index function Dck

picks out wavelength indices in the sharpening interval
ck .

Let us denote the inner product of the sensor vectors by

x [ q2
tq1 5 t2

tL~v!t1 . (20)

In order for an intermediate vector

q 5 aq1 1 bq2 (21)

to be length 1, we must choose scalar b such that

a2 1 b2 1 2abx [ 1. (22)

The values a and b are in [0 ... 1]. Also x < 1 since it is
the dot product of two unit-length vectors, so we have that

a, b, P @0 ... 1#, a 1 b < 1. (23)

Let us denote by u1 ,u2 the parts of the two sensors
(which lie on the convex set boundary) that fall in the
sharpening interval:

u1 5 Dck
q1 , u2 5 Dck

q2 . (24)

Then we need to show that

iau1 1 bu2i2 < ~aiu1i 1 biu2i !2, (25)

but this follows from the Cauchy–Schwartz inequality
and the proof is complete. j

Once again, the theorem implies that a linear combina-
tion of the original camera sensitivities will not result in a
projection in the sharpening interval that is larger than
the projection of the original curves, and we have the fol-
lowing lemma:

Lemma 2. The solution for L2–L2 sharpening, with co-
efficients constrained to be nonnegative, must be one of
the original sensors themselves.

2. Implementation
Constraining the coefficient vector t to nonnegativity im-
plies the following optimization:

min (
lPfk

@Q~l!t#2

with constraints

H (
lPv

@Q~l!t#2 5 1, L2 normalization

t > 0, nonnegative coefficients

. (26)

Once again, as in Subsection 3.A.2, we find that for the
data used here the original sensors themselves are the op-
timum solution, and Lemma 2 is validated.

D. L2–L2 Optimization: Constrained Sensors
If we constrain the sensor curves themselves, rather than
the transform coefficients, we wish to optimize
min (
lPfk

@Q~l!t#2

with constraints

H (
lPv

@Q~l!t#2 5 1, L2 normalization

Q~l!t > 0, nonnegative sensor result

. (27)

The results are shown in Fig. 6 and in the second line of
Table 4. The energy concentration is the same in this
L2–L2 constrained-sensor case as in the L1–L1 situation in
Subsection 3.B—the sensors found are virtually the same.
However, we see that notwithstanding the sharpening,
the blue sensor is made more bimodal, not less, than the
original.

E. L2–L1 Optimization: Constrained Coefficients
As a useful check on methods, and for consistency (remov-
ing the constraints allows us to check results versus those
of Subsection 2.B), we again examine the L2 –L1 case:

min (
lPfk

@Q~l!t#2

with constraints

H (
lPv

@Q~l!t# 5 1, L1 normalization

t > 0, nonnegative coefficients

. (28)

Results are shown in Fig. 7 and the third line of Table 4
and are seen to be poor.

F. L2–L1 Optimization: Constrained Sensors
Constraining the sensor curves themselves, the minimi-
zation

Fig. 6. Sensors sharpened by L2–L2 sharpening with the sensor
result constrained to be nonnegative. Original sensors are also
shown, by the dotted curves.
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min (
lPfk

@Q~l!t#2

with constraints

H (
lPv

@Q~l!t# 5 1, L1 normalization

Q~l!t > 0, nonnegative sensor result

(29)

again results in poor sensors, as shown in Fig. 8 and line
four in Table 4.

Fig. 7. Sensors sharpened by constrained L2–L1 sharpening
with coefficients constrained to be nonnegative. Original sen-
sors are also shown, by the dotted curves.

Fig. 8. Sensors sharpened by L2–L1 sharpening with the output
sensor constrained to nonnegativity. Original sensors are also
shown, by the dotted curves.
Again the energy concentration is reduced, and we may
conclude that an L2 –L1 optimization is not successful in
either a coefficient-constrained or sensor-constrained
form.

G. Constrained Sensors: Equivalence of Linear
Programming and Quadratic Programming Results

With positive transformed sensors, best results were ob-
tained with either L2 –L2 or L1 –L1 optimization. It is in-
deed remarkable that the two methods arrive at nearly
the same results. Generally, we would prefer the L1 –L1,
linear programming approach over the L2 –L2, quadratic
programming one since the former has less complexity.
Nevertheless, we obtain better results with the data-
driven method, described next, using quadratic program-
ming.

4. DATA-DRIVEN OPTIMIZATION
Armed with the results of Subsection 3.G, we might in-
quire whether there is any relationship between sharpen-
ing based on the sensor curves alone and that based on
the requirement of nonnegativity of RGB data. We ask
this because in Ref. 1 it was shown that the least-squares
transform from a set of RGB’s under one illuminant to the
set under another illuminant yields approximately the
same sharpening transform as recapitulated in Subsec-
tion 2.A if that least-squares matrix is diagonalized. In
Ref. 1 this phenomenon was referred to as ‘‘data-based
sharpening.’’ We can understand why this correspondence
arises by recalling from Eq. (2) that sharpening makes a
diagonal model of illuminant change more accurate.
Then the diagonalization transform for the best least-
squares 3 3 3 matrix is that which produces sharpened
sensors.

Here we wish to investigate whether the requirement
that the sensors be sharpened can be combined with the
idea that under the new sensors we wish to have only
nonnegative RGB values. We shall see that this scheme,
which may yield sensors with negative lobes, leads to
sharper sensors than those formed under the assumption
of strict nonnegativity of the curves themselves.

Suppose that we consider an RGB triple r formed from
a color signal C(l) arriving at the camera sensors: If
E(l) is the illuminant and S(l) is the surface spectral re-
flectance function corresponding to a particular pixel,
then

C~l! 5 E~l!S~l!,

r 5 (
lPv

C~l!Q~l!. (30)

Suppose that we collect all such RGB triples r into an
n 3 3 array R and also collect all the color signals into an
n 3 s array C. Then we have

R 5 C Q. (31)

If the sensors themselves are changed to Q8 via a matrix
transform, then we obtain

Q8 5 QT, (32)
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where the column tk pertains to sharpening the kth inter-
val. The collection of RGB values changes to those seen
under the new sensors:

R8 5 C QT 5 RT. (33)

Now, we could set up a minimization to achieve sharp-
ening in a given interval, subject to nonnegativity of all
such sharpened RGB values R8. However, this presents
an unworkable set of constraints, and in fact we can make
use of convexity to work with convex hull points only.

Suppose that we form the color signal collection C by
using the 462 reflectance spectra of the set of Munsell
paint chips measured by Newhall et al.,10 along with the
170 reflectances of natural objects measured by Vrhel
et al.11 To form color signals from these reflectances, let
us use the standard illuminant spectra A, C, D48, D55,
D65, D75, and D100 and the fluorescent illuminant F2.12

These illuminants represent incandescent lighting (illu-
minant A), a variety of standard daylights at correlated
color temperatures from 4800° to 10,000°, and a standard
fluorescent. Thus, with the reflectances, the set C has
5056 members.

Under each of the illuminants the set of measured
RGB’s forms a convex set.13 Since we are not concerned
here with brightness, we can form a two-dimensional con-
vex set for each illuminant by forming the chromaticities
r 5 R/(R 1 G 1 B), g 5 G/(R 1 G 1 B) and form the
convex hull of the convex hulls of (r, g) values (see Ref.
14). These chromaticities can then be turned back into
RGB triples.

Let us impose the reasonable constraint that the non-
negativity of RGB points corresponding to the overall con-
vex hull of the set R be maintained under a transform
[Eq. (32)].

Suppose that the boundary set of RGB values is R̃,
with R̃ an ñ 3 s matrix, where ñ is the number of
samples in the boundary set. Our data-driven minimiza-
tion is thus

min (
lPfk

@Q~l!tk#n

with contraints

H (
lPv

@Q~l!tk#n 5 1, Ln normalization

R̃tk > 0, nonnegative RGB values

, (34)

and we shall be interested in an L1 norm, with n 5 1, or
an L2 norm, with n 5 2.

We found that an L2 norm gives slightly better results
for the DCS-420 data, and the resulting sharpened sen-
sors are displayed in Fig. 9.

The energy concentration is shown as line five of Table
4 and is seen to be the best found for this camera. Inter-
estingly, the sensors themselves are not all positive. The
data-driven sharpening results in sensors that are similar
to the unconstrained ones of Fig. 2 but produce positive
RGB’s.

Thus we are left with the outcome that, for the sensors
examined here, a data-driven sharpening that does not
insist on nonnegative sensors but only on nonnegative
sensor response values, gives the best sharpening. Com-
paring with the last line of Table 1, we see that the energy
concentration is nearly as good as for the best possible,
unconstrained, sharpened sensor set.

Of course, a drawback of the data-driven approach is
that if a signal is out of the database’s gamut, we may
still arrive at a negative color. However, by choosing a
wide enough range of surfaces and illuminants, we can
likely avoid this problem.

5. CONCLUSIONS
In this paper we applied techniques involving both L2 and
L1 objectives and norms to a three-band set of digital cam-
era sensors. Unconstrained optimization gives the best
energy concentration but results in curves with negative
lobes. An optimization based on constraining only trans-
formed RGB’s rather than the curves themselves does
best for a constrained sharpening for the camera studied,
delivering almost as good results as for unconstrained
sharpening but without the penalty of negative colors.
Remarkably, the sharpened curves found are indeed quite
close to the best curves that result from unconstrained
sharpening.

We proved two theorems showing that for constrained
coefficients, in both the L1–L1 and the L2–L2 cases, the
optimum is guaranteed to be found on the boundary of
possible values for coefficients for sensor sets of any di-
mensionality. As a consequence, if coefficient multipliers
of sensor sets are constrained to be nonnegative, then the
solution with the most concentration of energy in a sharp-
ening interval is necessarily one of the original sensors
themselves.

We determined that optimization with constrained sen-
sors did better than optimization with constrained coeffi-
cients for any of the L1- or L2-based schemes.

Fig. 9. Sensors sharpened by a data-driven L2–L2 sharpening
with transformed convex hull points constrained to nonnegativ-
ity. Original sensors are also shown, by the dotted curves.
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A somewhat more complex approach to constrained-
sensor optimization than that used here can in fact give
sensors that are guaranteed to be positive, by means of
searching the boundary of a coefficient set without insist-
ing on positive coefficients. In such an approach we can
enforce the condition that the sensors are all positive by
constructing the set of all positive linear combinations of
the original sensors. This set is convex with a finite
number of points on the boundary. We can then find the
coefficient solution relative to this set, which of course
must be one of the boundary points. Then the computa-
tion can be carried out non-iteratively: We simply con-
sider the points on the boundary of the all-positive sensor
set, and this can be done with the usual tools of computa-
tional geometry. However, the method used here is
likely to be less complex than the required construction of
the set of all-positive sensors.

In a sense, the constrained-coefficient and constrained-
sensor techniques presented here are a natural comple-
tion to the work of MacAdam, and of Pearson and Yule.5

The main advantage of using an optimization, with posi-
tivity, that maximizes energy concentration in desired
sharpening intervals is that the process of making posi-
tive linear combinations of sensor curves is guided not by
simply decreasing cross talk or making the narrowest
curves but by the practical necessity of sharpening within
specific areas of the visible spectrum.

Note that throughout this work we have in principle
considered sensor systems of any dimensionality, al-
though experiments were performed only for a three-band
system. Note that further testing on higher-dimensional
sensor systems may not necessarily corroborate the con-
clusion that the data-driven approach seems to be best
compared with either the constrained-coefficient or
constrained-sensor techniques.

Nevertheless, the results developed here do show that
sharpening with positivity not only is possible but indeed
leads to more well-behaved sensor functions than do the
raw curves used in hardware. Moreover, we found that it
generally made little difference whether an L1 norm or an
L2 norm was used. This fact may point to the existence
of a type of global optimum for sharpening with positivity.
Further work will be aimed at exploring systems with
more sensors and also at applying the methods set out
here to color correction and other human-perception-
motivated applications.
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