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Abstract 
Mutual reflection occurs when light reflected from one surface illuminates a second surface. In this situation, the 
color of one or both surfaces can be modified by a color-bleeding effect. In this article we examine how sensor 
values (e.g., RGB values) are modified in the mutual reflection region and show that a good approximation of 
the surface spectral reflectance function for each surface can be recovered by using the extra information from 
mutual reflection. Thus color constancy results from an examination of mutual reflection. Use is made of finite 
dimensional linear models for ambient illumination and for surface spectral reflectance. If m and n are the number 
of basis functions required to model illumination and surface spectral reflectance respectively, then we find that 
the number of different sensor classes p must satisfy the condition p >_ (2 n + m)/3. If  we use three basis functions 
to model illumination and three basis functions to model surface spectral reflectance, then only three classes of 
sensors are required to carry out the algorithm. Results are presented showing a small increase in error over the 
error inherent in the underlying finite dimension models. 

1 Introduction 

Two illuminated surfaces of different reflectance can 
appear to have their colors bleed into one another in 
regions where light reflected from one surface falls onto 
the other surface. This is a mutual reflection effect. 
Figure 1 shows two surfaces that form an edge, and 
the resulting interreflection effect. In this article we ex- 
amine how the lights reflected separately from each sur- 
face combine to form RGB values in the mutual reflec- 
tion region. Using vector models for the illumination 
spectral power distribution and for surface reflectance 
functions we show that by looking at the extra infor- 
mation coming from measurements of the interreflec- 
tion RGB values--in addition to sensor measurements 
from each surface separately--it is possible to recover 
the surface reflectance properties of both surfaces. In 
this way we use mutual reflection to obtain "color con- 
stancy." 

The term color constancy refers to the ability of 
humans and some animals to perceive object colors as 
approximately constant, independent of changing illu- 
mination (see, e.g., Beck 1972). There is evidence that 
several simultaneous mechanisms contribute to color 
constancy in humans (Blackwell & Buchsbaum 1988). 

Nevertheless, we have found in (Ho, et al., 1990), that 
it is the case that an algorithm can be built to recover 
reflectance from the color signal, in which illumina- 
tion and surface characteristics are confounded, without 
regard to colored surrounds, selective adaptation, 
memory of colors, etc., provided that the complete 
color signal is known. Most recent attempts to ac- 
complish this end have made use of finite dimensional 
linear models in which illumination and surface spec- 
tral reflectance are approximated by a weighted sum 
of a few basis functions of wavelength (Brainard et al. 
1989; Brill & West 1986; Buchsbaum 1980; D'Zmura 
& Lennie 1986; Gershon et al. 1987; Maloney 1985; 
Maloney & Wandell 1986; Wandell 1987; Yuille 1987). 

In the innovative work of Maloney and Wandell 1985; 
1986; 1987, several special conditions have to be true 
for reflectance to be recoverable from the color signal 
entering the camera. Some of these conditions are that 
the illumination must be constant over a given segment 
of the image, and that a sufficiency of different color 
information must be available over the image. More im- 
portantly, in this method the number of sensor classes 
(e.g., 3 for RGB sensors) must be at least as great as 
the number of basis functions modeling the surface 
spectral reflectance, plus 1. This means that for a usable 
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Fig. 1. Isotropic illumination with spectral power distribution E(k) impinges on surfaces 1 and 2, which have surface reflectance functions 
{2) (1} S(])(k) and S (k) respectively. Far from the edge, surface 1 reflects color signal I (k) toward the camera; and, similarly, surface 2 reflects 

(2} l (k). Close to the edge, E(k) is augmented by light reflected from the other surface. The color signals reflected from the surfaces near 
the edge are l~)(k) and l~)(k). 

dimensionality for the set of basis functions modeling 
reflectance, say 3 or better (Maloney 1986), one must 
somehow develop a "fourth sensor class" to provide 
enough information to allow a solution that disentangles 
illumination and surface spectral reflectance. Alter- 
natively, one can continue using the usual 3 sensor 
classes, but at the expense of having only a dimen- 
sionality of 2 with which to model surface reflectance. 

Maloney and Wandell's method essentially involves 
writing down a set of equations relating the sensor 
values Ok, k = 1 . . . p ,  to the finite dimensional linear 

model weights, Ei, i = 1 . . .  m for illumination, and crj, 
j = 1 . . .  n for surfaces, and then coupling the sets of 
equations at different pixels by using the assumption 
of constant illumination. Taking into account enough 
pixels, which must have sufficiently different sensor 
values, brings the number of equations equal to the 
overall number of unknowns, allowing a solution for 
e, and aj. 

In Ho et al. (1990) it was shown that the need for 
additional sensor values can essentially be fulfilled 
by requiring that a finer sampling of the color signal 
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spectrum be introduced as additional input. In that 
work, it was shown that from detailed knowledge of 
the spectral power distribution of the color signal, a 
complete disambiguation of the reflectance and illu- 
mination from the color signal is possible, and in fact 
is possible independently at each pixel and without the 
need for constant illumination or any special require- 
ment on the richness of color variation over image 
segments. This method (Ho et al. 1990) relies on a 
statistical determination of the finite dimensional model 
weights using a least-squares method, and has the sole 
requirement that a special mathematical relationship 
holds among the basis vectors, viz. that the set of func- 
tions generated by forming products of the basis func- 
tions for illumination and surface reflectance forms a 
linearly independent set. The main benefit of this 
method is that one can increase the dimensionality of 
the surface reflectance space without having to increase 
the number of Ok values beyond the 3 that correspond 
to the cones in the human visual system. 

In Funt & Ho (1989) and Gershon et al. (1986, 1987) 
it was shown that the required spectral information for 
the color signal is derivable from the chromatic aber- 
ration effect at edges between adjacent color regions. 
In fact, what is found via chromatic aberration is the 
difference between color signals from each side of the 
edge. Coupled with the method of Ho et al. (1990) and 
given this spectral information plus RGB sensor values 
from each side of the edge, the values of ei and oj can 
be determined and color constancy achieved. 

In this article, we take a different approach, although 
the basic motivation is the same--we seek more infor- 
mation than just the Pk values in order to circumvent 
the "fourth sensor problem." Here, we consider the 
mutual reflection at a 3-dimensional edge, and the 
resulting bleeding of colors at the 2-dimensional im- 
age edge, without regard to chromatic aberration. Such 
interreflections generally occur near the edges of ob- 
jects and the boundaries where objects occlude one 
another (Horn 1986). 

We can take measurements of Pk values from pixels 
where mutual reflection effects are present and com- 
pare them to values where such effects must be absent 
or small. By using such measurements on each side 
of an image edge, relatively far from the edge and also 
relatively close to the edge, we capture sufficient in- 
formation to determine ~i and 0rj separately on each 
side of the edge, and hence determine the true reflec- 
tance for each color patch. This is more than enough 
information to provide color constancy. In Gershon et 

al. (1986) it was shown that mutual reflection can help 
to distinguish shadow boundaries from material 
changes. Here we show that mutual reflection has 
another positive aspect--it is an effect that can be ex- 
ploited to achieve color constancy. As well, once con- 
stant color descriptors are found, the mutual reflection 
component can be effectively removed from the image. 
Such an image filter could be useful for shape-from- 
shading, etc. (Forsyth & Zisserman 1989, 1990). 

The only constraint on the formulation turns out to 
be that the numberp of sensor classes must be greater 
than or equal to (2n + m)/3, where m and n are the 
number of basis functions required to model illumina- 
tion and surface spectral reflectance respectively. This 
constraint is satisfied by values p = m = n = 3 and 
hence we can keep to only 3 sensor classes while still 
allowing n = 3 for describing reflectances. These values 
of p, m, and n are shown to recover both surface spec- 
tral reflectance and illumination spectral curves well 
within acceptable errors. 

Here, we address only a small part of a large prob- 
lem. We assume a preliminary edge-finding and 
segmentation algorithm that would identify those edges 
where mutual reflection might be present. Given such 
identification of appropriate sites our analysis concen- 
trates on extracting any available reflectance informa- 
tion from mutual reflection effects. 

In section 2 we show how p, measurements on each 
side of a color edge, and inside the mutual reflection 
region, are related to the values of ei and aj for each 
side of the edge separately, assuming a finite dimen- 
sional linear model for describing natural lighting and 
reflectances. The resulting model is quite complex, but 
some reasonable assumptions reduce the equations to 
solvable form. We show that a reciprocity relation ex- 
ists between the mutual reflection measurements on 
each side of an edge, so that only Pk values in the 
mutual reflection zone on a single side of the edge are 
required. 

In section 3 an algorithm is presented for solving for 
the reflectance weights aj on each side of the edge 
separately, as well as the illumination weights ei, 
which are assumed to not change across an edge. We 
develop a uniqueness proof that guarantees convergence 
of the algorithm. 

In section 4 we set out the geometrical significance 
of the mutual reflection configuration factor used in the 
analysis. 

In section 5 we examine the accuracy of the solution 
method by carrying out simulations. The results are 
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seen to be very good in most cases, with accuracies 
of the resulting reflectance spectra not degraded much 
from the accuracy of the underlying finite dimensional 
model. 

2 Finite-dimensional Models Applied to Mutual 
Reflection 

2.1 Mutual Reflection Equations 

We assume that illumination and surface spectral reflec- 
tance are each modeled to an acceptable degree of ac- 
curacy by finite dimensional linear models. Depending 
on the dimensionality of the set of basis functions, not 
all illumination spectra and surface reflectances will 
be well modeled; generally, the higher the dimen- 
sionality of the set of basis functions the better will be 
the approximation (see, e.g., Maloney 1986). However, 
we shall show below using simulations that whether or 
not the accuracy of the underlying finite dimensional 
model is good, the accuracy of the solution for color 
constancy from mutual reflection measurements is not 
greatly reduced. 

For reflectance basis functions we use those deter- 
mined by Cohen via a statistical principal component 
analysis of 150 Munsell chips randomly selected from 
a total of 433 chips (Cohen 1964); see also Parkkinen 
et al. (1989). For illumination, a similar analysis was 
carried out by Judd et al. (1964) for 622 typical daylight 
samples. We demonstrate below that it is possible to 
use n = m = 3 basis functions for surfaces and il- 
lumination and still have only p = 3 sensor classes. 

Most naturally occurring daylights and many surface 
reflectances can be approximated reasonably well us- 
ing these basis functions, so that by determining a good 
approximation of the weights ei and aj, we are in fact 
deriving an approximation of the entire illumination or 
reflectance spectrum. Hence what we require from a 
solution is actually more stringent than simply color 
constancy, in that we seek to recover more informa- 
tion than just chromaticity values. And, in fact, the 
measure of accuracy we shall use is the error sum of 
squares over the entire visible spectrum of an approx- 
imate reflectance spectrum compared with an actual 
one. 

Consider the situation depicted in figure 1. lsotropic 
illumination E(X), assumed constant across an edge, 
impinges on two surfaces, 1 and 2. Assume surface 1 
has spectral reflectance function S0)(X) and surface 2 

has reflectance S(2)(X), all surfaces being ideal diffuse 
(i.e., Lambertian) reflectors. Then depending on the 
geometry, interreflection may be present as shown in 
figure 1. In fact, the two surfaces need not meet at an 
edge for a mutual reflection effect to come into play; 
and we do not require the surfaces to be flat. We show 
ray geometry in figure 1 to clarify the interreflection 
process. However, ray geometry is actually unnecessary 
since perfect diffuse reflectors obliterate directional in- 
formation: reflections are really in all directions into 
the hemisphere above each surface. We assume here 
that illumination is uniform on each surface and hence 
exclude shadow situations. 

Expanding the illumination function in terms of m 
basis functions, the spectral power distribution can be 
approximated by the sum 

E(X) = ~]  eiEi(~,) 
i=1 

with weights el. Similarly, for surface 1 the reflectance 
can be written 

s(°(x) = ~]  o}')s,(x) 
j = l  

where reflectance is modeled by n basis functions with 
n weights o} t). Surface 2 has reflectance 

S(2)(X) ~ (2)S 0k) 
j=l 

The color signal I(X) is the light reflected by the sur- 
face, and is given by the product of E and S. On the 
surface 1 side, at a point relatively far from the edge, 
the color signal is simply 

IO)(X) = E(X) SO)(X) 

Similarly, on the surface 2 side we have 

I~2)(X) = E(X) Sa)(X) 

Substituting the basis function decomposition, we 
have 

i = l j = l  

i=l j=l 



Color Constancy from Mutual Reflection 9 

NOW consider the mutual reflection region in which 
part of l(1)(~k), the light reflected from surface 1, im- 
pinges onto surface 2. Similarly, part  of I(2)(X) im- 
pinges onto surface 1. The amount of l(l)(~k) that is 
intercepted by surface 2 is dependent on both the con- 
figuration of the surfaces and on the shape of each sur- 
face, since not every reflected ray is intercepted (con- 
sider a small triangle of surface 1 forming an edge with 
a large plane of surface 2). In computer graphics dif- 
fuse interreflections are modeled using configuration 
factors that give the fraction of light from one surface 
that reaches another surface (Goral et al. 1984). We 
discuss these in section 4. 

Since there is no a priori reason to assume that one 
surface is more reflective than the other (although for 
clarity in figure 1 only a single interreflection is shown), 
we consider the fraction ~x~2 of I(X) from 1 that strikes 
2, and the similarly defined ~xz~. Denote by I~  ) the 
color signal from a spot on surface 2 in the mutual 
reflection region, so that it includes a contribution from 
light reflected by surface 1. It consists of two parts. The 
first part is I(2)(X), the reflection of E(X) from surface 
2. This we assume is the same as from a spot relatively 
far from the edge, outside the mutual reflection region. 
The second part is due to the light reflected from sur- 
face 1. Since the latter is presumed to come from a spot 
on surface 1 that is near the edge, the second part is 
a contribution from I~ ) (cf., Goral 1984). Hence the 
color signals coming from each side of the edge in the 
mutual reflection region are 

I~)(X) = /(O(X) + azII~)(X)SO)(X) 

I(m2)(X) = /(2)(X ) + c~12I~)(X)S(2)(X) 
(1) 

where oqz is not assumed to be the same as og21, and 
we do not include dependency of the surface spectral 
reflectance function shape on angle of incidence or 
angle of line of sight (although it could change by an 
overall multiplicative constant). 

Solving the above set of  simultaneous equations, we 
can write each I,~(X) in terms of l(l)(k) and/(2)(~k) from 
each surface separately and the geometrical factors c~: 

( 2 )  

/(ml)(~x) = /(1)(x) q-- o~2,I(2)(~k)S(I)()k) 

1 - ~,2~2,S(1)(Ms(Z)(x) 

I~)(k) = 1(2)(~k) + o:12I(lJGk)S(2)() Q 
1 -- f f I2ff21S(I) (x)S(2)(~)  

2.2 Simplified Equations 

The above set of equations would be quite difficult to 
solve numerically. However, since both c~ and S(X) are 
less than 1, in most cases not much accuracy is lost 
by rewriting the equations to first order in a • S. This 
amounts to ignoring more than one bounce of the color 
signal between the surfaces. With typical values of S 
0.01-0.3 and typical values of a of _<0.5 this approx- 
imation might be off by at most a few percent. Of  
course, for highly reflective materials (0.3 represents 
the 92 percentile in the Krinov catalog (Krinov 1947) 
and for geometric configurations with high values of 
a ,  the approximation would be farther from the full 
model. 

To first order, we have 

I(ml)(~k) = /(1)(~k) + o:z,I(2)(~k)s(l)(~k) 
(la) 

[~2)(~k) = /(2)()X) 4- c~12/(l)(~k)S(2)(~) 

as the set to solve. 
To see how these equations can be further reduced, 

denote the terms involving ol by 

(1) _ - 1 m ( X )  / ( 1 ) ( X )  

--- I~)(X) - /~2)(k) 

-i(.~)(x) 

That is, 

and also 

]~)(x) 

= ot21E(~.)S(2)(X)S(I)(x) 

= oG2E(~)S(I)(~k)S(2)(~k) 

Therefore, we have a reciprocity relation 

O/12 

Since all the signals I(X) are in principle measurable, 
this relation states that one a can be derived from the 
other. To obtain a solution that takes into account noise 
and errors in measurement, samples could be measured 
at N wavelengths so that the above relation would then 
represent N equations in 1 unknown. A statistical best 
estimate results from the least-squares solution for the 
ratio of the a's.  Therefore, the number of unknowns 
to be solved for is reduced by one. Below, we show 
how it is possible to use only one of the pair of equa- 
tions for the Im(k)'s to complete a sufficient set to 
solve for the remaining unknowns. 
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To simplify further, consider reducing all the equa- 
tions involved to equations relating sensor values by 
multiplying by sensor sensitivity functions Rk(X) for k 
= 1 . . . p  sensor classes and integrating over wavelength 
(e.g., p = 3 for RGB signals). Then following Maloney 
& Wandell (1986) and defining the precalculated tensor 

- f E,(x)sj(x)R,(x) gok 

the equations for I°)(h) and I(2)(X) become the 
following: 

p~l) __ f 10)(X)Rk(X) dX 
3 (3) 

= eia}l)gij k 
i= l j= l  

and 

- f I(2)(X)Rk(X) dX 

= eft) lgq~ 
i= l j= l  

(4) 

with k = 1 . . . p .  
For the mutual reflection color signal, we first 

substitute the basis function expansions yielding 

1~(x) = ,ia}2)Ei(x)sj(x) 
i = l j : l  

i=lj=lj '=l 

where we have abbreviated c~t2 simply as a. Now 
multiplying by Rk(X) and integrating, we find the final 
equation in our set of equations to solve, 

oF - f dx + f I(1)(X)S(2)(X)Rk(X) dX 

- -  pp) "l" Ot ~ ei~Jl)a)2,)hio,k (5) 
i=lj=lj '=l 

for k = 1 . . . p ,  where 

- f E~(X)Sj(X)Sj,(X)Rk(X)dX hij/'k 

and we have abbreviated p~(2) as p~n. 

From equation (5) we can see that it is indeed possi- 
ble to restrict our attention to measurements of p~T), 
p~2), and o~ - o~ n(2) on one side of the edge, since 
from the similar equation for p~0) we can see that if 
a solution is found for cq2 then a21 can be determined 
via a least-square solution involving the p~0), p~c2), 
p~l), and p~Z). So that if a solution for ei, a~ '), tr~ 2), and 
a12 can be found via measurements on one side of an 
edge in the image then a solution for c~21 is also 
available, given measurements p~(l) in the mutual 
reflection region on the other side. 

Using measurements p~l), p~2) and p~, we are faced 
with solving the set of equations (3), (4), and (5) for 
the ei, for the reflectance weights of both surfaces o) ° 
and a} 2), and also for the geometrical factor t~. 

2.3 Assumptions 

It is important to underline the assumptions inherent 
in the pair of equations (1) and equations (3), (4), and 
(5). 

a. We assume isotropic diffuse illumination, i.e., a sky 
model as opposed to a sun model or a sun-sky 
combination. 
The pair of equations (1) encompasses only two sur- 
faces. However, the set of equations we actually 
solve, (3), (4), and (5), can be generalized to multi- 
ple surfaces. 

c. We assume that the surfaces are convex--they do 
not see themselves. 

d. We assume that each surface has a surface reflec- 
tance function that is independent of position, in 
contradistinction to the more complex model of 
Koenderink & van Doom (1983). 
In equation (1) we assume that I m is the same 
everywhere in the mutual reflection zone. This 
amounts to assuming that the mutual reflection is 
between two semi-infinite convex surfaces. With two 
such surfaces, any point on either surface sees the 
same fraction of the hemisphere above it filled by 
the opposite surface (see Horn 1977). Each point, 
therefore, receives an equal amount of illumination 
due to mutual reflection from the opposite surface. 
This is a strong assumption; however, we show 
below that we can later eliminate it. 
We also assume that there exists at least one point 
on each surface where the illumination resulting 
from mutual reflection from the opposite surface is 
negligible. 

b. 

e. 

f. 
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These assumptions mean in effect that we have 
adopted a two-zone, one-bounce model of mutual 
reflection. Although this reflects how our initial think- 
ing about the problem developed, a two-zone model 
is rather restrictive. However, our equations--(la) in 
particular--can be reinterpreted in a much more general 
way. They can be viewed as stating that for any point 
on side 1 where mutual reflection is present, the fac- 
tor ct21 represents the sum of all the contributions of 
light reflected from side 2 impinging upon it. Thus the 
factor a can be allowed to vary as a function of posi- 
tion; we can abandon assumption (e) and move to a one- 
bounce, infinite-zone model of mutual reflection. 

The suitability of this interpretation is borne out in 
section 5, where we test the model on several simulated 
concave edges including ones derived from a full model 
of diffuse interreflection. 

We are forced to keep assumption (f); however, a sim- 

ple method of finding pixels where mutual reflection 
is negligible would be to examine the derivatives of 
ratios of RGB values. From figure 10 in section 5 we 
see that the derivatives of ratios can be expected to 
vanish at pixels where no mutual reflection is present. 

Our simulation tests show that the model can be ex- 
pected to work if one deals with surface reflectance 
functions for natural materials, but we do not expect 
the method to work when a one-bounce model is inap- 
propriate. This would be the case for highly reflective 
surfaces or for geometric configurations in which 
mutual reflection plays a dominant role, such as inside 
highly concave enclosures. 

2.4 Bound on Dimensionalities 

In order that a solution be possible, there must be at 
least as many equations as unknowns. Counting com- 
ponents in the set {ei, O'J 1), 0) 2)} we have m + 2n 
unknowns, and c~ adds one more. Equations (3), (4), 
and (5) each providep equations, for a total of 3p equa- 
tions. Hence a solution is possible only if the condi- 
tion 3p _> m + 2n + 1 holds. Therefore we cannot 
use p = m = n = 3 unless we impose a further con- 
straint. Since we must only expect solutions to yield 
illumination and surface reflectance spectra up to a 
multiplicative constant, because the e i and oj occur in 
products in the color signal, we must make one fur- 
ther requirement on one of the ~i o r  O'j; we choose to 
set el = 1. That is, for surfaces we determine reflec- 
tance but not brightness. 

Now our condition reads p _> (m + 2n)/3 and we 
have a nonlinear set of equations for ci, o) 1), o) 2), and 

c¢ that is at least sufficient for a solution. Since the set 
of equations is also clearly independent, in that one can- 
not write any equation in terms of the others, we would 
be confident of having fulfilled necessary and sufficient 
conditions for a solution if the set of  equations were 
linear; however, because they are nonlinear we must 
proceed with caution. 

3 Implementation and Results 

We reduce the solution of the nonlienar set of equa- 
tions (3), (4), and (5) to the solution of linear ones by 
breaking up the solution into a multi-stage algorithm. 
Starting with some reasonable initialization for el, we 
iteratively solve in turn for o) 1), then o} 2), and finally 
el. The condition ~l - 1 at each step of the iteration 
also forces a to converge. 

In detail, with respect to equations (3), (4), and (5), 
we use the following algorithm: 

Initialize e~ = ~2 = e3 = 1 
Step 1: Use (3) to solve for o) l) in terms ofei, since 

(3) is linear in these unknowns 
Step 2: Use (5) to solve for a • a) 2) in terms of ei 

and o) j). 
Step 3: Use (4) to solve for ej + ~ in terms of 

O~ • O'J 2)  . 

S t e p 4 :  Now setel  =- 1: i.e., setel  + c~ ~ 1/a. 
Therefore, set c~ *- 1/el and ei ~- ei/~l. 

Iterate until all values in the set {~i, a) 1), oj (2), a} 

change less than a prescribed tolerance, 
Since the equations are nonlinear, the order of the 

above steps is important. We found by trial and error 
that the steps in the order described lead in a stable 
fashion to the desired solution. The algorithm produced 
stable, unique results regardless of how the initial values 
for ei were chosen over a wide range. However, for the 
first initial value we imposed the constraint E1 -- 1 from 
the outset. We also found that when the underlying 
finite-dimensional model did an extremely poor job of 
describing both surfaces, the algorithm was slow to con- 
verge and did not do as well in recovering surface 
reflectance. We explore this situation in section 5 by 
looking at very noisy, poorly modeled surfaces. 

An important consideration is that the algorithm 
should obtain a unique solution. Uniqueness and speed 
of convergence can be established by converting the 
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problem to be solved into the form of a fixed-point 
problem (see, Burden et al. 1981). Choosing a particular 
algorithm corresponds to adopting a particular fixed- 
point version of a problem. There are often several 
possible options, and not all of them converge. We can 
investigate the convergence properties of our algorithm 
by explicitly converting it to the fixed-point form to 
which it is equivalent. Then the well-known contrac- 
tion mapping theorem can be used to test uniqueness 
as well as give rates of convergence. 

Following Steps 1, 2, and 3, we algebraically solve 
for functions 

o) = ~ (1)(~., ~ o)) (6) 

(2) = ~ (:)(a, ~,  ~(1), ~)  (7) 

where 

and finally 

____ ~m(2)_  ~(2) 

---- e(o/, ~,  p (1), ~,  ~ (2)) (8) 

where we denote by ~ the solution of equation (4) 
for ~'. Now since we set e~ - 1, we can solve the 
6~ component of equation (8) for a, so that a is given 
in terms of 62, 63, and the camera RGB values ~, 
only. Substituting this value of t~ into the remaining 
equations for 62 and 63 gives a set of two equations in 
fixed-point form: 

62 = e2(62, 63, RGB) 
(9) 

63 = e3(62, 63, RGB) 

where we have denoted the set of observed camera RGB 
values simply as RGB. 

To prove uniqueness we must show (a) that when the 
values of 62, 63 are allowed to range over a reasonable 
domain D, then the right-hand sides of equations (9) 
will also be confined to D; and (b) that the absolute 
values of all possible first partial derivatives of the two 
right-hand sides with respect to 62, 63 are bounded by 
a constant K/2 with K < 1. When conditions (a) and 
(b) are satisfied, the vector function [e2(62, 63, RBG), 
e3(62, 63, RGB)] is guaranteed to intersect with the vec- 
tor function [e2, e3] -- [62, 63] at a single point. These 
conditions also prove convergence of the sequence pro- 
vided by the algorithm, with the rate of convergence 
being controlled by the bound of the derivatives. 

What this uniqueness check amounts to is carrying 
out the first iteration of our algorithm over a large do- 
main D of initial values of 62, 63 and examining the 
resulting solution values e2, e3 after a first pass. If the 

values of e2, e3 are within the search space of initial 
values c2, 63 and if the partial derivatives of 62, e3 with 
respect to both 62 and 63 are everywhere sufficiently 
small, then the algorithm is guaranteed to converge to 
a unique solution. 

Since the first-pass estimates e2, e3 of 62, 63 are 
generated using the particular observed sensor values 
~(l), ~,  ~(2) corresponding to the pixels under exam- 
ination, we cannot make a blanket statement of unique- 
ness for our algorithm. There may be cases in which 
one cannot prove the theorem guaranteeing unique con- 
vergence, even when such cases do in fact converge 
correctly. 

We implemented the uniqueness check as a 
preprocessing algorithm for the equation-solving 
algorithm. For a particular input set of sensor values, 
it is straightforward to search a wide domain of initial 
values of 62, 63 and take partial derivatives of the first- 
pass estimates 62, e 3. We found in our simulations (sec- 
tion 5) that uniqueness was guaranteed except in those 
cases where the finite dimensional model itself 
represented the surfaces very poorly. Thus the 
preprocessing step is a useful filter for screening out 
any pixels for which the algorithm may not converge, 
such pixels generally corresponding to surface reflec- 
tances poorly captured by the finite dimensional model. 

In the equation-solving algorithm itself, it is impor- 
taut to note the way in which a appears. Since it always 
appears in combination with another variable until the 
final normalizing step, the only place where the above 
algorithm's accuracy of solution for ~ and for all the 
variables is affected by the particular value of cz is in 
forming I~)(X) in equation (2). As a result, the ac- 
curacy of solutions depends only very weakly on the 
particular value of a.  We found (see simulations in sec- 
tion 5) that a change of ct from 0.01 to 0.5 resulted in 
only a 6.7 % change in the accuracy of the solution for 
~, with similar results for the other variables. 

So long as the mutual reflection effect is indeed pres- 
ent, the solution proceeds to find t~. No matter what 
the actual value of c~ the percent error in tx will be 
nearly constant for a particular illumination and set of 
reflectances for the two surfaces. As well, the accuracy 
of the reflectances recovered depends only weakly on 
the particular value of a dictated by geometry. Of 
course, this near-independence with respect to a is true 
mathematically but noise will break this situation down 
somewhat. We investigate below the effect of noise on 
the solution. As well, as c~ ~ 0 we expect the method 
to fail; this would correspond to the case of negligible 
interreflection. 
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In section 5 we apply the algorithm to several cases 
involving synthesized color signals composed from 
naturally occurring lights and reflectances. In the next 
section we investigate the geometrical significance of 
the factor o~. 

4 Configuration Factors 

One may ask whether in general there will exist points 
on a surface where we can effectively say that no mutual 
reflection effect exists. We can answer this question by 
examining the structure of the parameters a12 and a21. 
The total irradiance onto surface B from surface A as 
a fraction of the total radiance emanating from surface 
B into the hemisphere above it is termed the form-factor 
in illumination engineering. Here we are interested in- 
stead in how much light reflected from one surface is 
intercepted at a particular spot on the second surface. 
A catalog of such configuration factors (total irradiance 
as a function of position on surface B incident from 
all points on surface A) has been assembled by Siegel 
and Howell (1981). In general, configuration factors can 
be calculated for any geometry and are independent of 
wavelength for ideal diffuse reflectors. 

For illustrative purposes, consider for simplicity a 
relatively long (effectively semi-infinite) planar edge 
(figure 2). Let the fraction of light from the small area 
AAI intercepted by the upper surface Az, divided by 
the total amount of light from AAI into the hemisphere 
above it, be F12. Calculation of the quantity Ft2 will ef- 
fectively yield the fraction of light F2, from A2 inter- 
cepted by AA1 as well, because of the reciprocity rela- 
tion for configuration factors (Siegel & Howell 1981). 

A2F21 = AAIF12 

I f  I(k) is measured in W/m 2 of unprojected area then 
the power in a wavelength interval received over A2 from 
light I<0(X) originating from A A  1 is given by 

P~2)(X) = /°)(h) AAIF12 

And the power received at AAI from I(e)(x) radiated 
from all of A2 is 

p(1)(k) = /'~2)(MA2F21 

assuming that I(2)(X) is uniform over Az. 
In general, one finds that the factor F12 is given by 

the Fredholm area integral (Siegel & Howell 1981) 

f cos 01 cos 02 
FI2 dA2 

J 7rF 2 
A~ 

Fig. 2. A long edge formed from flat surfaces. The opening angle 
is ft. ~" is the width of surface 2, with area A2. The small surface 
area AA1 is at distance x from the edge. 

where r is the length of the vector from AA~ to a point 
on A2 and 01, 02 are the angles made between that vec- 
tor and the normals to AA1 and A2. 

Given this result, it is in fact straightforward to 
generalize to the case in which the second surface A2 
is curved, as in figure 3. This figure shows a general 
curved surface A2 generated by a line moving parallel 
to itself and parallel to the plane of AAI; calculating 
F12 for reflection onto A2, the result is (Siegel & Howell 
1981). 

1 
F12 = ~ (sin ~bl - sin 02) 

where 0~, (])2 a r e  the angles from A A  1 to the top and 
bottom edges of A2 (see figure 3). For figure 2, we have 
(~2 = 7r/2; from the geometry of figure 2 one finds that 

sin ~ 1  = X - -  ~" COS B 

(X 2 ..~ ~'2 __ 2X~" COS B)  1/2 

Using the reciprocity relations for configuration fac- 
tors given above and defining the dimensionless distance 
from the vertex as X = x/F, we find (Siegel & Howell 
1981) that 

F21 _ AAI [ 1 + 
2A2 1 

cos/3 - X 7 
(x2 + 1 - - -2x  cos ~)1/2 / 
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Fig. 3. Angles from AAt to top and bottom edges of a curved sur- 
face A~. 

To relate F21 to c¢21, we must convert power received 
by AA1 to power received per unit area via division by 
AAI. Then 

O[21 I(2)(k) _ i{2)(~) A2F21 

AA1 

Whereas the algorithm in section 3 extracts a21 from 
pixel RGB information, here we are constructing ct21 
from geometry-- (the "forward" problem (Nayar et al. 
1990)--and must decide how much of A2 contributes 
to mutual reflection onto AA1. For flat surfaces, it is 
simplest to take all of A2 into account. 

From the identification above, one has 

1 I c o s / 5 - X  ] 

This factor is plotted in figure 4 for representative open- 
ing angles/5. One can see that as the position X from 
the vertex increases, the factor c~2~ decreases monoton- 
ically, with limit 0. Typical values, for/5 = 120 o, are 
0107for X = 0.6 and 0.028 for X = 2.0. Configuration 
factors between Jess simple surfaces may be arrived at 
directly from the definition or by using Stokes theorem 
to convert the double integral into a line integral around 
a contour (Sparrow & Cess 1978). 

It is useful to note that in the limit ~" ---, 0% X ~ 0, 
and ~21 ~ (1 + cos/5)/2. Therefore, for semi-infinite 
planes I m is independent of position, in agreement 
with Horn (1977). In that case the t~21 in (10), generated 
by integrating over an infinity of one-bounce contribu- 
tions, goes over into our initial one-bounce model (la). 
In the next section we test the model derived by reinter- 
preting the equations to mean that ~x sums up all the 
one-bounce contributions from one surface to another, 
where the surfaces are infinite and need not be planar. 

For fiat surfaces, figure 4 shows that there are areas 
where c¢ is relatively small provided one surface is suf- 
ficiently wider than the other. For real surfaces, par- 
ticularly convex ones, there will certainly be many sites 
classifiable as being far from edges or occlusions. 

The form of a21 above shows a typical configuration 
factor that characterizes a mutual reflection effect from 
a surface A2 to a position of interest on At. This value 
of c~2~ could be used in equations (2). However, the fac- 
tor Fj2 above is not related to the number tx12 discussed 
in section 2; F~2 determines how much light from a 
small spot on A1 would impinge onto A2, and is 
therefore much smaller than F21. In section 2, cq2 
characterizes how much light from AI arrives at a small 
region of A2, and therefore might be of the same order 
as  Ot2[. 

5 Simulations 

We test the method by synthesizing color signals from 
naturally occurring illumination spectra and surface 
spectral reflectance functions. By passing these syn- 
thetic color signals through bandpass filters represent- 
ing film or other sensor sensitivities, we determine sen- 
sor values Pk, which then become the input values for 
our algorithm, along with the proportion ct of the light 
from one surface reaching the second surface. The 
algorithm is then used to solve for an estimate of the 
surface spectral reflectance on each side of the edge, 
the illumination spectrum, and the mutual reflection 
factor a. In section 5.1 we construct the full mutual 
reflection input signal equation (2) and test the 
algorithm by solving the approximate model equations 
(3), (4), and (5). For simplicity we assume a geometry 
leading to t~12 = ct21 to generate the input values of pm 
from equation (2). This tests the model itself, but not 
the assumptions behind it. In section 5.2 we construct 
a complete infinite-bounce, infinite-zone diffuse mutual 
reflection edge composed of planar sides and apply our 
one-bounce model to it. This tests the model's 
assumptions. 
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5.1 Two-zone Edge 

In this section, we use equations (2) to construct an 
edge. For surfaces we choose any pair of reflectances 
from the collection of 370 surface spectral reflectance 
measurements catalogued by Krinov (1947). From Ho 
et al. (1990) we know how the finite dimensional linear 
model of reflectance performs for these functions and 
we start by choosing a pair of reflectances that are 
typical in terms of the accuracy of the underlying 
model. We choose Krinov #53 ("heather, dense growth 
before flowering") and Krinov #54 ("river valley with 
meadows") as typical curves. For these reflectances, 
the underlying model with 3 basis functions taken from 
Cohen gives errors of 11.04% and 8.11%, respectively. 

Here, we define an error statistic that measures depart- 
ures from the correct curve over the entire function of 
wavelength. It is essentially a rescaled Standard Error 
divided by the sample root mean square in order to 
make it a fraction rather than an absolute figure. Error 
is defined as 

f ~(Y -- Y ' ) z )  1/2 ~y2 

where y is an actual value and y '  is the estimate. 
For illumination, we can use one of the standard 

daylights tabulated by Judd et al. (1964) or any other 
tabulated daylight, for example, those measured by 
Dixon (1978). Dixon included ultraviolet wavelengths 
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Fig. 5. Typical case: color signal formed from product of surface spectral reflectance Krinov #54 and Dixon spectrum for Australian daylight. 
The color signal has been scaled up by a factor of 6. 

in developing a principal-component analysis for Aus- 
tralian daylight, but here we truncate to the visible, 
400 nm-650 nm. The spectrum for the mean vector 
for daylight in Bendigo, Australia, is shown in figure 
5 along with Krinov reflectance curve #54 and the 
resulting color signal composed of the product of the 
two spectra. For the domain D of initial value c2, c~s 
to use in the uniqueness check preprocessing step we 
took the largest absolute values of e2 and e3 for all of 
Judd's curves and then doubled that region. We sup- 
pose for simplicity that the shape and geometry of the 
two surfaces leads to geometrical factors of ~21 = (]{12 
-- C¢ = 0.05 for mutual reflection. 

The algorithm of section 3 applied to the two color 
signals generated from this illumination spectrum and 
Krinov reflectances #53 and #54 can be tested by form- 
ing sensor values pi t), pi E), and p~. To develop these 
signals, we used sensitivity functions (see figure 6) cor- 
responding to Kodak filters #25 (red), #58 (green), and 
#47B (blue). The algorithm results are quite good: the 

value of a found by the solution method is 0.0495, so 
that the ratio of the estimated t~ to the actual one is 
0.990. As pointed out above, using the approximate 
model algorithm the accuracy for this ratio remains 
nearly constant no matter what the actual value of c~ is. 

To develop an error figure for the spectral reflectance 
function, it is important to recall that the algorithm 
gives a solution only up to an overall multiplicative con- 
stant. Therefore, the shape of the reflectance curve is 
derived, but not its absolute scale. To make a fair com- 
parison, we scale by an appropriate factor and then cal- 
culate the error statistic. A best match of the derived 
curve and the actual one is found by solving for the 
multiplicative factor by minimizing the squared resid- 
uals after multiplying by the unknown factor. The nor- 
mal equation for this minimization problem yields the 
factor. 

As shown in figure 7, the spectral curve for reflec- 
tance 2 is quite close to that for Krinov #54; the overall 
error for the curve found by our algorithm is 9.71%. 
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Fig, 6 Kodak filters #25 (red), #58 (green), and #47B (blue). 

Since the error of the best fit using the underlying finite 
dimensional model is 8.11%, the ratio of our model 
error to the finite dimensional model error is only 1.197. 
The fit for surface 1, which has reflectance Krinov #53, 
is similar. We show in figure 8 the results of the 
algorithm in recovering the illumination compared to 
the actual spectrum. Again, the increase in error is quite 
small--we obtain an error of 4.10% as compared to the 
finite dimensional model error of 3.97%. 

In table 1, we show the results of running the 
algorithm on sensor values derived from the same 
reflectances as above for all five of Judd's standard 
daylights, corresponding to five different correlated 
color temperatures, as well as the Dixon spectrum. As 
can be seen, the results are similar for all illuminations. 

As well, uniqueness was validated by the preproces- 
sing step in these cases. 

A more stringent test is carried out by utilizing 
atypical reflectance curves that are not well modeled 
by the basis functions. For this test we use Krinov #162 
("grass, young, green") along with Krinov #54. A best 
fit using the finite dimensional model itself has an error 
of 26.65% for Krinov #162. The results for the 
algorithm are again reasonably good, as seen in table 2. 

To take into account noise, we add a random pertur- 
bation to each p-vector separately; each component in- 
dependently receives additive noise equal to a percent- 
age of the vector magnitude. For this test we use the 
Dixon spectrum coupled to reflectances Krinov #53 and 
Krinov #54. Running the algorithm repeatedly, we 
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Fig. 7. Comparison of the best fit given by dimension-3 finite dimensional model with surface spectral curve resulting from the algorithm. 
The best-fit error (here, the reflectance curve is Krinov #54) has error = 8.11%, whereas the algorithm result has error = 9.71%, a factor 
of 1,197 worse than the best fit. When the geometrical mutual reflection factor a is 0.05, the algorithm gives the value 0.04949, so that the 
ratio of the estimate to the actual a is 0.9898. 

arrive at average results, shown in table 3. Here, the 
0% noise case is shown for comparison and all other 
figures are averages. For a few very poorly fit noisy 
signals at the higher noise level, the algorithm is less 
stable and a greater tolerance must be used for halting 
iteration. For each of these cases the uniqueness check 
also showed that the results were unreliable. So for a 
large noise component the results are not good. Never- 
theless, the results are reasonably good for low noise, 
and in that regime the stability of the algorithm is very 
good. The number of iterations through the algorithm 
was typically 6 to 8. 

If use is made in our model of broad-band sensor 

functions such as those in the human visual system, 
instead of bandpass filters common in video and film, 
then the results of the algorithm are found to be 
somewhat more accurate since a broader sampling of 
more frequencies results in a better representation of 
the entire color signal spectrum in terms of the finite 
dimensional model weights. 

5.2 Infinite-zone Edge 

In Drew and Funt (1990), we simulated the full physics 
(infinite-zone, infinite-bounce) of the interreflection at 
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signal of figure 5--error 4.10%. 

an edge under diffuse illumination by employing the 
radiosity method (Goral et al. 1984). However, unlike 
the usual approach in computer graphics, we carried 
out the radiosity calculation separately on each 
wavelength instead of on the usual three color bands 
and therefore could not use standard computer graphics 
radiosity tools to synthesize test images. In generating 
a correct color distribution at the edge it is crucial that 
one apply the filter functions to generate RGB values 
only after calculating the entire color signal spectrum 
for each pixel. 

We used this method on the edge of figure 2, using 
Krinov spectra #54 and #248 and incident illumination 
D65. Figure 9 shows the variation in RGB on surface 
2 that occurs with increasing distance from the edge. 
For comparison, the (constant) RGB values resulting 

and results of the mutual reflection algorithm applied to the color 

from S(2)(~)E(X) in the absence of interreflection are 
also plotted. The ratios R/B and G/B graphed in figure 
10 show that not only the intensities, but the colors too 
change with distance from the edge. We can see from 
figure 10 that derivatives of ratios approach zero as one 
gets farther from the edge. 

Running our mutual reflection analysis algorithm on 
the calculated RGB image data, we find that reflectances 
on each side are recovered quite accurately. Except at 
pixels very close to the edge, the algorithm obtains a 
reflectance S(2)(X) that is virtually independent of posi- 
tion. The error with respect to the actual reflectance 
spectrum is 4.37%, which translates into a color dif- 
ference AE of 3.54 units in CIELUV uniform color 
space (see Wyszecki and Stiles 1982). For surface 2, 
the best least-squares approximation using the finite 
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Table L Errors using typical reflectances: Krinov #53 and #54, t~ = 0.5, and Judd's North American daylights of five different correlated 
color temperatures as well as Dixon's Australian daylight. The finite dimensional model best curves have errors of 11.04% for Krinov #53 
and 8.11% for Krinov #54. Columns show: (1) ct recovered by algorithm; (2) ratio of the recovered c~ to the actual one; (3) error for illumination 
spectrum found by algorithm; (4) absolute error of reflectance curve found by algorithm for surface 1; (5) error of reflectance curve for surface 
1 compared to error in underlying finite dimensional model; (6, 7) similarly for reflectance curve for surface 2. For the Dixon case, the finite 
dimensional model illumination modeling error is 3.97%, so that the ratio E(~,) Error / E(X) ErrorFD M is 1.032. 

neST E(X) R~I)(X) R0~(X) Error Rt2)(M R~z/(~,) Error 
Daylight c~ 

aACT Error (%) Error (%) R~I~(X) ErrOrFDM Error (%) R~2~(X) ErrorFoM 

4800K 0,04971 0.9943 0.30 11,35 1.028 9.81 1,209 

5500K 0.04971 0.9942 0.29 I 1.34 1.027 9.79 1.206 

6500K 0.04973 0.9945 0.31 11.34 1.027 9.75 1.202 

7500K 0.04972 0.9944 0.31 11.32 1.026 9.73 1_200 

10000K 0.04972 0.9944 0.31 11.33 1,026 9.70 1.196 

Dixon 0.04949 0.9898 4.10 11 34  1.027 9,71 1,197 

Table 2. Poorly fit case: reflectances Krinov #162 and #54, c¢ = 0.05--errors for five Judd daylights and for Dixon daylight (best model 
fit has error 26,65% for Krinov #162 and 8.11% for Krinov #54); ~ recovered by algorithm; compared to correct oL; illumination spectrum 
error found by algorithm; reflectance curve 1 error; compared to error in underlying finite dimensional model; similarly for reflectance curve 
2. For the Dixon case, the finite dimensional model illumination modeling error is 3.97%, so that the ratio E(X) Error / E(X) ErrorFD M is 1.428. 

OteST E(X) R(I)(X) R0)(),) Error R(2)(X) R(2)(X) Error 
Daylight a 

OtACT Error (%) Error (%) R0)(~,) ErrOrFDM Error (%) R(2)(X) ErrorFoM 

4800K 0.04988 0.9975 3_47 32.29 1.212 11,13 1.371 

5500K 0,04987 0.9974 3.41 32. I 1 1.205 l 1.04 1.361 

6500K 0.04988 0.9976 3.37 31.93 1.198 10.95 1.349 

7500K 0,04987 0.9974 3.19 31.83 1.194 10.89 1.342 

10000K 0,04987 0.9974 2.86 31.68 1.189 10.80 1.331 

Dixon 0.04964 0.9929 5.66 31.95 1.199 10.90 1.343 

Table 3. Noise: reflectances Krinov #53 and #54, Dixon spectrum, o¢ = 0.05--finite dimensional model best fits have E(X) ErrorFD M = 
3,97%, R0)(K) ErrorFD M = 11.04%, and R(2)(),) ErrorFD M = 8. I 1%. Columns show: t~ recovered by algorithm; compared to correct c~; 
illumination spectrum error found by algorithm; reflectance curve 1 error; reflectance curve 2 error. 

OtEST E0Q R(I)(h) R(2)(•) 
Noise (%) ce ' Error (%) Error (%) Error (%) 

t~ACT 

0 0.04983 0.9967 4.13 11.33 9.75 

5 0.04385 0.8771 17,13 16.80 15.05 

10 0.03912 0.7823 38.50 29.030 28.34 
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Fig. 9. RGB variation on one side of an edge due to mutual reflection. 

dimensional model with dimensionality 3 gives an error 
ofAE = 3.25; clearly, the mutual reflection method con- 
tributes only a small additional error. For illumination, 
the error of the recovered spectrum is virtually zero. 

The recovered values of t~ vary as shown in figure 
11. Here we have scaled c~ to take into account the scal- 
ing of  the illumination E that gives e~ = 1. For com- 
parison we also show the theoretical configuration fac- 
tor ~ as determined by equation (10). We display that 
factor offset so that it goes to zero and not to the small 
value it takes on at the pixel farthest from the edge. 
As one would expect since the recovered ~ maps the 
contributions from all bounces into a one-bounce fac- 
tor, it is marginally larger than the theoretical ct 
generated using equation (10) that models an infinite- 
zone, one-bounce situation. 

6 Conclusions 

We have examined the effects of mutual reflection in 
color images. Since mutual reflection causes the spec- 
trum of the light reflected from a surface to vary with 
location on the surface even though the surface reflec- 
tance is constant, it provides clues to the actual sur- 
face reflectance and to the geometry of the situation. 
Tests show that the algorithm is quite robust. 

The method has the potential for eliminating mutual 
reflection effects and in most cases recovers a good ap- 
proximation of the complete spectral information. Thus 
the method yields more than enough information to 
supply color descriptors for the object surfaces that are 
independent of  ambient illumination; therefore, color 
constancy is obtained. Sensor values from only three 
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pixels need to be measured to obtain a result and the 
method will work on surfaces that do not meet the sur- 
face complexity conditions needed to make Maloney 
and Wandell's algorithm work. The elimination of 
mutual reflection is a desirable feature in a vision 
system since it is an effect that introduces extra com- 
plexities; that is, it is known to create problems in 
shape-from-shading schemes (Forsyth & Zisserman 
1989, 1990). 

Clearly, the interreflection model put forward here, 
that uses basis function decompositions for an accurate 
whole-spectrum model of reflection, can be extended 
to the modeling of multisurface enclosures for graphics 
applications (cf. Goral et al. 1984). Multiple interreflec- 
tions could be incorporated at the expense of having 
a more difficult mathematical system to solve; for 

enclosures, such multiple bounces may add a signifi- 
cant contribution. Ignoring multiple bounces for 3, 4, 
etc., surfaces results in a simple set of linear equations 
similar to the linear equations for Im(k) in section 2. 

The algorithm still works even if both surfaces have 
the same color, with the same or differing brightness. 
This case might correspond to a folded piece of uniform 
material. The recovery of c~ here gives shape informa- 
tion near the fold. The method works in this one-color 
case because the reflected light is a different color from 
the illumination, and the extra measurements of sen- 
sor values supply enough information to disentangle the 
t w o .  

The results show that, in situations in which mutual 
reflection is present, measurements of the sensor values 
taken separately from the two different interreflecting 
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Fig. 1 l. Variation of one-bounce, two-zone ~ factor, where the sensor RGB inputs are derived from a full multi-zone model. Theoretical one- 
bounce, infinite-zone factor is shown for comparison. 

surfaces, as well  as f rom within the mutual  ref lect ion 

zone,  can convey sufficient  informat ion to allow com-  

plete recovery of  the two surface spectral  ref lectance 

functions as well  as of ambient  i l luminat ion.  We also 

recover  the factor ~, which  summar izes  informat ion 

about  the relat ive geomet ry  of  the two surfaces. 
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