
FULL SEARCH CONTENT INDEPENDENT BLOCK MATCHING BASED ON THE
FAST FOURIER TRANSFORM

Steven L. Kilthau, Mark S. Drew, and Torsten Möller
School of Computing Science, Simon Fraser University,

Vancouver, B.C., Canada V5A 1S6
{kilthau,mark,torsten}@cs.sfu.ca

ABSTRACT

In this paper, we present a new algorithm for solving the block
matching problem which is independent of image content and is
faster than other full-search methods. The method employs a
novel data structure called the Windowed-Sum-Squared-Table,
and uses the fast Fourier transform (FFT) in its computation of
the sum squared difference (SSD) metric. Use of the SSD metric
allows for higher peak signal to noise ratios than other fast block
matching algorithms which require the sum of absolute
difference (SAD) metric. However, because of the complex
floating point and integer math used in our computation of the
SSD metric, our method is aimed at software implementations
only. Test results show that our method has a running time 13%-
29% of that for the exhaustive search, depending on the size of
the search range.

1. INTRODUCTION

The block matching problem is one that occurs in many areas of
the image processing, multimedia, and vision fields. In this
paper, our focus is on the application of block matching to the
computation of motion vectors for video compression. Because
of their widespread use, many motion vector compensation
algorithms have been developed and are in use today.

Block matching algorithms all attempt to minimize some
measure of similarity between a template block of pixels in the
current image to all candidate blocks in the reference image
within a given search range. The two most popular similarity
measures used are the sum of absolute difference (SAD) and the
sum of squared difference (SSD). Given a block size B and a
displacement vector ()vu, for a candidate block relative to the
template block, the metrics are defined as:

() ()∑∑
−

=

−

=
− ++−=

1

0

1

0

1),(,,
B

j

B

i

ttvu vjuifjifSAD (1)

() ()()∑∑
−

=

−

=
− ++−=

1

0

1

0

2
1),(,,

B

j

B

i

ttvu vjuifjifSSD (2)

Because of its lack of multiplications the SAD metric is far more
convenient for use in hardware designs, and is therefore used
almost exclusively. However, minimizing the SSD metric
corresponds to maximizing the peak signal to noise ratio
(PSNR), whereas minimizing the SAD metric does not.
Therefore, if a maximum PSNR is desired, SSD should be the
metric of choice.

All existing block matching algorithms can be roughly
grouped into two categories. The first category consists of those
algorithms that are not guaranteed to find the best matching
block within a given search range, but instead use a heuristic
approach to guide the search. These methods examine only a
subset of the possible locations within the search range, and
hence can be computed very efficiently. Some of the most
popular methods are the three step search [8], the two
dimensional logarithmic search [6], and their many successful
variants such as the one found in [3]. Because of their speed,
these suboptimal methods are of great interest. However, they
are prone to getting trapped in local minima and thus are not
appropriate for applications which require a maximum PSNR.

The second category, and the subject of our focus, consists
of those algorithms which are guaranteed to find the optimal
matching block within a given search range. In recent years,
many algorithms have been developed for this type of search [2,
5, 9, 10, 11]. All of the algorithms in this category achieve their
speedup through early elimination of candidate search positions;
however they suffer from the fact that their performance depends
largely on the content of the image sequence being encoded.
Much of the recent research [2, 9, 11] eliminates search
positions through application of the Minkowski Inequality:

p

i

p
ip

i

p
ip

p

i

ii baba ∑∑∑ +≤+ (3)

For the case 1=p , substitutions iii yxa −= , and ii yb = yield

the following common form:

∑∑∑ −≥−
i

i

i

i

i

ii yxyx . (4)

Many algorithms make use of a pyramid version of Eq.4 for
early elimination of candidates. Notice however that for 2=p ,
the Minkowski Inequality requires the computation of the square
root. Since the square root operation is extremely expensive,
techniques that rely on the Minkowski Inequality to eliminate
search positions can not efficiently use the SSD metric, and are
instead only able to use the SAD metric. Hence, all methods that
require the Minkowski Inequality cannot guarantee a maximum
PSNR value, while still maintaining computational efficiency.

One technique that doesn’t fit into the above categorization
is the phase-correlation method [1]. This technique works by
computing the cross-correlation of the template block with the
corresponding search range and identifying a set of candidate
correlation peaks. The algorithm then evaluates a difference
measure at those points and chooses the minimum as the solution
to the block matching problem. Although this algorithm cleverly
reduces the computational complexity it has been shown to

identify spurious solutions, and as such is not guaranteed to
maximize PSNR.

Since our method uses the SSD metric to find the minimum
matching block within the given search range, we are guaranteed
to find the blocks that maximize the PSNR of the predicted
image. Furthermore, our method achieves its speedup regardless
of the content of the image sequence being encoded. The details
of our algorithm are given in §2, experimental results are given
in §3, and we discuss conclusions in §4.

2. THE FFT BLOCK MATCHING ALGORITHM

In order to maximize the PSNR, our algorithm minimizes the
SSD metric given in Eq.2. Following a trivial expansion, the
mathematical definition of our per-block computation is given
by:

[() ()
() ()]∑ ∑−

=

−

= −

−
∀

++−
+++1

0

1

0
1

2
1

2

,
,,2

,,
min

B

j

B

i
tt

tt
vu

vjuifjif

vjuifjif
 (5)

Since the term ()2, jif t appears across the entire minimum, it

can be removed from the sum without affecting the resulting
solution. Removing this term and separating the sum leaves us
with the following equation:

()

() ()∑ ∑
∑ ∑

−

=

−

= −

−

=

−

= −
∀

++−

++
1

0

1

0 1

1

0

1

0

2
1

,
,,2

,
min B

j

B

i
tt

B

j

B

i
t

vu
vjuifjif

vjuif
 (6)

The FFT Block Matching Algorithm (FFTBMA) that we propose
computes Eq.6 using three basic steps:

1. Resize input image to include a zero pad
2. Compute the windowed sum squared table
3. Compute a per-block convolution sum

Step 1 is simply to allow convenient calculation of the SSD
metric without using conditionals for those search locations that
lie outside of the dimensions of the original image. Given a
search range of P± we apply a zero pad of P pixels around the
entire image. This simple preprocess eliminates the need for
conditionals within the innermost loops of our algorithm and
greatly increases its speed. Similarly, this also improves the
performance of the exhaustive search, and as such is used in our
implementation of that algorithm as well. For convenience, we
assume here that the original dimensions of the image are a
multiple of the block size, B. If this is not initially true, the
dimensions of the image are increased to compensate for this
prior to the application of the zero pad.

Steps 2 and 3 are discussed in §2.1 and §2.2 respectively.

2.1 Windowed Sum Squared Table (WSST)

To compute the first term of Eq.6, we use a variant of the well
known summed area table (SAT), introduced in [4]. Given an
input image f , a summed area table is a new image SATf such

that

() ()∑ ∑≤ ≤
=

ik jl
SAT lkfjif ,, (7)

Summed area tables can be very easily computed by applying the
following recurrence, being careful to set ()jif , to zero when
either of the indices is negative:

() () ()[
() ()]1,11,

,1,,

−−−−+
−+=

jifjif

jifjifjif

SATSAT

SATSAT (8)

 The WSST differs from the SAT in that each pixel needs to
represent a sum of squares, where the sum extends only over the
last BB × sub-image (window), with B the block size.

Our approach to creating the windowed sum squared table
consists of two steps. In the first step we compute a sum squared
table (SST), and in the second step we confine the sum to the
last BB × sub-image. Using a variant of Eq.8 would imply that
for an 8 bit image of size HW × we may need to store values as

large as WH2255 . For large video streams such as those used in
HDTV, this can easily exceed the maximum value representable
by a 32 bit integer. So although this algorithm seems to follow
directly from the recurrence of Eq.8, care is needed to prevent
overflow of intermediate calculations.

To solve the overflow problem, we initially divide the
image into blocks of size BB × and compute an SST over each
block. By assumption, the image size is divisible by B , and we

assume that 22255 B can be represented with a 32 bit integer.
The result of this computation is a new image where each block
constitutes a sum squared table defined by the following
recurrence:

() [() ()
() ()]1,11,

,1,, 2

−−−−+
−+=

jifjif

jifjifjif

SSTSST

SSTSST (9)

We now need to combine the individual SST’s to create the
final Windowed SST. For this we note that the sum of squares
over any rectangle confined to a single block, with lower left
corner ()ji, and upper right corner ()lk , is given by:

() () () ()jifjkfliflkftsf SSTSSTSSTSST

j

ls

i

kt

,,,,),(2 +−−=∑∑
= =

 (10)

Using Eq.10 we can easily derive the sum of squares (SS) for an
arbitrary BB × region as an SS over rectangles in 4 neighboring
blocks. By using coordinates that are local to the block
containing the upper right corner we arrive at the following
equation:

() ()
()[]
() ()[]
() ()[]
() ()[
() ()]BjfBif

BjBiff

Bjifif

jBifjf

jif

tsfjif

SSTSST

SSTSST

SSTSST

SSTSST

SST

j

Bjs

i

Bit
WSST

−−−−−−
−−+−−+

−−−+
−−−+

=

= ∑ ∑+−= +−=

,11,

,1,1

,1,

,,1

,

,,
1 1

2

 (11)

Fig.1 depicts Eq.11 visually. By applying this equation for every
pixel we complete the computation of the windowed sum
squared table for the entire frame.

2.2 Per-Block Convolution Sum

In this section we show that computation of the second term in
Eq.6 amounts to the evaluation of a correlation sum for each
template block, which we evaluate as a convolution sum. For a
single candidate block, the second term of Eq.6 is just a dot
product with the template block. However, computing this dot

product for each of the ()212 +P candidate blocks in the search
range amounts to a correlation of the template block with the
() ()BPBP +×+ 22 region corresponding to the square
containing all pixels of all blocks in the search range. In order to
efficiently compute the correlation, we will first convert it to a

B

)0,0(SSTf),(jif SST

 B

Figure 1. Computation of WSST relative to multiple SST’s

convolution and then use the fast Fourier transform (FFT).
For each template block, we create two images of size

() ()BPBP +×+ 22 . The first image, template , corresponds to
the template block and is computed by simply multiplying the
block by 2, reversing the pixels, and zero padding to the correct
size. The pixel reversal effectively changes the correlation sum
into an equivalent convolution sum. The second image,
candidates , corresponds to the square containing all pixels of
all candidate blocks in the search range. This square can be
copied directly from the reference image. Given these two
images, we can compute a new image, result , according to the
following formula:

() ()()candidatesFFTtemplateFFTFFTresult •= −1 (12)
Since the convolution that we have performed is cyclic, the first

1−B rows and columns of result will contain wrap-around data
that should be discarded. This leaves us with a usable portion of
the image of size () ()1212 +×+ PP . Notice that this corresponds

to one solution for each of our ()212 +P search locations, and is
exactly what we desire.

Given that we have previously computed the windowed
sum squared table, we can now easily find the minimum.
Assuming that our template block is at offset ()yx, we simply

perform a linear pass over the result image, evaluating the
minimum matching block according to the following formula:

()()),(,min , jiresultPjyPixfWSSTji −−+−+ (13)

where []12,1, −+−∈ BPBji . It is important to note that

),(jiresult must be rounded to the nearest integer before it can
be combined with a value from the windowed sum squared table.
As a last step, we simply need to correct the offset to account for
the cyclic nature of the convolution. Given that Eq.13 identifies
the pair ()ji, as the location of the minimum match, the
resulting motion vector corresponding to the minimum matching
block is then given by:

() ()1,1, +−−+−−= BPjBPimvjmvi (14)

2.3 Running Time Analysis

In our discussion of running time, we will assume without loss
of generality that the dimension of the original image is NN × ,
where N is divisible by B .

We will first develop an expression for the running time of
the exhaustive search. Since full search algorithms are generally
content dependent, there are certain cases where they will all

exhibit the same worst case running time. For each block, the
exhaustive search requires the computation of the SAD or SSD

metric at ()212 +P locations. This results in an ()()22 12 +Ο PB

algorithm for each block. There are a total of 22 BN blocks, so

the exhaustive search has a total per-frame running time of:

()()22 12 +Ο PN (15)
The FFT block matching algorithm that we have presented

consists of two steps. In the first step we construct the windowed
sum squared table. Since this amounts to only two linear passes

over the entire image, this step takes only ()22NΟ per frame. In

the second step we perform a per-block convolution. Each
convolution consists of three applications of a

() ()BPBP +×+ 22 real FFT, as well as () 22 2BP + complex

multiplications. Therefore this step has a running time of

() ()()BPBP ++Ο 2log2 2
2 per block. A precise statement of the

total running time of the FFT block matching algorithm is then:

() () ()()()()2232log2 22
2

22 +++++Ο BBPBPBPN (16)

For practical scenarios, asymptotic analysis is of no interest.
To determine the cases for which our algorithm outperforms the
exhaustive search, we analyze the following equation:

() () () ()()()2232log212 22
2

22 +++++≥+ BBPBPBPCP (17)

We can safely assume that []4,12 ∈= BPR . Substituting R

into Eq.17 and simplifying results in the following expressing:

() ()[]()31log112 2
222 ++++≥ BRRRCB (18)

In §3 we show that the FFT block matching algorithm
outperforms the exhaustive search for all relevant block sizes
and a range of C , including values that characterize inefficient
FFT implementations.

3. EXPERIMENTAL RESULTS

Our experiments test the performance of the FFT block matching
algorithm against that of the exhaustive search. Both algorithms
have been implemented using C/C++. For the FFT computation
we use a publicly available package called the Fastest Fourier
Transform in the West (FFTW) [7]. None of the code or libraries
that we have used contain any machine specific instructions or
assembler routines that would give either algorithm an unfair
advantage. Our test platform is an AMD Athlon 900 MHz with
512 MB of RAM. All timings include reading the images,
constructing the necessary data structures, and computing all
motion vectors for each frame of the input image sequence.

Data Set Frames Width Height Motion
Mother 199 176 144 slow
Carphone 74 176 144 medium
Football 160 360 240 fast
Table 1. Data sets used in the experiments.

Both algorithms have been tested on three data sets. The
dimensions, number of frames, and type of motion classification
of each are given in Table 1. The motion classification is shown
as slow, medium, or fast, and indicates the degree of motion
contained within the image sequence. For all tests, a block size
of 16 is used, and only the luminance channel is considered.

The performance of each algorithm is measured using

Individual
sum-
squared-

execution time, PSNR, and the number of errors, E. The number
of errors needs to be considered because although the FFT block
matching algorithm is mathematically exact, the round-off error
produced by the many computations used in the convolution sum
will infrequently lead to a non-optimal match. We have observed
that this occurs less than 0.5% of the time in practice, and when
the result is non-optimal, the computed motion vector is usually
matched to the next most optimal block. All data sets were tested
using multiple values of the search range, P .

Exhaustive Search FFT BM Algorithm
P Time PSNR E Time PSNR E

+/-8 14.06 38.20 0 4.01 38.20 74
+/-16 52.13 38.31 0 10.89 38.31 86
+/-24 114.51 38.34 0 15.19 38.34 52
+/-32 201.19 38.36 0 33.03 38.36 74
Table 2. Test results for mother image sequence.

Exhaustive Search FFT BM Algorithm
P Time PSNR E Time PSNR E

+/-8 5.19 32.00 0 1.49 32.00 27
+/-16 19.21 32.02 0 4.01 32.02 36
+/-24 42.22 32.02 0 5.59 32.02 31
+/-32 74.18 32.03 0 12.36 32.03 25
Table 3. Test results for carphone image sequence.

Exhaustive Search FFT BM Algorithm
P Time PSNR E Time PSNR E

+/-8 36.91 23.13 0 10.52 23.13 3
+/-16 136.65 23.46 0 28.38 23.46 2
+/-24 300.14 23.55 0 40.14 23.55 0
+/-32 527.42 23.60 0 87.10 23.60 2
Table 4. Test results for football image sequence.

As Tables 2, 3, and 4 show, the FFT block matching
algorithm greatly outperforms the exhaustive search while still
obtaining the same PSNR value, with running times of 13%-29%
of that of the exhaustive search, dependent on P . Fig.2a shows
a plot of the timings for the football image sequence, as well as
the analytic curves in the inequality of Eq.17 (here we used

75.2=C). In Fig.2b, we have solved Eq.18 for B , varying C
and R . Since we have measured C to be between 2.2 and 3.0 in
our implementation, Fig.2c shows a slice through the plot in
Fig.2b for 3=C . With such a value of C , it is clear that the
FFT block matching algorithm convincingly outperforms the
exhaustive search for our previously defined range of []4,1∈R .

Even for much less efficient implementations of the FFT, it is
clear that our algorithm is faster.

In our tests, using 24=P consistently gives the best
running times. This occurs because P is relatively large and the
dimension of the FFT is then 6464× , which runs extremely fast
because it is a power of 2. As we have mentioned, the FFT block
matching algorithm occasionally fails to identify the best
matching block due to round-off error, but as the PSNR
indicates, the effect of this error is negligible.

4. CONCLUSIONS

Our new FFT-based block matching algorithm employs a
novel data structure, the Windowed-Sum-Squared-Table, and
exploits the FFT in its computation of the SSD metric. Because
it is independent of image content, our algorithm runs faster than

Figure 2. (a) Timings for football image sequence.
(b) Solutions of Eq.18. (c) Slice through Fig.2b at 3=C .

existing full search algorithms, with speeds of 13%-29% of the
exhaustive search in practice. The FFT block matching algorithm
is not heuristic-based and thus can consistently identify the best
matching blocks, maximizing PSNR. The algorithm is well
suited for software implementations requiring very low bit rates.

5. REFERENCES

[1] C. D. Kuglin and D. C. Hines, “The phase correlation image
alignment method,” in Proceedings of the 1975 IEEE International
Conference on Systems, Man and Cybernetics, pp 163-165, 1975.
[2] C.-H. Lee and L.-H. Chen. “A fast motion estimation algorithm
based on the block sum pyramid,” IEEE Transactions on Image
Processing, 6(11):1587-1591, 1997.
[3] D. W. Zhang, I. Ahmad, M. Liou. “Adaptive motion search with
elastic diamond for MPEG-4 video encoding,” Proceedings of
International Conference on Image Processing, 2001.
[4] F. C. Crow, “Summed-area tables for texture mapping,” Computer
Graphics (Proc. of Siggraph), 18(3):207-212, 1984.
[5] H.-C. Huang and Y.-P. Hung, “Adaptive early jump-out technique
for fast motion estimation in video coding,” Graphical Models and
Image Processing, 59(6):388-394, 1997.
[6] J. R. Jain and A. K. Jain. “Displacement measurement and its
application in interframe image coding,” IEEE Transactions on
Communications, COM-29(12):1799-1808, 1981.
[7] M. Frigo and S. Johnson, “FFTW: An adaptive software architecture
for the FFT,” in Proceedings of the International Conference on
Acoustics, Speech, and Signal Processing, vol. 3, pp 1381-1384, 1998.
[8] T. Koga, K. Iinuma, A. Hirano, Y. Iijima, and T. Ishiguro. “Motion-
compensated interframe coding for video conferencing,” Proceedings of
National Telecommunications Conference, vol. 4, pp G5.3.1-G5.3.5,
1981.
[9] W. Li and E. Salari. “Successive elimination algorithm for motion
estimation,” IEEE Transactions on Image Processing, 4(1):105-107,
1995.
[10] Y.-C. Lin and S.-C. Tai, “Fast full-search block-matching algorithm
for motion-compensated video compression,” IEEE Transactions on
Communications, 45(5):527-531, 1997.
[11] Y.-S. Chen, Y.-P. Hung, and C.-S. Fuh. “A fast block matching
algorithm based on the winner-update strategy,” in Proceedings of the
Fourth Asian Conference on Computer Vision, vol. 2, pp 977-982, 2000.

(b) (c)

(a)

