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ABSTRACT 

 
In this paper, we present a new algorithm for solving the block 
matching problem which is independent of image content and is 
faster than other full-search methods. The method employs a 
novel data structure called the Windowed-Sum-Squared-Table, 
and uses the fast Fourier transform (FFT) in its computation of 
the sum squared difference (SSD) metric. Use of the SSD metric 
allows for higher peak signal to noise ratios than other fast block 
matching algorithms which require the sum of absolute 
difference (SAD) metric. However, because of the complex 
floating point and integer math used in our computation of the 
SSD metric, our method is aimed at software implementations 
only. Test results show that our method has a running time 13%-
29% of that for the exhaustive search, depending on the size of 
the search range. 

 

1. INTRODUCTION 
 

The block matching problem is one that occurs in many areas of 
the image processing, multimedia, and vision fields. In this 
paper, our focus is on the application of block matching to the 
computation of motion vectors for video compression. Because 
of their widespread use, many motion vector compensation 
algorithms have been developed and are in use today. 

Block matching algorithms all attempt to minimize some 
measure of similarity between a template block of pixels in the 
current image to all candidate blocks in the reference image 
within a given search range.  The two most popular similarity 
measures used are the sum of absolute difference (SAD) and the 
sum of squared difference (SSD). Given a block size B  and a 
displacement vector ( )vu,  for a candidate block relative to the 
template block, the metrics are defined as: 
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Because of its lack of multiplications the SAD metric is far more 
convenient for use in hardware designs, and is therefore used 
almost exclusively.  However, minimizing the SSD metric 
corresponds to maximizing the peak signal to noise ratio 
(PSNR), whereas minimizing the SAD metric does not. 
Therefore, if a maximum PSNR is desired, SSD should be the 
metric of choice. 

All existing block matching algorithms can be roughly 
grouped into two categories. The first category consists of those 
algorithms that are not guaranteed to find the best matching 
block within a given search range, but instead use a heuristic 
approach to guide the search. These methods examine only a 
subset of the possible locations within the search range, and 
hence can be computed very efficiently. Some of the most 
popular methods are the three step search [8], the two 
dimensional logarithmic search [6], and their many successful 
variants such as the one found in [3]. Because of their speed, 
these suboptimal methods are of great interest. However, they 
are prone to getting trapped in local minima and thus are not 
appropriate for applications which require a maximum PSNR. 

The second category, and the subject of our focus, consists 
of those algorithms which are guaranteed to find the optimal 
matching block within a given search range. In recent years, 
many algorithms have been developed for this type of search [2, 
5, 9, 10, 11]. All of the algorithms in this category achieve their 
speedup through early elimination of candidate search positions; 
however they suffer from the fact that their performance depends 
largely on the content of the image sequence being encoded. 
Much of the recent research [2, 9, 11] eliminates search 
positions through application of the Minkowski Inequality: 
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For the case 1=p , substitutions iii yxa −= , and ii yb =  yield 

the following common form: 
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Many algorithms make use of a pyramid version of Eq.4 for 
early elimination of candidates. Notice however that for 2=p , 
the Minkowski Inequality requires the computation of the square 
root. Since the square root operation is extremely expensive, 
techniques that rely on the Minkowski Inequality to eliminate 
search positions can not efficiently use the SSD metric, and are 
instead only able to use the SAD metric. Hence, all methods that 
require the Minkowski Inequality cannot guarantee a maximum 
PSNR value, while still maintaining computational efficiency. 

One technique that doesn’t fit into the above categorization 
is the phase-correlation method [1]. This technique works by 
computing the cross-correlation of the template block with the 
corresponding search range and identifying a set of candidate 
correlation peaks. The algorithm then evaluates a difference 
measure at those points and chooses the minimum as the solution 
to the block matching problem. Although this algorithm cleverly 
reduces the computational complexity it has been shown to 



identify spurious solutions, and as such is not guaranteed to 
maximize PSNR. 

Since our method uses the SSD metric to find the minimum 
matching block within the given search range, we are guaranteed 
to find the blocks that maximize the PSNR of the predicted 
image. Furthermore, our method achieves its speedup regardless 
of the content of the image sequence being encoded. The details 
of our algorithm are given in §2, experimental results are given 
in §3, and we discuss conclusions in §4. 
 

2. THE FFT BLOCK MATCHING ALGORITHM 
 

In order to maximize the PSNR, our algorithm minimizes the 
SSD metric given in Eq.2. Following a trivial expansion, the 
mathematical definition of our per-block computation is given 
by:  
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Since the term ( )2, jif t  appears across the entire minimum, it 

can be removed from the sum without affecting the resulting 
solution. Removing this term and separating the sum leaves us 
with the following equation: 
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The FFT Block Matching Algorithm (FFTBMA) that we propose 
computes Eq.6 using three basic steps: 

1. Resize input image to include a zero pad 
2. Compute the windowed sum squared table 
3. Compute a per-block convolution sum 

Step 1 is simply to allow convenient calculation of the SSD 
metric without using conditionals for those search locations that 
lie outside of the dimensions of the original image. Given a 
search range of P±  we apply a zero pad of P  pixels around the 
entire image. This simple preprocess eliminates the need for 
conditionals within the innermost loops of our algorithm and 
greatly increases its speed. Similarly, this also improves the 
performance of the exhaustive search, and as such is used in our 
implementation of that algorithm as well. For convenience, we 
assume here that the original dimensions of the image are a 
multiple of the block size, B. If this is not initially true, the 
dimensions of the image are increased to compensate for this 
prior to the application of the zero pad. 

Steps 2 and 3 are discussed in §2.1 and §2.2 respectively. 
 

2.1 Windowed Sum Squared Table (WSST) 
 

To compute the first term of Eq.6, we use a variant of the well 
known summed area table (SAT), introduced in [4]. Given an 
input image f , a summed area table is a new image SATf  such 

that 
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Summed area tables can be very easily computed by applying the 
following recurrence, being careful to set ( )jif ,  to zero when 
either of the indices is negative: 
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 The WSST differs from the SAT in that each pixel needs to 
represent a sum of squares, where the sum extends only over the 
last BB ×  sub-image (window), with B  the block size. 

Our approach to creating the windowed sum squared table 
consists of two steps. In the first step we compute a sum squared 
table (SST), and in the second step we confine the sum to the 
last BB ×  sub-image. Using a variant of Eq.8 would imply that 
for an 8 bit image of size HW ×  we may need to store values as 

large as WH2255 . For large video streams such as those used in 
HDTV, this can easily exceed the maximum value representable 
by a 32 bit integer. So although this algorithm seems to follow 
directly from the recurrence of Eq.8, care is needed to prevent 
overflow of intermediate calculations. 

To solve the overflow problem, we initially divide the 
image into blocks of size BB ×  and compute an SST over each 
block. By assumption, the image size is divisible by B , and we 

assume that 22255 B  can be represented with a 32 bit integer. 
The result of this computation is a new image where each block 
constitutes a sum squared table defined by the following 
recurrence: 
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We now need to combine the individual SST’s to create the 
final Windowed SST. For this we note that the sum of squares 
over any rectangle confined to a single block, with lower left 
corner ( )ji,  and upper right corner ( )lk ,  is given by: 
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Using Eq.10 we can easily derive the sum of squares (SS) for an 
arbitrary BB ×  region as an SS over rectangles in 4 neighboring 
blocks. By using coordinates that are local to the block 
containing the upper right corner we arrive at the following 
equation:  
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Fig.1 depicts Eq.11 visually. By applying this equation for every 
pixel we complete the computation of the windowed sum 
squared table for the entire frame. 
 

2.2 Per-Block Convolution Sum 
 

In this section we show that computation of the second term in 
Eq.6 amounts to the evaluation of a correlation sum for each 
template block, which we evaluate as a convolution sum. For a 
single candidate block, the second term of Eq.6 is just a dot 
product with the template block. However, computing this dot 

product for each of the ( )212 +P  candidate blocks in the search 
range amounts to a correlation of the template block with the 
( ) ( )BPBP +×+ 22  region corresponding to the square 
containing all pixels of all blocks in the search range. In order to 
efficiently  compute the  correlation, we will  first convert  it to a 
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Figure 1.  Computation of  WSST relative to multiple SST’s 
 

convolution and then use the fast Fourier transform (FFT). 
For each template block, we create two images of size 

( ) ( )BPBP +×+ 22 . The first image, template , corresponds to 
the template block and is computed by simply multiplying the 
block by 2, reversing the pixels, and zero padding to the correct 
size. The pixel reversal effectively changes the correlation sum 
into an equivalent convolution sum. The second image, 
candidates , corresponds to the square containing all pixels of 
all candidate blocks in the search range. This square can be 
copied directly from the reference image. Given these two 
images, we can compute a new image, result , according to the 
following formula: 

( ) ( )( )candidatesFFTtemplateFFTFFTresult •= −1        (12) 
Since the convolution that we have performed is cyclic, the first 

1−B  rows and columns of result will contain wrap-around data 
that should be discarded. This leaves us with a usable portion of 
the image of size ( ) ( )1212 +×+ PP . Notice that this corresponds 

to one solution for each of our ( )212 +P  search locations, and is 
exactly what we desire. 

Given that we have previously computed the windowed 
sum squared table, we can now easily find the minimum. 
Assuming that our template block is at offset ( )yx,  we simply 

perform a linear pass over the result  image, evaluating the 
minimum matching block according to the following formula: 

( )( )),(,min , jiresultPjyPixfWSSTji −−+−+         (13) 

where [ ]12,1, −+−∈ BPBji . It is important to note that 

),( jiresult  must be rounded to the nearest integer before it can 
be combined with a value from the windowed sum squared table. 
As a last step, we simply need to correct the offset to account for 
the cyclic nature of the convolution. Given that Eq.13 identifies 
the pair ( )ji,  as the location of the minimum match, the 
resulting motion vector corresponding to the minimum matching 
block is then given by: 

( ) ( )1,1, +−−+−−= BPjBPimvjmvi                (14) 
 
2.3 Running Time Analysis 
 
In our discussion of running time, we will assume without loss 
of generality that the dimension of the original image is NN × , 
where N  is divisible by B . 

We will first develop an expression for the running time of 
the exhaustive search. Since full search algorithms are generally 
content dependent, there are certain cases where they will all 

exhibit the same worst case running time. For each block, the 
exhaustive search requires the computation of  the SAD or SSD 

metric at ( )212 +P  locations. This results in an ( )( )22 12 +Ο PB  

algorithm for each block. There are a total of 22 BN  blocks, so 

the exhaustive search has a total per-frame running time  of: 

( )( )22 12 +Ο PN                              (15) 
The FFT block matching algorithm that we have presented  

consists of two steps. In the first step we construct the windowed 
sum squared table. Since this amounts to only two linear passes 

over the entire image, this step takes only ( )22NΟ  per frame. In 

the second step we perform a per-block convolution. Each 
convolution consists of three applications of a 

( ) ( )BPBP +×+ 22  real FFT, as well as ( ) 22 2BP +  complex 

multiplications. Therefore this step has a running time of 

( ) ( )( )BPBP ++Ο 2log2 2
2  per block. A precise statement of the 

total running time of the FFT block matching algorithm is then: 

( ) ( ) ( )( )( )( )2232log2 22
2

22 +++++Ο BBPBPBPN   (16) 

For practical scenarios, asymptotic analysis is of no interest. 
To determine the cases for which our algorithm outperforms the 
exhaustive search, we analyze the following equation: 

( ) ( ) ( ) ( )( )( )2232log212 22
2

22 +++++≥+ BBPBPBPCP  (17) 

We can safely assume that [ ]4,12 ∈= BPR . Substituting R  

into Eq.17 and simplifying results in the following expressing: 

( ) ( )[ ]( )31log112 2
222 ++++≥ BRRRCB       (18) 

In §3 we show that the FFT block matching algorithm 
outperforms the exhaustive search for all relevant block sizes 
and a range of C , including values that characterize inefficient 
FFT implementations. 
 

3. EXPERIMENTAL RESULTS 
 

Our experiments test the performance of the FFT block matching 
algorithm against that of the exhaustive search. Both algorithms 
have been implemented using C/C++. For the FFT computation 
we use a publicly available package called the Fastest Fourier 
Transform in the West (FFTW) [7]. None of the code or libraries 
that we have used contain any machine specific instructions or 
assembler routines that would give either algorithm an unfair 
advantage. Our test platform is an AMD Athlon 900 MHz with 
512 MB of RAM. All timings include reading the images, 
constructing the necessary data structures, and computing all 
motion vectors for each frame of the input image sequence. 
 

Data Set Frames Width Height Motion 
Mother 199 176 144 slow 
Carphone 74 176 144 medium 
Football 160 360 240 fast 
Table 1. Data sets used in the experiments. 

 

Both algorithms have been tested on three data sets. The 
dimensions, number of frames, and type of motion classification 
of each are given in Table 1. The motion classification is shown 
as slow, medium, or fast, and indicates the degree of motion 
contained within the image sequence. For all tests, a block size 
of 16 is used, and only the luminance channel is considered. 

The performance of each algorithm is measured using 

Individual 
sum-
squared- 



execution time, PSNR, and the number of errors, E. The number 
of errors needs to be considered because although the FFT block 
matching algorithm is mathematically exact, the round-off error 
produced by the many computations used in the convolution sum 
will infrequently lead to a non-optimal match. We have observed 
that this occurs less than 0.5% of the time in practice, and when 
the result is non-optimal, the computed motion vector is usually 
matched to the next most optimal block. All data sets were tested 
using multiple values of the search range, P . 
 

Exhaustive Search FFT BM Algorithm  
P Time PSNR E Time PSNR E 

+/-8 14.06 38.20 0 4.01 38.20 74 
+/-16 52.13 38.31 0 10.89 38.31 86 
+/-24 114.51 38.34 0 15.19 38.34 52 
+/-32 201.19 38.36 0 33.03 38.36 74 
Table 2. Test results for mother image sequence. 

 

Exhaustive Search FFT BM Algorithm  
P Time PSNR E Time PSNR E 

+/-8 5.19 32.00 0 1.49 32.00 27 
+/-16 19.21 32.02 0 4.01 32.02 36 
+/-24 42.22 32.02 0 5.59 32.02 31 
+/-32 74.18 32.03 0 12.36 32.03 25 
Table 3. Test results for carphone image sequence. 

 

Exhaustive Search FFT BM Algorithm  
P Time PSNR E Time PSNR E 

+/-8 36.91 23.13 0 10.52 23.13 3 
+/-16 136.65 23.46 0 28.38 23.46 2 
+/-24 300.14 23.55 0 40.14 23.55 0 
+/-32 527.42 23.60 0 87.10 23.60 2 
Table 4. Test results for football image sequence. 
 

As Tables 2, 3, and 4 show, the FFT block matching 
algorithm greatly outperforms the exhaustive search while still 
obtaining the same PSNR value, with running times of 13%-29% 
of that of the exhaustive search, dependent on P . Fig.2a shows 
a plot of the timings for the football image sequence, as well as 
the analytic curves in the inequality of Eq.17 (here we used 

75.2=C ). In Fig.2b, we have solved Eq.18 for B , varying C  
and R . Since we have measured C  to be between 2.2 and 3.0 in 
our implementation, Fig.2c shows a slice through the plot in 
Fig.2b for 3=C . With such a value of C , it is clear that the 
FFT block matching algorithm convincingly outperforms the 
exhaustive search for our previously defined range of [ ]4,1∈R . 

Even for much less efficient implementations of the FFT, it is 
clear that our algorithm is faster. 

In our tests, using 24=P  consistently gives the best 
running times. This occurs because P  is relatively large and the 
dimension of the FFT is then 6464× , which runs extremely fast 
because it is a power of 2. As we have mentioned, the FFT block 
matching algorithm occasionally fails to identify the best 
matching block due to round-off error, but as the PSNR 
indicates, the effect of this error is negligible. 
 

4. CONCLUSIONS 
 

Our new FFT-based block matching algorithm employs a 
novel data structure, the Windowed-Sum-Squared-Table, and 
exploits the FFT in its computation of the SSD metric. Because 
it is independent of image content, our algorithm runs faster than  

  
Figure 2. (a) Timings for football image sequence.  
(b) Solutions of Eq.18. (c) Slice through Fig.2b at 3=C . 

 

existing full search algorithms, with speeds of 13%-29% of the 
exhaustive search in practice. The FFT block matching algorithm 
is not heuristic-based and thus can consistently identify the best 
matching blocks, maximizing PSNR. The algorithm is well 
suited for software implementations requiring very low bit rates. 
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