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Abstract. Illumination conditions cause problems for many computer

vision algorithms. In particular, shadows in an image can cause segmenta-

tion, tracking, or recognition algorithms to fail. In this paper we propose

a method to process a 3-band colour image to locate, and subsequently

remove shadows. The result is a 3-band colour image which contains all

the original salient information in the image, except that the shadows

are gone.

We use the method set out in [1] to derive a 1-d illumination invariant

shadow-free image. We then use this invariant image together with the

original image to locate shadow edges. By setting these shadow edges to

zero in an edge representation of the original image, and by subsequently

re-integrating this edge representation by a method paralleling lightness

recovery, we are able to arrive at our sought after full colour, shadow free

image. Preliminary results reported in the paper show that the method

is e�ective.

A caveat for the application of the method is that we must have a cal-

ibrated camera. We show in this paper that a good calibration can be

achieved simply by recording a sequence of images of a �xed outdoor

scene over the course of a day. After calibration, only a single image is

required for shadow removal. It is shown that the resulting calibration is

close to that achievable using measurements of the camera's sensitivity

functions.
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Texture, shading, & colour, shadow removal, lightness recovery, illuminant in-

variance.
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1 Introduction

Illumination conditions can confound many algorithms in vision. For example,

changes in the colour or intensity of the illumination in a scene can cause prob-

lems for algorithms which aim to segment the image, or to track or recognise,

objects in the scene. One illumination e�ect which can cause particular prob-

lems for these algorithms is that of shadows. The disambiguation of edges due to

shadows and those due to material changes is a di�cult problem and has a long

history in computer vision research [2]. In addition, the investigation of shadows

as cues for image understanding has an even older lineage [3]. Recently, the im-

portance of understanding shadows has come to the fore in digital photography

applications including colour correction[4] and dynamic range compression[5].

One possible solution to the confounding problems of shadows is to derive

images which are shadow free: that is to process images such that the shadows

are removed whilst retaining all other salient information within the image. Re-

cently, a study [6] aimed at lightness computation [7] set out a clever method to

attenuate the e�ect of shadows in an image. Unfortunately however, this method

requires not just a single image, but rather a sequence of images, captured with

a stationary camera over a period of time such that the illumination in the scene

(speci�cally the position of the shadows) changes considerably.

The example used by the author was a sequence of grey-scale images of a �xed

outdoor scene, captured over the course of a day. Assuming that material changes

are constant in the scene and that shadows move as the day progresses, it follows

that the median edge map (for the sequence) can be used to determine material

edges (shadow edges since they move are transitory and so do not e�ect the

median). Given the material edge-map it is possible to create an intrinsic image

that depends only on re
ectance. This re
ectance map might then be compared

against the original sequence and an intrinsic illuminant map for each image

recovered. While this method works well a major limitation of the approach is

that the illumination independent (and shadow free) image can only be derived

from a sequence of time varying images.

In this paper we propose a method for removing shadows from images which

in contrast to this previous work requires only a single image. The approach is

founded on an application of a recently developed method for eliminating from an

image the colour and intensity of the prevailing illumination [1, 8]. The method

works by �nding a single scalar function of image an RGB that is invariant to

changes in light colour and intensity i.e. it is a 1-dimensional invariant image

that depends only on re
ectance. Because a shadow edge is evidence of a change

in only the colour and intensity of the incident light, shadows are removed in

the invariant image. Importantly, and in contrast to antecedent invariant cal-

culations, the scalar function operates at a pixel and so is not confounded by

features such as occluding edges which can a�ect invariants calculated over a

region of an image.

Fig. 1(a) shows a 3-band colour image, taken in outdoor lighting using an ex-

perimental Hewlett-Packard HP912 digital still camera modi�ed to produce raw

output. For purposes of display, the raw camera RGB values have been converted
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Fig. 1. (a): Original image. (b): Grey-scale illuminant-invariant image. (c): Grey-scale

non illuminant-invariant image. (d): Edge map for invariant image. (e): Edge map for

non-invariant image. (f): Recovered, shadow-free image.

to the standard sRGB[9] colour space. The image shows two people photograph-

ing a lawn | their shadows are prominent. It is important to realise that the

shadows in this image, and shadows in outdoor scenes in general, represent a

change in both intensity and colour of the prevailing illumination. In the image

in Figure 1, the region of the footpath which is not in shadow is illuminated by

a mixture of sunlight and skylight, whereas the shadowed region is lit only by

skylight. Thus, there is a change in the e�ective correlated colour temperature

of the illumination in the two regions. Fig. 1(b) shows the invariant, re
ectance

only, image. There are two features of this image which are worthy of comment.

First is the fact that the shadows present in the original image are e�ectively

removed in the invariant image. Second, it is important to notice that the invari-

ant image is grey scale | in removing the e�ect of the scene illumination at each

pixel in the image, information is lost. Shadows are removed but we have moved

from a rich colourful RGB image to a shadowless grey-scale representation.

In this paper we address this problem and set out to recover an RGB colour

image from which the shadows are removed. To achieve this we focus on the

derivative images of both the original image and the illumination invariant image.

More speci�cally we look at the di�erences in the edge maps of the two images.

We reason that material edges should occur in both RGB and invariant images.

In e�ect, we can use the invariant edge map as a mask to locate non-shadow

edges in the RGB edge map. Re-integrating the material-edge-only map should

result in a full colour image where shadows are removed.

Before proceeding it is useful to make a couple of caveats. First, that the

generation of an invariant image requires calibration. In [1] the calibration was
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performed o�-line using measurements of a camera's sensor sensitivity functions.

Here we investigate what can be done when these measurements are unavailable.

In particular we show that the calibration step can be achieved using a sequence

of images of a �xed scene, taken under a variety of daylight conditions. This o�ers

the possibility that both the method presented here, and indeed, the method to

derive the invariant grey-scale image can be used with uncalibrated cameras in,

for example, tracking or surveillance applications. The second caveat we make

is about the nature of cast shadows. Implicit in our technique is the idea that

shadow edges appear in the edge-maps of RGB images. For very di�use shadow

boundaries this may in fact not be the case. However, in this worst case when

shadows are not found, the method will basically reintegrate to the original

image. However, experiments demonstrate that our method strongly attenuates

shadows in a variety of images even when shadow boundaries are not sharp. In

all images we have tried shadows are less prominent after processing than before.

In Section 2, we set out the method used for forming an invariant image, and

in Section 3 we detail how we use this invariant image to remove shadows from

a colour image. Section 4 considers the issue of camera calibration and Section 5

shows further results and states some conclusions.

2 Invariant Image Formation

Suppose we image a set of coloured surfaces under a particular Planckian light,

in a controlled light box, say. If surfaces are Lambertian, then for each pixel the

log of the chromaticity fr; gg appears as a dot in a 2-d plot; for 
at or curved

surfaces every pixel in each patch is approximately collapsed into the same dot.

Fig. 2(b) illustrates the log-chromaticities for the 24 surfaces of the Macbeth

Color Checker Chart shown in Fig. 2(a). The plot shows 19 distinct clusters of

points | each cluster corresponds to chromaticities from a single patch, there

are 19 clusters rather than 24 since the patches in the last row of the chart are

all neutral in colour and so have the same chromaticity.
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Fig. 2. (a): Macbeth Color Checker Chart image under a Planckian light with an HP912

Digital Still Camera. (b): Log-chromaticities of the 24 patches of the imaged chart.

(c): Chromaticities for 6 di�erent patches, imaged under a set of di�erent Planckian

illuminants.
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Now if sensors are fairly narrow-band (and if they are not they can be made

more so via a spectral sharpening procedure [10]) then, for Planckian lights,

changing the lighting colour simply amounts to moving the log-chromaticity

colour vector along a direction multiplying a term which depends on the illumi-

nant temperature T and which is independent of the magnitude and direction

of the lighting. Fig. 2(c) illustrates this for 7 patches of the colour chart shown

in Fig. 2(a); the �gure shows the same 7 patches imaged under a range of dif-

ferent Planckian illuminants. Here, because the camera sensors are not exactly

narrow band, the linear shift of chromaticities is only approximate. As we will

see later though, this approximate linearity is su�cient for our needs. Assuming

that the change with illumination is indeed linear, projecting colours perpendic-

ular to this direction of change produces a 1-d greyscale image that is invariant

to lighting change.

This direction is in principle di�erent for each camera, and thus must be

recovered from a calibration. While lighting may in fact not be truly Planckian,

most lights, and certainly all daylights, fall very near to the Planckian locus in

a chromaticity plot, and in practice the Planckian assumption is not crucial.

To see how this linear behaviour with lighting change is derived in the ideal

case we recapitulate the invariant image calculation here. Consider the RGB

colour formed at a pixel from illuminationwith spectral power distributionE(�),

impinging on a surface with surface spectral re
ectance function S(�). If the

three camera sensor sensitivity functions form a set R(�) then the RGB colour

� at any pixel results from an integral over the visible wavelengths

�k =

Z
E(�)S(�)Qk(�)d� ; k = R;G;B : (1)

If camera sensitivityQk(�) is exactly a Dirac delta function Qk(�) = qk�(��

�k), with qk the strength of the sensor qk = Qk(�k), then Eq. (1) reduces to the

simpler form

�k = E(�k)S(�k)qk : (2)

Now suppose lighting can be approximated by Planck's law.

E(�; T ) = I c1�
�5

�
e
c2

T� � 1
��1

(3)

Constants c1 and c2 equal 3:74183� 10�16 Wm2 and 1:4388� 10�2 mK, respec-

tively. The variable I controls the intensity of the incident light. For illuminants

in the temperature range 2500K to 10000K (reddish through whitish to bluish)

the term e
c2

T� >> 1 and Wien's approximation can be used:

E(�; T ) ' I c1�
�5e�

c2

T� : (4)

Both the above equations generate functions which are very smooth func-

tions of wavelengths. In contrast, daylights have many high frequency compo-

nents. The approximations set forth above make sense only because we integrate
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over all wavelengths to form RGB. From the point of view of most cameras day-

light spectra are e�ectively smooth (because camera sensitivities cannot see high

frequency spectral components).

Returning to the narrow-band sensor response equation, RGB colour �k; k =

1 : : : 3 is simply given by

�k = Ic1�
�5

k e
�

c2

T�
k S(�k)qk : (5)

Now suppose we �rst form band-ratio chromaticities from colour values �

given by eq. (1):

rk = �k=�p (6)

where p is one of the channels and k indexes over the remaining responses. In our

experiments p = 2 (i.e. we divide by green) and so we calculated R=G and B=G.

As in all chromaticity operations, we e�ectively remove intensity information.

The intensity variable I is absent from the chromaticity coordinates. To isolate

the temperature term (so we might later remove it) in (4) we take the log of (6).

r0k � log(rk) = log(sk=sp) + (ek � ep)=T ; (7)

where we de�ne sk = c1�
�5

k S(�k)qk and ek = �c2=�k. As temperature changes,

2-vectors r0k; k = R;B, will form a straight line in 2-d colour space. Equation (7)

is the vector equation for a line. Calibration then amounts to determining the

2-vector direction (ek�ep) in the space of logs of ratios. We discuss the practical

aspects of this calibration in more detail in Section 4.

The invariant image is that formed by projecting 2-d colours into the direction

e? orthogonal to the vector (ek � ep). The result of this projection is a single

scalar which we then code as a grey-scale value. Here, and henceforth, the grey-

scale invariant is de�ned as:

gs = c1r
0

R � c2r
0

B (8)

Where c1 and c2 are constants such that the vector [c1 c2] is in the direction

[eB � eR] (it is orthogonal to the lighting direction). The grey-scale invariant

image is denoted gs(x; y).

Experiments have shown that images of the same scene containing objects

of di�erent colours illuminated by any complex lighting �eld (including lights

of di�erent colours and intensities) will map to the same invariant image. Most

importantly for this paper, shadows which occur when there is a change in light

but not surface will disappear in the invariant image.

Of course by de�nition we expect the illuminant invariance properties. We

have carefully shown by considering the physics of image formation how light

intensity and temperature are cancelled out. But, we draw the reader's attention

to a possible problem. Speci�cally, the invariant is designed to work for Planckian

lights. Additive combinations of Planckians (which might result indoors when

there is mixed light from a Tungsten source and outdoor illumination through

a window) is non-Planckian. However, because the Planckian locus is a very
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shallow crescent shape, additive combinations of light tend to fall close to the

locus. Experimentally, the invariant image factors out the light even for additive

combinations of Planckian illuminants[1].

3 Method for Shadow Removal

Our method for shadow removal has its roots in methods of lightness recovery.

Lightness is a term usually used to mean that part of a photometric signal that

depends only on re
ectance. An RGB image is input and two intrinsic images

are output: one based on re
ectance (the lightness intrinsic image) and the other

based on illumination. Lightness computation proceeds by making assumptions

about the world. In particular, it is usually assumed that illumination varies

slowly across an image. In contrast changes in re
ectance are rapid. It follows

then that by thresholding a derivative image to remove small derivatives, slow

changes (due to, by assumption, illumination) can be removed. Integrating the

thresholded derivative image results in the lightness intrinsic image. Clearly, we

wish to adopt a similar strategy here. However, our assumptions must at the

outset be di�erent. Shadows are evidence of a sharp change in illumination and

this will lead us to a di�erent kind of thresholding operation.

Let us begin by recapitulating the standard lightness recovery algorithm. The

algorithm works by �nding the intrinsic image in each of the separate R-, G-

and B-channels separately. Let us use the notation �(x; y) to represent one of

the three channel images. We are going to use thresholded derivatives to remove

the e�ect of illumination. We observe in Equation (2) that sensor response is

a multiplication of light and surface. The gradient di�erential operator takes

di�erences of adjacent image pixels. Assuming locally constant illumination, the

di�erence between log colour responses removes the e�ect of the illumination.

Denoting the log channel response as �0(x; y) we write the gradient (the vector

of the x and y derivatives as:

gradient of channel response kr�0(x; y)k (9)

Given the log-image edge map r�0(x; y) we can de�ne a threshold operator T

to remove e�ects due to illumination. In the original lightness formulation[11],

T thresholds out gradients of small magnitude:

T (r�0(x; y)) =

�
0 if kr�0(x; y)k < threshold

r�0(x; y) otherwise
(10)

Here our goal is not to remove illumination per se (we are not solving for colour

constancy) but rather we wish only to remove shadows. In fact we actually want

to keep the illuminant �eld and re-render the scene as if it were captured under

the same single non-shadow illuminant. To do this we must factor out changes

in the gradient at shadow edges. Let us denote

gradient of greyscale invariant image krgs(x; y)k (11)
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Since the invariant image is a function of re
ectance, shadow edges must disap-

pear. Thus, we can remove shadows in the gradient of the log response image

using the following threshold function S():

S(r�0(x; y); gs(x; y)) =

�
0 if kr�0(x; y)k > thresh1 and krgs(x; y)k < thresh2
r�0(x; y) otherwise

(12)

That is if the magnitude of the gradient in the invariant image is close to zero

where the gradient of the log response is larger than zero then this is evidence

of a shadow edge. At such places the gradient of the log response image is set

to zero indicating that there is no change at this point (which is true for the

underlying re
ectance). We point out that a similar 'rule-based' approach to

determining the semantics of edges (e.g. highlight edges vs material edges) has

been proposed by Gevers and Stockman[12]. Though, that approach fails to

account for shadows.

After thresholding we should now have a gradient image where sharp changes

are indicative only of material changes: there are no sharp changes due to illu-

mination and so shadows have been removed. We now wish to integrate the

gradient in order to recover a log response image which does not have shadows.

To do this we must solve a Poisson equation of the form:

r
2q0(x; y) = r � S(r�0(x; y); gs(x; y)) (13)

On the left hand-side of Equation (13) we have the Laplacian ( d
2�0

dx 2
+ d2�0

dy2
) of

the image we wish to recover. On the right-hand side we have the Laplacian of the

input image where the Laplacian is computed in two steps. First the thresholded

(shadow free) gradient is calculated (12). Second, the Laplacian is calculated

from the gradient. However, the Laplacian by itself is not su�cient to allow the

Poisson equation to be solved (the Laplacian is not de�ned at the boundaries

of an image). Rather we must make some assumption about what is happening

at the image boundary. Here we assume Neumann boundary conditions: the

derivative at the boundary is zero. Subject to this constraint we can recover

q(x; y) uniquely up to an unknown additive constant. Exponentiating q0, we

arrive at the reconstructed greyscale image (up to an unknown multiplicative

constant). Solving (13) for each of the three colour bands results in a full colour

image where the shadows are removed.

However, to obtain \realistic" image colours we must deal with the unknown

multiplicative constants. To �x these constants, we consider the top 1-percentile

of pixels in the recovered image in each band. We use the average of these pixels

as a measure of the maximum response in the images. Mapping the maximum

value of the RGB image to (1 1 1) e�ectively removes the unknown constants.

Moreover, adjusting the white-point of an image in this way is a simple way of

discounting the colour of the (in this case non-shadow) illuminant.

Note that reasonably accurate shadow edges are required for the method to

work well. Obtaining them depends on how we de�ne the thresholding operator

S. We have experimented with a variety of methods for de�ning S and what
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works best depends to some extent on image content. The method outlined

here then is not necessarily optimal and the results should thus be treated as a

convincing proof in principle.

The di�culty in de�ning S is illustrated by the images in Figs. 3(a,b).

Fig. 3(a) shows the edge map for the intensity image ( 1
3
(R+G+B)) of Fig. 1(a)

while that in Fig. 3(b) is the edge map for the corresponding illuminant-invariant

image. The edges in these images are calculated thus:

�
k� ? f�1; 0; 1gtk2 + k� ? f�1; 0; 1gtk2

�1=2
(14)

where � represents the relevant image and ? denotes convolution. Simple edge

operators of this kind produce non-zero values at more locations than those at

which there are true edges. In the examples in Fig. 3 the edges of the road

and (in the case of the intensity image) the shadow are clear, but so too are

many edges due to the texture of the imaged surfaces and also noise in the

images. Obtaining the edges in which we are interested from these edge maps is

non-trivial as evidenced by the large literature on edge detection (see [13] for a

review).

Fig. 3. (a): Edges in the intensity image. (b): Edges in the invariant image. (c): Final

recovered shadow edge.

One simple approach to determining the true edges is to threshold the edge

maps such that weak edges are set to zero. We found however that this still does

not produce edge maps which are clean enough for our purposes. Instead we have

employed more sophisticated edge detection algorithms such as that proposed by

Canny [14] and the SUSAN algorithm proposed in [15]. We have achieved some

success with both these methods; the results obtained here use the SUSAN edge

detector. In this algorithm the image to be edge detected is �rst smoothed by

convolution with a kernel function. Next there is an edge detection step after

which the resulting edges are thresholded to produce strong edges.

Employing this approach we �nd shadow edges by looking for edges which are

in the log red-, green- or blue- response image but are not in the invariant image.

As a �nal step we employ a morphological operation (speci�cally an opening) on

the binary edge map to \thicken" the shadow edges. This thickening of the edges
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was found to be necessary to ensure that the shadows are properly removed

in the re-integration step. The resulting shadow edge (shown in Fig. 3(c)) is

used to guide the operator S in the thresholding step of the recovery algorithm

outlined above. Even after this processing the de�nition of the shadow edge is

imperfect | there are a number of spurious edges not removed. However, this

map is su�ciently accurate to allow recovery of the shadow-free image shown in

Fig 1(f).

Even after outlining the di�culties presented above, we have found that

a very simple work
ow produces good results for most images that have pro-

nounced shadow edges. Moreover, the worst case performance for our algorithm

is when shadow edges are not recovered. In this case the reintegration returns im-

ages which are closer than we would like to the original image (i.e. with shadows

still present).

4 Uncalibrated Cameras

In order for the method outlined above to succeed, the invariant log lighting di-

rection ek�ep must be known. Obtaining this knowledge amounts to performing

a calibration of the camera. Camera calibration is simple if its sensor sensitivity

functions are known[1]. The calibration is more di�cult when the camera sensors

are unknown.

Here we investigate how it is possible to calibrate a camera given only a set

of images of the same scene taken at di�erent times of the day. We adopt the

following reasoning: over the course of the day, the height of the sun, and general

weather conditions change and so the e�ective illumination must change too. It

follows then that the plotted log-chromaticities for a single pixel must lie on a

line. Moreover, as discussed earlier the orientation of the lines discovered for all

pixels will be the same. The orientation that best describes all lines de�nes the

illuminant direction.

To test whether this reasoning is su�cient to obtain an accurate calibration

of the camera we captured 14 images of the scene shown in Fig. 4(a) at di�erent

times throughout the day. Fig. 4(b) shows the chromaticities of the 24 colour

patches of the Macbeth Color Checker which was placed in the scene. The change

of log-chromaticity with time (and hence with a change of daylight illumination)

is approximately linear.We used this data to derive the invariant direction for the

camera and the results are illustrated in Fig. 4(c). Also shown in this �gure are

the recovered vectors for a calibration based on knowledge of the camera sensors

(solid line) and that based on the sequence of daylight images (dashed line). It is

clear that the directions are very close | the angle between the two lines is 2:4o.

Figs. 4(d) and (e) shows the invariant images derived using the two di�erent

calibrations. The resulting invariant images are very similar for identi�cation

of edge content, and, importantly, the shadows are greatly attenuated in both

cases.

This simple experiment suggests that an accurate camera calibration can

be obtained without knowledge of the camera's sensors, thus broadening the
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Fig. 4. (a): The scene used for the camera calibration. (b): Chromaticities of the 24

colour patches for the set of 14 images. (c): Invariant directions recovered using camera

sensors (solid line) and the image sequence (dashed line). (d): Image taken with the

same camera. (e): Invariant image based on a calibration using camera sensors. (f):

Invariant image based on a calibration using the image sequence.

potential application of both the method reported here and the original method

set out in [1]. A �nal step to generalise (and automate) the calibration procedure

would be to derive the invariant based on the whole images rather than just the

patches from the test chart as was done here. To do this, however, it is necessary

for the images to be registered | such a set of images was unavailable at this

time. However, given that registered images are available, and that the scene

contains a range of di�erent colours, good calibration should be possible.

Finally, an experimental calibration has two main advantages over a cali-

bration based on known spectral sensitivities. First, RGBs in camera are often

gamma corrected (R, G and B are raised to some power 
) prior to storage. In-

deed most images viewed on a computer monitor are (roughly) the square root of

the linear signal. This is because monitors have a squared transfer function and

so the squaring of the monitor cancels the square root of the camera resulting

in the required linear signal. However, for the calibration set forth above, the

gamma is simply an unknown multiplier in the recovered parameter and does

not change the direction of the lighting direction.

For consider the e�ect of a gamma correction on the invariant image calcu-

lation:

�k ! 
 (�k)

r0k ! 
 log(sk=sp) + 
 (ek � ep)=T :
(15)



12

Clearly, we simply deduce a di�erent vector ek � ep than that we would have

calculated using linear signals; but the e�ect on images is the same: e? produces

an invariant image.

The second advantage of an experimental calibration is that the camera sensi-

tivity may change as a function of time and temperature. A continuous adaptive

calibration would support shadow removal even if the current state of the camera

di�ered from manufacturer speci�cations.

5 Results

Fig. 5 shows some further results of the shadow removal method set out here.

In all cases the shadows are removed quite e�ectively. There are, however, a

number of artifacts introduced into the images. These artifacts are due to the

fact that the determination of the shadow-edge is imperfect, resulting in edge

pixels being set to zero when they shouldn't be. Pragmatically then the results

of this paper do not deliver photo-quality images. However, the technique might

usefully subserve tasks such as tracking[16,17] or object recognition[18,19] where

shadows are known to cause problems.

6 Conclusions

In this paper we have presented a method for �nding and removing shadows from

images. Our method builds on two strands of prior research: lightness algorithms

and a recently developed light colour and light intensity invariant intrinsic im-

age. Lightness algorithms attempt to disambiguate light from surface using the

assumption that illumination varies slowly over an image. relative to this as-

sumption, small gradients in images are due to illumination and large gradients

due to re
ectance changes. Thresholding out small changes in gradient images

and re-integrating the result yields an illumination-free intrinsic re
ectance im-

age. Of course this method fails when shadows are present because shadow edges

have large gradients.

In this paper we modi�ed the threshold function using the light intensity

invariant image. As the name suggests this image depends only on re
ectance.

More speci�cally, it was shown that under the assumption of Planckian lights

there exists a single scalar function of R, G and B that factors out illumination.

By direct implication, shadows vanish in this image. It follows then that edges

in an input image which do not appear in the invariant image are evidence of

the presence of a shadow edge. Thresholding out image gradients that are due

to shadows and re-integrating delivers full colour shadow free images.

Several examples of the method operating on real images are included in

the paper. Shadows are always removed or very strongly attenuated. The paper

includes a full disclosure on the necessary (but simple) steps required to calibrate

a camera to support shadow removal.
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Fig. 5. Some example images. Each row shows results for a di�erent image. The �rst

column shows the original image, with shadow. The second column is the shadow-free

illuminant-invariant greyscale image. The �nal column shows the recovered 3-band

colour images which are shadow-free.
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