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Abstract
In this paper, we put forward a new pre-processing scheme

for automatic analysis of dermoscopic images. Our contribu-
tions are two-fold. First, we present a procedure, an extension
of previous approaches, which succeeds in removing confounding
factors from dermoscopic images: these include shading induced
by imaging non-flat skin surfaces and the effect of light-intensity
falloff toward the edges of the dermoscopic image. This proce-
dure is shown to facilitate the detection and removal of artifacts
such as hairs as well. Second, we present a novel simple yet effec-
tive greyscale conversion approach that is based on physics and
biology of human skin. Our proposed greyscale image provides
high separability between a pigmented lesion and normal skin
surrounding it. Finally, using our pre-processing scheme, we per-
form segmentation based on simple grey-level thresholding, with
results outperforming the state of the art.

1. Introduction
Melanoma in particular along with other malignant skin can-

cers are among the most rapidly increasing cancers in the world,
with high mortality rate [1]. Early detection of melanoma is very
important, particularly before the metastasis phase when the can-
cer is still localized and it can be completely cured with surgical
excision. Unfortunately, clinical diagnosis of melanoma is diffi-
cult even for experienced dermatologists [2]. Therefore, there is
an increasing demand for computer-aided diagnostic systems to
catch early melanomas.

A popular imaging method for diagnosis and early screening
of pigmented skin lesions is dermoscopy. Inevitably, most efforts
in computerizing diagnosis of melanoma lean towards automatic
analysis of dermoscopic images. The latter typically involves suc-
cessive steps of: pre–processing, segmentation, feature extraction,
feature selection and classification.

The pre–processing step which is the focus of this study is fa-
cilitating the segmentation process, i.e. isolating skin lesions from
normal skin surrounding it. Segmentation is a crucial step itself
that will affect all downstream processes and even the final diag-
nosis. Moreover, the presence of artefacts, such as hair, in the
image may disturb the identification of a lesion’s morphological
features. For these reasons, pre-processing can considerably con-
tribute to the accuracy of each step, improving the overall perfor-
mance.

In the following we propose a new pre-processing scheme
for automatic analysis of dermoscopic images. Our contributions
are two-fold. First, we present a procedure, an extension of previ-
ous approaches, which succeeds in attenuation of shading induced

(a) (b)
Figure 1. (a) input image (the lesion is completely in the shaded area); (b)

after shading attenuation by our approach – The green border is the lesion

boundary detected by Otsu’s grey-level thresholding method.

by imaging non-flat skin surfaces and the effect of light-intensity
falloff toward the edges of the dermoscopic image. We discuss
how this procedure might facilitate the detection and removal of
artifacts such as hairs. Next, we present a simple yet effective
novel approach to convert a dermoscopic image in the sRGB color
space into a greyscale one. Our greyscale conversion approach is
based on biological and optical properties of human skin and the
physics of image formation. Finally, we demonstrate the effec-
tiveness of our proposed pre-processing scheme by performing
segmentation based on simple grey-level thresholding, with re-
sults outperforming the state of the art.

2. Attenuation of Confounding Factors
Pre-processing methods used for dermoscopy images are

of many kinds, including but not limited to: colour calibration
[3], colour-space transformation [4], removal of artifacts (such
as hairs, ruler markings, air bubbles, black frames, ink markings,
etc.) [5]. Among these, previous efforts have mostly been focused
on development of hair removal algorithms (see e.g. [5, 6])

Shading and light-intensity falloff toward the edges of der-
moscopic image is one of the less studied confounding factors.
This could cause colour degradation, and radically alter segmen-
tation results. See Fig.1 for an example. Shading is induced
by imaging non-flat skin surfaces, and intensity falloff is due to
diffraction of light such that the image is brighter near the center
and darker near the edges (the illumination may deviate from the
center of the image according to the angle between the dermo-
scope and the skin).

To our knowledge, the only study that directly addresses
shading attenuation for dermoscopy images, is the one by Cav-
alcanti et al. [7]. Their approach is an attempt to estimate the il-
lumination as a quadratic function of image coordinates and then
spatially normalizing it. According to their own evaluation of the
method, “it has limited affect on local cast shadows, fails on sur-



face shapes that are not locally smooth and works best when the
illumination varies slowly across the scene” [7]. We also point
out that their method is highly constrained by its assumptions and
methodology: i) the method assumes the lesion is in the center of
the image and the corners of the image contains only healthy skin.
Further, a window of size 20× 20 pixel at each corner is used to
estimate the illumination function. While this seems to be work-
ing on the few sample images provided in their paper, it would in-
correctly estimate the illumination function for images containing
hairs or other artifacts in the corner areas (such as Fig. 2(a)). ii)
their method works best when the illumination varies (smoothly)
from one corner to another. However, it works poorly when the
corners are relatively equally darker than the center of the image,
which is the case for most dermoscopy images, especially those
suffering from intensity falloff (as described earlier).

We begin by following [7] by normalizing the Value channel
of HSV and then converting the image from HSV colour space
to the original RGB. However, we normalize V, as will be de-
scribed shortly, with respect to the intrinsic image [8] of the orig-
inal image. In computer vision, images with lighting removed are
denoted as “intrinsic”. In line with [8], we use the entropy mini-
mization technique to find the intrinsic image. Our tests demon-
strate that the proposed method overcomes the limitations of [7]
while succeeded in removing or strongly attenuating shading and
intensity falloffs.

In the rest of this section, the theory of intrinsic images is
briefly described, followed by our approach for normalizing Value
channel (of HSV), and eventually attenuating shading and other
confounding lighting effects.

2.1 Image Formation
In keeping with [8] we adopt a standard model in computer

vision for colour image formation. Suppose the illuminant spec-
tral power distribution is E(λ ) and, in any reflective case, the
spectral reflectance function at pixel (x,y) is S(x,y,λ ). Then mea-
sured RGB values are given by

Rk(x,y) = ω(x,y)
∫

E(x,y,λk)S(x,y,λk)Qk(λ )dλ (1)
where k = 1..3, ω denotes shading variation (e.g., Lambertian
shading is surface normal dotted into light direction, although we
do not assume Lambertian surfaces here); and Qk(λ ) is the cam-
era sensor sensitivity functions in the R,G,B channels.

Following [8] we adopt a simple model for the illuminant:
we assume the light can be written as a Planckian radiator (in
Wien’s approximation):

E(x,y,λ ,T )' I(x,y)k1λ
−5exp(−k2/(T λ )) (2)

where k1 and k2 are constants, T is the correlated colour tem-
perature characterizing the light spectrum, and I is the lighting
intensity at pixel (x,y), allowing for a possible rolloff in intensity
towards the periphery of the dermoscopic image. We assume light
temperature T is constant across the image (but is, in general, un-
known).

In line with [8] we assume camera sensors are narrowband or
can be made narrowband via a spectral sharpening operation [9].
In this approximation, sensor curve Qk(λ ) is simply assumed to
be a delta function: Qk(λ ) = qkδ (λ −λk), where specific wave-
lengths λk and sensor-curve heights qk are properties of the cam-
era used. To this end we simplify 1 by substituting E(x,y,λ ) and
Qk(λ ):

Rk = σ Ik1λ
−5e−

k2
T λ S(λk)qk, (3)

The effect of shading and illumination can be eliminated
from eq.(3) by dividing to get the band-ratio 2-vector chromatic-
ities ck = Rk/Rp where p is fixed to one colour channel (usually
the green channel), and k indexes over the other two channels (red
and blue).

Note that the effects of the illumination intensity, I, is re-
moved since it is a constant value at each pixel for all three colour
channels, and the same is true for the shading. While the assump-
tions above are restrictive, they are simply for guiding a model
and have been found to not be necessarily strictly true in practice
– sensors can be broadband and light can be any illuminant with
chromaticity fairly close to the Planckian locus.

2.2 Entropy Minimization
Simplifying eq.(3) by taking logs, we arrive at a model for

pixel log-RGB as follows:

ρk = log(ck) = log(sk/sp)+(ek− ep)/T (4)

where sk = k1λ−5S(λk)qk, sM = 3
√

∏
3
j=1 s j, ek = −k2/λk, and

ek =−k2/3∑
p
j=1 λ j. It can be easily seen that eq.(4) is a straight

line parametrized by T . The direction of this line is defined by
the direction of vector (ek − ep) which is independent of sur-
face. Therefore illumination invariance (intrinsic image) can be
achieved by projecting ρk to the direction (e−ep)

⊥ orthogonal to
(e− ep), which cancels the affect of changes in T .

Direction (e− ep)
⊥ can be found by calibrating the camera

(i.e. dermoscope, here). We, however, follow [8] and use entropy
as internal evidence in the image itself to find the invariant direc-
tion and optimal projection, in each single image. We project ρk,
the 2-D log chromaticity representation of the image, over all pos-
sible directions from 0◦ to 180◦ and choose the direction which
has minimum entropy as the optimal one for projection. The re-
sult of projection onto the 1-D direction is a 1-D intrinsic image,
χ , invariant to all illumination effects such as shading, shadows,
specular highlights, etc. The interested reader is advised to refer
to [8] for further details of this procedure.

2.3 Geometric–mean
According to [8], the quality of the 1-D invariant image

is dependent on the colour channel that is chosen as the divi-
sor. To not rely on any particular colour channel, we divide
not by Rp but by the geometric mean µ(x,y) = (∏3

k=3 Rk)
1
3 at

each pixel, for which the invariance properties above persist:
ψk(x,y) ≡ log[Rk(x,y)/µ(x,y)]. Then ψ is a 3-vector; it is or-
thogonal to (1,1,1). Therefore instead of 3-vectors one can eas-
ily treat these as 2-vector values, lying in the plane orthogonal to
(1,1,1): if the 3× 3 projector onto that 2-D subspace is P, then
the singular value decomposition of P =UUT , where U is a 3×2
matrix. We project onto 2-D vectors φ in the plane coordinate
system via UT :

ψk(x,y) = log[Rk(x,y)/µ(x,y)]; φ =UT
ψ (5)

2.4 Illumination Normalization
Our method for attenuation of lighting effects is inspired by

the work of [10, 7]. Both methods proposed to normalize the un-
even illumination in monochromatic images by first, estimating
the local illumination and then, normalizing it over the original
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Figure 2. (a) input image; (b) Value channel of HSV space; (c) χ the intrinsic image - (d) attenuation of shading by using our approach; (e) edge map of V

channel (HSV) after shading attenuation; (f) edge map of intrinsic image; (g-h) the difference of edge maps corresponds to the remaining hairs on the image; (i)

inpainting the hair masked by g; (j) output of Dullrazor [6] on original image (compare this with (i), outcome of our approach)

image. Soille [10] used a morphological closing operation to es-
timate the local illumination, while Cavalcanti et al. [7] tried to
model the illumination by a quadratic function of spatial location.

Both methods produce unsatisfactory results for skin images
containing lesions, and in particular in the presence of artifacts
such as hairs. We, on the other hand, propose to normalize the
illumination based on the distribution of intensity values in in-
trinsic image. In keeping with [10, 7], we convert the image from
original RGB to the HSV colour space. The V channel, represents
luminance information and it is independent of chrominance in-
formation. As noted by Soille [10], the V channel provides high
visibility of shading effects. Moreover, as noted by Skarbek and
Koschan [11], “the hue channel (for matte surface while ignor-
ing ambient light) is invariant to changes of surface orientation
relatively to the light source”, discounting shading and shadows.

Figs.2(b) and (c) are respectively the Value channel, and χ

intrinsic image. We first normalize the intensity values in both
monochromatic images, V and χ . Next, the histogram of V is
mapped to the histogram of the intrinsic image χ . Finally, the
original V channel is replaced with this new (normalized) V chan-
nel and the image from HSV is converted to RGB colour space.
As can be seen from Fig.2(d), the effect of shading and intensity
falloff is significantly attenuated.

An interesting observation can be made: In the image gener-
ated via our proposed method, not only is it shading free but also
is free of thin and short hairs, to a degree which is comparable to
the achievement of dedicated hair removal algorithms. Note that
by examination, we see that the intrinsic image is almost com-
pletely free of hairs – see Fig.2(c). We plan to further study this
important and interesting side effect of our method.

We take advantage of this observation to create an artifact
free image. Extracting the edge map of our normalized V (i.e.
V channel of shading free image, shown in Fig.2(e)), and com-
paring to the edge map of the intrinsic image Fig.2(f), one can
easily recognise that the difference between the two corresponds
to hairs. Fig.2(g) is the “hair mask” created by subtracting two
edge maps (we dilated the edges before subtraction and applied
morphological opening after subtraction to remove small ob-
jects). Fig.2(h) highlights the hair mask in green on the shading-
attenuated skin lesion image.

In our experiments, described below, we used Otsu’s grey-
level thresholding method for segmentation. This segmentation
approach assumes the lesion is darker than its surrounding. For
this reason, it is good enough to set hair pixel colours to zero,
having them segmented as a part of the background. For gen-
eral purposes, by having the hair mask, one can e.g. replace each
masked pixel with an average of its neighbouring non-mask pixels
[12]. For the sake of illustration, we used the reference implemen-
tation 1 of inpainting [13] method and painted over the hair pixels
– see Fig.2.(i) and compare the results with Fig.2.(j) obtained by
applying the celebrated and highly recognized hair removal soft-
ware2, Dullrazor [6].

A final note on this section: our method should not be con-
sidered as a hair removal algorithm. It can however facilitate the
process. Our proposed approach to deal with images with hair
is to first apply any hair removal method, such as [5], and then
follow with our lighting artifact attenuation. At this stage, one
could take our edge map subtraction approach as a post-process,

1http://www.cc.gatech.edu/∼sooraj/inpainting/
2http://www.dermweb.com/dull razor/



to remove the remaining hairs in the image.

3. A Novel Colour to Grey–scale Conversion
In the process of automatic analysis of dermoscopic skin im-

ages, often a monochromatic image of skin lesion is required e.g.
for segmentation or feature extraction. In particular, most tex-
ture extraction methods use only intensity information. It is there-
fore crucial that the algorithm which converts a colour image to
greyscale enhances different structures embedded in the image.
Similarly for segmentation, a desired colour representation is one
that intensifies the contrast between the lesion and the normal
skin, whether the segmentation method uses a monochromatic im-
age or any trichromatic colorspace, or even a multi-spectral rep-
resentation.

We propose a new greyscale conversion method that is based
on the optics of human skin and it has direct biological underpin-
nings. Using this greyscale image for skin lesion segmentation
and based on simple grey-level thresholding, we achieved results
outperforming the state of the art [14].

This greyscale conversion provides higher separability be-
tween lesion and normal skin. We hypothesize that it would im-
prove the performance of any texture extraction method as well,
since it suppresses the normal skin while preserves (and in many
cases enhances) the structure of lesions (see e.g. Fig.3(a)).

The basic idea behind our method is inspired by the work of
Tsumura et al. [15, 16] which has shown that in a particular novel
colour space, pixel triples of human skin live on a plane, with
(non-orthogonal) basis vectors assumed attributable to melanin
and hemoglobin only.

We here make an observation that the skin plane is narrow
along the direction of its second eigenvector and considerably
wider along the direction of first eigenvector. In particular for skin
lesions, the entire skin colour plane is approximately spanned by
its first eigenvector. Therefore, we project the image, after finding
the skin plane, to the basis corresponding to the first eigenvector
of the data distribution. This process is described next.

3.1 Skin Colour Model
Tsumura et al. first suggested using a simple Lambert-Beer

type of law for radiance from a multilayer skin surface, resulting
from illumination by polarized light [15]. That is, employing a
model similar to a simple logarithm model based on optical den-
sities for accounting for light passing for example through mul-
tilayer slide film. The transmittance through each colour layer is
proportional to the exponential of the negative optical density for
that layer.

We utilize the model developed by Hiraoka et al. [17], which
formulates a generalization of the fundamental Lambert-Beer law.
In this model the spectral reflection of skin (under polarized light)
at pixel indexed by (x,y) is given by

S(x,y,λ ) = exp{−ρm(x,y)αm(λ )lm(λ )
−ρh(x,y)αh(λ )lh(λ )}

(6)

where ρm,h are densities of melanin and hemoglobin respectively
(cm−3), and are assumed to be independent of each other. The
cross sectional areas for scattering absorption of melanin and
hemoglobin are denoted αm,h (cm2) and lm,h are the mean path-
length for photons in epidermis and dermis layers, which are used
as the depth of the medium in this modified Lambert-Beer law.
These quantities are used as well in [16].

(a) Proposed greyscale (b) L of CIE Lab

(c) (d)
Figure 3. (c, d) Histogram of (a, b) respectively.

(a) (b)

(c) (d)
Figure 4. (a) Image of skin lesion; (b) the bottom right corner of (a) contains

healthy skin only; (c, d) Optical density space of (a, b) respectively.

By substituting Eq.6 into Eq.3, and taking logs, we arrive at
a model for skin pixel log-RGB:

logRk(x,y) =−ρm(x,y)σm(λk)−ρh(x,y)σh(λk)

+ log(k1I(x,y)ω(x,y))+
[
log(1/λ 5

k )− k2/(λkT )
] (7)

where we have lumped terms σm(λk) = αm(λk)lm(λk), σh(λk) =
αh(λk)lh(λk). For notational convenience, denote uk =
log(1/λ 5

k ), ek =−k2/λk, mk = σm(λk),hk = σh(λk). From eq. 7
it is clear that skin pixels lay on a plane in optical density space:
[− logR1,− logR2,− logR3].

Now let us move forward from [16] by making the novel
observation mentioned above. Consider Fig.4(a) as an example;
we first extracted the left lower corner of the image which con-
tains only healthy skin (Fig.4(b)), and plotted its pixel value dis-
tribution in optical density space. It can be seen from the plot,
Fig.4(d), that the skin colour plane is wide in one direction and
narrow in the other. We can ascertain the importance of one di-
rection against the other by carrying out Principal Component
Analysis (PCA) on logRk: we find that the first-eigenvector com-
ponent dominates. For the illustrated example, the eigenvalues
were [0.0608,0.0046,0.0005] (the Total Variance Explained by
first component: 0.923). An even more extreme case occurs with
the image containing the lesion: Fig.4(c) illustrates the optical
density space and distribution of image data as a whole. While it



(a) (b)
Figure 5. Examples of our segmentation results. Blue border: expert

segmentation, Red border: our segmentation.

may not be visually obvious, by carrying PCA, eigenvalues indi-
cate that the data is distributed mostly along a vector (rather than
a plane): the eigenvalues are [2.8878,0.0434,0.0057] (the Total
Variance Explained by first component: 0.983).

The same observation persists in almost all cases we have
studied. We conclude, therefore, that the first-eigenvector compo-
nent explains most of the image and in particular contains most of
the information for the lesion. Therefore, by keeping the first prin-
cipal component (PC), we obtain a greyscale image that expresses
the lesion and suppresses the healthy skin surrounding it. This ef-
fect can be seen in Fig.3(a) when compared with Fig.3(b), the L
component of Lab colour space that is usually used as grey-scale
by many researchers. Moreover, our proposed greyscale provides
higher separability between lesion and normal skin. This effect
is illustrated in Fig.3.(c) and (d), where the histogram of our pro-
posed greyscale is compared to histogram of L (of CIE Lab). The
area of the concavity between the two modes of the histogram is
larger for our proposed grey-scale. This has a positive contribu-
tion to segmentation algorithms based on grey-level thresholding,
such as Otsu’s [18], as explained in [4]. It is also worth men-
tioning that the third PC contains mostly the image noise [19] and
removing it may have a positive effect (such as de-noising) for the
other processes further down the processing pipeline.

In brief, we propose: a greyscale image can be created by
carrying out principal component analysis on logRk and using the
first-eigenvector component.

4. Experiments and Results
For automatic segmentation of lesions, we found that using

the greyscale image derived according to § 3.1, and in particular
together with our method to attenuate confounding lighting fac-
tors, would produce results as good as or better than the state of
the art [14, 20] for these dermoscopic images, in a much simpler
algorithm (see figure 5 for a few examples).

Here we simply apply Otsu’s method [18] for selecting a
grey-level threshold. Note that Otsu’s method (and also most
commercially available automated systems) fails in segmenting
low contrast lesions [21]. However our approach achieved very
high Precision and Recall, since we discovered that our proposed
greyscale supresses the skin around the lesion.

We tested our method on a dataset of images taken from [22,
23] and used by Wighton et al. [14]. They presented a modified
random walker (MRW) segmentation where seed points were set
automatically based on a lesion probability map (LPM). The LPM
was created through a supervised learning algorithm using colour
and texture properties.

Table 1 shows results for our method compared to results
in [14]. While our method uses a much simpler algorithm and
does not require learning, it achieves comparable results. It is

Img.Set Method Precision Recall F-score
simple MRW on LPM 0.96 0.95 0.95

Otsu on LPM 0.99 0.86 0.91
Our Method 0.94 0.98 0.96

challenging MRW on LPM 0.83 0.90 0.85
Otsu on LPM 0.88 0.68 0.71
Our Method 0.86 0.89 0.85

whole MRW on LPM 0.87 0.92 0.88
Otsu on LPM 0.91 0.74 0.78
Our Method 0.88 0.92 0.89

Table 1: Comparing our segmentation method to the modified
random walker (MRW) algorithm and Otsu’s thresholding, on
lesion probability map (LPM) [14]. The dataset consists of 100
challenging and 20 easy to segment images. An image is con-
sidered challenging if any of the following conditions is true:
“1) the contrast between the skin and lesion is low, 2) there is
significant occlusion by either oil or hair, 3) the entire lesion is
not visible, 4) the lesion contains variegated colours or 5) the
lesion border is not clearly defined” [14]. Note that our method
consistently produces higher F-measures notwithstanding its
simplicity and speed.

Method Sensitivity Specificity
Our Method 0.92 0.88

Multi–layer tree [20] 0.89 0.90
G-Log/LDA [24] 0.88 0.88
KPP [25] 0.71 0.79
DTEA [26] 0.64 0.99
SRM [27] 0.77 0.95
JSEG [28] 0.678 0.99
FSN [29] 0.81 0.93

Table 2: Comparing our segmentation method to the Multi-
level feature extraction method [20], and the output of six other
methods, reported together in [20]. Note that our method has
highest sensitivity whereas its specificity is comparable to
other methods.

worth mentioning, [14] also applied Otsu’s method on their lesion
probability maps. Their result included in Table 1 under ‘Otsu on
LPM’, with results not nearly as good as ours.

We also compare our results with those in [20]. “They pro-
posed a novel tree structure based representation of the lesion
growth pattern by matching every pixel sub-cluster with a node
in the tree structure” [20]. This multilayer tree is employed to ex-
tract sets of features, which are used then, in a supervised learning
framework, to segment lesions. They compared sensitivity and
specificity of their segmentation results with six other skin lesion
segmentation methods. See table 2 and references therein.

5. Conclusions
Automatic analysis of dermoscopy images is subject to error

due to its difficulty and the subjectivity of visual interpretation.
The development of reliable, effective and feature-preserving pre-
processing methods can improve the overall performance.

We have proposed a new pre-processing scheme; a double
component process which succeeds in: i) Normalizing intensity
falloff, as well as attenuating shading and other confounding fac-
tors from dermoscopy images. ii) Colour-to-greyscale conversion
which is aimed at intensifying the separation between lesion and
healthy skin surrounding it. The new grey-scale also amplifies the



underlying structure of lesion. In the lesion segmentation task,
our pre-processing scheme is shown to improve accuracy of seg-
mentation.

Future work will include examination of the effect of our
proposed grey-scale for feature extraction. We would also like to
investigate the effect and possible application of deriving intrinsic
images using entropy minimization aimed at removing artefacts
such as hair in an image.
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