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Abstract

tential illuminants, or defining the correlated color temgtare,

In this paper, we present a method to estimate ambient illu- related to blackbody radiators, simplifies data processstapi-

minants using no-flash/flash image pairs. Accurate estomatf
the ambient illuminant is useful for imaging applicatioms most
applications, however, this task is difficult because ofcivapli-
cated combination of illuminants, surfaces, and cameraata
teristics during the imaging process. To estimate the sikmai-
nation, a version of the “illuminating illumination” methbsug-
gested by Dicarlo et al. is used. The method introduces camer
flash light into the scene, and the reflected light is usedtimese
the ambient illuminant. The original method needs an exiep s
of estimating the object surface reflectance, using a 3-dsioaal
linear surface model and the knowledge of the spectral mrespo
sivities of camera sensors. Here we consider the problens-of e
timating the ambient illuminant directly, with only flasb/fiash
pairs, without information on surface reflectance and caarssn-
sors. First, the flash image is registered with the no-flashgen
the difference between the two gives a pure-flash image, ias if

lizes computation, and is useful in many applications,ludiig
white balance for photography [1, 2].

Several methods have been developed using various physical
or statistical models. The color-by-correlation methadygested
by Finlayson et al. [1], employs a statistical model to eaterthe
illuminant of a given image by assigning the most likely fifli4
nant. This is accomplished by using a chromaticity gamut rep
resentation for the distribution of surfaces under diffei#umi-
nants, and associating image chromaticities with the nilostyl
reference gamut derived for each of several illuminantsseBa
on this work, Tominaga and Wandell asserted an improved esti
mation by using a scaled version of the red and blue sensor re-
sponses [2]. For single-surface color constancy [3], aiphys
dichromatic model of reflectance has been used. This model in
corporates the body and highlights reflection of a singléaser
and predicts chromaticities of single surfaces to fall glarine.

were taken under flash only. The no-flash and pure-flash imagesT he intersecting point of this chromaticity line with theaRtkian

are represented by a physically-based model of image foomat
which uses assumptions of Lambertian surfaces, Plancights|

locus gives an estimate of the illuminant.
Dicarlo et al. use the camera flash to obtain an additional

and narrowband camera sensors. We argue that first going to aimage for estimating the scene illuminant [4]. The flashilash

“spectrally sharpened” color space, and then projecting thif-

images are combined to produce a pure-flash image for the scen

ference in a log domain of the pure-flash image and the no-flash This pure-flash image together with knowledge of the SPD ef th

image into a geometric-mean chromaticity space, gives ting-c
maticity of the ambient illuminant. We verify that the chatiti-
ties corresponding to illuminants with different temperasfall
along a lineon a plane in the log geometric-mean chromaticity
space. Simply by taking the nearest color temperature atbisg
illuminant line, or classifying into one of potential illunants,
our algorithm arrives at an estimate of the illuminant.

Remarkably, our algorithm is truly practical as it can esti-
mate the color of the ambient light even without any priorwho
edge about surface reflectance, flash light, or camera sen&ot-
periments on real images demonstrate that estimation acgur
can be very good.

Introduction

Estimating the scene illumination from image data is impor-
tant in many applications, including photography, coloagimng
and printing. Many algorithms for this problem have been-sug

flash is then used to estimate the surface reflectance in ¢ine sc
Finally, using the surface reflectance and the no-flash inthge
most likely ambient illuminant can be determined. This apjgh
provides a practical way to estimate ambient illuminanoutih
it has some limitations when applied to real world appliwas:
it requires knowledge of the camera sensor spectral cleisct
tics and flash SPD. Also, estimation of scene surface refleeta
is required for estimating the illuminant, using a lineardebap-
proximation of the surface reflectance. The dimensionalitye
linear model must be chosen to match the number of camera sen-
sors, so a 3-dimensional model is used, for a standard camera
which is usually not sufficient for representing surfacethanat-
ural world. In this paper, we introduce a method that agaésus
the flash/no-flash image pair to estimate the ambient illamtin
but in a different way from the above that allows us to eliréna
all the above requirements.

Here we examine flash/noflash still image pairs. The light

gested. Most can be described as color constancy algotithmsimpinging on a surface point is of course quite different m a

designed to disambiguate surface and illuminant compsnient

image taken under ambient lighting and under a combinatfon o

images. The estimated illuminant can be either in the form of both ambient plus a flash. For clarity, let us refer to the fiinstge

a full spectral power distribution (SPD), or classified todre
of likely illuminant types. Because of the small number oloco
sensor responses, estimating spectral distributionwhihhants is
an underdetermined problem, usually needs physical @ntsr
and can lead to low estimation accuracy. On the other hamd, si
ply classifying the unknown illuminant to be one of severai p

as “Ambient” and the second as “BothA @ndB). If we control
the camera settings, or at least know them, ttr A) should
yield an image as if it were taken under the flash only (assgmin
one adjusts overall pixel magnitudes to compensate for me
settings, as in [5, 6]). This is due to the fact that Biénage
consists of reflected light from the ambient sources plus fiioe



flash. We denote this pure-flash image as “Flagty’ (
Since the unknown ambient illuminant contributes to both
“A” and “B”, it is hard to estimate the ambient illuminant by-d

rectly using the two images. On the other hand, the pure-flash

image “F” sees reflected light from only the flash illuminatio

which is fixed for a given camera. So we should be able to com-

bine F with A, to be able to estimate the ambient light. Here, we
show that a simplified image formation model can greatly aid i
estimating the ambient illuminant ik usingF as a reference il-
luminant image, without any prior knowledge of camera senso

Let us define the following short-hand notations:

K = log(lk10); s = log(S(A)); 5)
wi = log(kiA, %ck); & = —ko/Ak
Taking logarithms, eq. 543 becomes
10gR(x) = Wi+ K (X) +sc(X) + (1/T (x))&x (6)

Here, we have explicitly indicated dependence on 2D pixehio
tion x: wy is a characteristic 3-vector for the camera, asyis
and so does not depend on image location. However, the ifjtens
and shading, encapsulatedkn do depend on location, as does

surface reflectance, and flash. We go over to a log color spacehe surface terrs,. Lighting color is dependent on the correlated

in which the log-difference between “A” and “F” under diféart
ambient illuminants falls along a line within a geometriean
chromaticity plane. This line coincides with the Planckiacus
(the Planckian locus has a linear behavior in the log chrimityat
space). By associating the chromaticity of the differemmage
to the nearest color temperature along the Planckian logiss-
rive at our estimate of the ambient illuminant. Once the ambi
illuminant is recovered, we also carry out a simple whiteahag,
using as a reference white a pre-determined white patctr tinele
ambient illuminant, removing the effects of any automatimera
white balance procedure.

Image Formation

We employ a simple image formation model which assumes

Planckian lighting, Lambertian surfaces, and a narrowlzamd-
era. At a Lambertian surface point, under orthographytilghis
added up into a single effective light, taking into accousthil-

ity factors for each source. Let us recapitulate how linedray-
ior with lighting change results from this image model: Cdes
the RGB colorRformed at a pixel, for illumination with spec-
tral power distributiorE(A) impinging on a surface with surface
spectral reflectance functi@A ). If the three camera sensor sen-
sitivity functions form a se@ (A ), then we have

R = 0 /E()\)S()\)Qk()\)d)\ k=RG,B, (1)

whereo is Lambertian shading — surface normal dotted into il-
lumination direction — along with visibility.

We wish to go to a model that explains the change in im-
ages formed under different lights by a simple diagonal®3ma-
trix. It has been found that this illuminant-change moddbhp
greatly simplifying the image-formation description, iEwnake
the above assumptions [7]. In this case, we shall find thaga lo
difference image for flask and ambien®A images obeys a very
simple form.

If the camera sens@y (A ) is exactly a Dirac delta function

A) =gd(A — Ay), then eq. (1) becomes
Qx( okO( ) q. (1) @

= 0 E(A)S(Ak) 0k -
Now suppose lighting can be approximated by Planck’s law,
in Wien’s approximation [8]:

®)

with constantk; andk,. Temperaturd characterizes the lighting
color andl gives the overall light intensity.

In this approximation, from (2) the RGB col&x, k=1...3,
is simply given by

EA,T) =~ lkd Se 7,

k-
R = 0 1 ksA 5 T S g @)

color temperaturd, which depends on what lighting the surface
point sees and adds up. For the pair of imageand A, bothK
andT are different, e.g., in Figs. 6(b,c).

To eliminate the effect of scene geometry (intensity and
shading ternK), let us now go over to a chromaticity spacéy
dividing each channel by the geometric mean [9R x G x B.

Then we define the geometric-mean chromaticity as

Ck = Rk/3 rlis:lRiy = Rk/RM7 (7)

and log version [9] (wittwi subsumed into the chromaticity)
rk = log(ck) = log(sc/sm) + (& —ew)/T,with

sv = /M3 ysiem = —ko/350 1 A),

Notice that the 3-vector directiofe — ey ) is independent
of the surface— it captures the illumination-change direction.
That is, if we consider a single surface in the scene, fordklan
ian light (or lights such as Daylights which behave as if theye
Planckian), as the illuminant temperatdrehanges, the log chro-
maticity color 3-vector moves along an approximately gtnai
line which is independent of the magnitude and directionhef t
lighting.

To detect the color temperature of the illuminant in an im-
age, i.e. locate the chromaticity of the illuminant along $traight
line, we can remove the surface comporsiix) via a difference
of log chromaticity 2-vectors. Here, we use the fact that the am-
bient imageA and the pure-flash imade have the same surface
reflectance at a pixel, so that if we simply subtractlgimage
F from thelog imageA , the surface component can be removed
and only illuminant remains — we arrive at an estimate of the
illuminant.

Estimating Ambient Illluminant via Ambi-
ent/Flash Image Difference

Now let us investigate how this simple image formation and
log-chromaticity space can aid to estimate the ambiemhithant.

Spectral Sharpening

The simplified model (4) is more closely followed@(A)
approximates a Dirac delta. We form an intermediate colacep
in which the sensors are optimally combined so as to form new
colors that better approximate color change induced byniHu
nant change via a diagonal model, using Spectral Sharpgtdhg
This applies a % 3 transformation matri¥ to the sensors, or di-
rectly to colors, so as to better enforce a diagonal model.

Since we mean to take logs, we need nonnegative colors from
the camera data (with zero values treated specially). Todws
carry out a “spectral sharpening with positivity” transfolcf.

[11, 12]). Using calibration targets under two differemgfhis, we
find Mvia a new optimization [14] consisting of a constrained
form of “database sharpening” [10], but with hard constisin



Log-difference Geometric-Mean Chromaticity
From (6), we notice that a difference image which is formed
by subtractingF from A in log space removes both the camera
termwy as well as the surface tersp(x). Let us form aatio im-
ageby a difference imag®”~F in log space: subtracting eq. (6)
for two i'm'a;gesA andF, we have
D" (x) = logRe(x) — logRE (x)

KA —KF (O] + [TAK) - TR (e O

for the difference between log pixel values under ligland light
F, at pixel indexed byx. Notice that the surface term is en-
tirely removed, leaving a type dafitrinsic illuminationdifference
image which arises from: (i) the intensity difference (witad-
ing/visibility), (ii) a term proportional to the camerajuEndent
lighting-change 3-vectogx. We focus our attention on the illu-
mination temperature only. To remove the intensity diffiee
component, we go over to the geometric log chromaticity spac
according to eq.(8). Notice that eq.(9) is pixel-wise: itulb
be different for each pixel. Here, we assume that the sceme co
tains a single ambient illuminant temperature (for one oesd
sources), so the log-difference chromaticity reduces tonpls
form:

e F =D F- 1/32]3:1D’j*F

= [YTA-1/TF(a&—em);

The above equation explicitly gives the log-differenceteec
as a function of illuminant temperature. For now, we carty al

(10

three components of chromaticity. We note that, in log space

rA-F is orthogonal tas = 1/v/3(1,1,1)". L.e.,r lives on a plane
orthogonal tau.
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Figure 1.  CIE log geometric-mean chromaticity diagram: log-difference
geometric-mean chromaticity of flash/no-flash pairs under 9 Planckian lights
are shown with blue dots.
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Figure 2. SONY DXC930 camera: Log-difference geometric-mean chro-
maticity for Macbeth chart under 8 illuminants.

To characterize the 2D space, we can consider the projec-uses the flash light as a reference. Here, we call this lineefihe

tor P onto the planeP{ has two non-zero eigenvalues, so its
decomposition reads

Pr=1l—-uu" =uUTuU, (11)

whereU is a 2x 3 orthogonal matrixU rotates 3-vectorsinto a
coordinate systenm the plane:

X =Ur, xis2x1. (12)

Straight lines for illuminant changes foare still straight iny,
that is, in the{ x1, X2} plane, we expect to see the log-difference
imagesr®~F with different ambient illuminations falling along a
straight line through the origin. Recall that the vecter— em)

is dependent on camera properties and captures the diregtio
changes of illumination. The scaldy TA—1/TF] locates a color
temperature position on the line. Fig. 1 illustrates a logrgetric-
mean chromaticity diagram for the 1931 CIE color matchingfu
tions, where the dots aligned along a line are the log-diffee
geometric-mean chromaticity for a set of flash/no-flashsp@nd
the triangle isy for for color-matching functions). The image
pairs were synthetically formed using 9 Planckian lightenf
2500K to 14500K with interval 1500K, Macbeth ColorChecker
24 surfaces, simple sensors with single impulse respaiesyi
and a xenon flash.

Note that this color temperature @t the correlated color
temperature of the ambient illuminant, as it correspondgéo
inverse-temperature difference between ambient and figists|
We know that the flash illuminant is fixed for any camera, so¢ tha
the temperature position on the line is fixed and can befer-
ence temperaturdor the ambient illuminant, i.e. the temperature

erence illuminant temperature locughus, we can estimate the
ambient light in an image by classifying it into one of a set of
candidate reference color temperatures. We also carriethisu
log-difference chromaticity procedure for the Sony DXCek§

ital camera, using flash/no-flash color patches createdhsint
cally with Macbeth chart data under illuminants A, C, F2, &mel
Judd daylights. The result is shown in Fig. 2, along with the |
formed by the Planckian data in Fig. 1. This camera has quite
narrowband sensors. There are visibly 8 clusters, eacheaofi th
corresponding to one of 8 illuminants. Among them, illunmitsa
A, C, and the 5 daylights approximately align along the lifie o
Planckian lights (the line is from Fig. 1); fluorescent illurant
F2 is off the Planckian lights line.

Estimating the Ambient lllumination

Fig. 3 illustrates the algorithm flow. First, in the sharpgni
phase, the constrained spectral sharpening process &mperf
and all camera respons&GB are transformed to a sharpened
space. In the training step, using the sharpened cameraifse p
of images of a reflectance database (e.g. the ColorChecker) u
der a set of sample illuminants are taken with flash turned on
and turned off; the flash/no-flash pair is registered and thie-p
flash imagé- is calculated; in log space, the difference log image
log(A) —log(F) projected to the x1, x2} plane in the geometric-
mean chromaticity space, giving each illuminant a refeeeem-
perature along the reference temperature locus. In theatitg
step for a new, test, image pair, we carry out the same prasess
in the training phase, then recover the temperature forrtizent
light along the reference locus.

To assign an illuminant to the test image, we compute the er-



Training images for Test images
different illuminants
} ]
‘ Spectral shargning ‘
! y
‘ Registering flash/noflash ‘

Y - Y
Compute logdifference
geometric chromaticity

for A and F pairs

Classify the test image into one
of known illuminants

Figure 3. Algorithm flow for estimating ambient illuminants
ror between the the log-difference chromaticity of the testge

and each illuminant cluster along the locus. Here, we use Eu-
clidean distance between the mean of the cluster for eachlsam
illuminant and the mean of the log-difference chromaticityhe

test image as an error metric:

2 ) 1/2
Eej _ (Z(Ximeariej) _Ximear(et))2>
i=

wheree| denotes the mean of the cluster for tith illuminant,
andet for the test image. Thus, the color temperature of jtihe
illuminant is chosen if it provides the minimum distance he t
test image.

(13)

Experiments and Results
Spectral Sharpening

Our illuminant estimation algorithm is based on the assump-
tion that camera sensors are quite narrowband. The spsictigd-
ening algorithm leads to a transform mathkik by which sensors
can be optimally combined such that the image formation mode
more accurately applies. Then eatishould give a smaller clus-
ter in plot Fig. 2; i.e. after matrixing the RGB color valudse
log-difference image pixels for each illuminant temperatare
more separate from the image pixels under other illuminants
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Figure 4. Spectral sharpening (a): No sharpening, (b): With sharpening.

Estimating Ambient llluminants

In order to evaluate our algorithm, we first use synthetic im-
age pairs using Sony DXC930 sensors (and Kodak DCS420 pro-
duced equally good results). In the training phase, we ind&de
Munsell color patches with 102 measured light sources [IBg
means of the log-difference chromaticity of these images#&ch
illuminant are plotted in Fig. 5(a). In the test phase, weegen
ate images of the 24 ColorChecker surfaces under the 102 ligh
sources. Fig. 5(b) shows the mean point of the log-diffezenc
chromaticity of the test images for each illuminant. Figc)5(
shows the estimate result: a°45traight line represents a per-
fect estimation of the 102 illuminants. We calculate dis&ain

For cameras like the Sony DXC930 whose sensors are quite(X1, X2) space from each light/Munsell combination to all the

narrowband, the clusters for different illuminants aresidarably
separated so that classifying amongst these illuminantbeac-
curately achieved. However, when we carry out the log-tifiee
chromaticity procedure for images which are taken usingakod
DCS420, which has broader sensors, the image chromatititie
different illuminants are somewhat mixed; this would cieia
lead to a failure in illuminant estimation. After matrixitige sen-
sors with matrixM , the sensor curves are significantly narrower.
Note that in our algorithm, the knowledge of camera sensors i
not needed.

Again we used Macbeth surfaces under 8 illuminants to gen-
erate flash/no-flash pairs using Kodak DCS420 sensor cufhes.
log-difference chromaticity is shown in Fig. 4(a): the gsiffior
each illuminant are not separated enough. This is not sdrpri

light/Macbeths ones, and show which of the 102 lights is best
matched.

The dots correspond to the estimate results: we see most of
the dots fall on or close to perfect, except one point whicoas
ciates the 93th illuminant with the 6th illuminant.

White Balance

Estimating the ambient illuminant can guide color balance
for digital imaging. To further demonstrate the performantthe
algorithm, we conducted experiments for carrying out théavh
balance for real images based on the estimated ambient-llum
nant temperature. A white balance algorithm typically & a
white patch in the image, the chromaticity of which will thiee
the chromaticity of the illuminant. For automatic white date,

ing because broadband sensors make the RGB values more corréhe white patch is usually evaluated as the maximum or agerag

lated. Fig. 4(b) plots the chromaticity after sharpening RGB
values. We see that the effect on separating illuminantsas d
matic: the clusters for the 8 illuminants are much betteassed.

found in each of the three image bands separately. The gaadin
efficients are then obtained by comparing the chosen whithpa
with the values of the three channels of a reference whitee Th
difficulty is that maximum (or average) values of the threkrco
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Figure 5. llluminant estimation. (a): Mean points of log-difference chro-
maticity of 461 Munsell patches for 102 illuminants, (b): Mean points of log-
difference chromaticity of 24 Macbeth patches for 102 illuminants, (c): Esti-

mate result.

bands are not necessarily white in the scene.

This problem can be solved using our illuminant estimate
approach. The key is that once we find an ambient illuminant
temperature for an image, i.e. we actually classify thisnili-
nant into one of the known illuminant clusters along the refe
ence illuminant locus, we can explicitly know which pointthe
cluster corresponds to the white patch of a training ColexRar
image (supposing that we obtained the illuminant clustexs u
ing Macbheth patches). Thus, the white patch in each illuntina
cluster can be taken to be the reference white color for this i
luminant. In the training phase, we simply store the RGB val-
ues of the reference white patch for each known illuminant. |
the testing phase, once we assign an illuminant to the test im
age, the corresponding reference white patch will be usedny
out white balance for the test image, as follow® ,G',B')T =
diag(1/Rw,1/Gw,1/Bw) (R,G,B)T Ry, Gy and By, denote the
RGBvalues of the reference white patch, which should be nor-
malized by the maximum value among the three values.

The advantage of this white balance scheme is that it can
get around the difficulty of evaluating the white patch usintpr
information within the image. Also it obviates computing xira
mum or average color values.

We captured images using a consumer HP618 camera as the
imaging device. We collected image pairs of the 24 patchéseof
ColorChecker target under four lighting conditions: illunant
A, cool white fluorescent (CWF), the daylight D65, and the Tri
phosphor lamp TL84. The sharpened log-difference geometri
mean chromaticities of the images are plotted in Fig. 6(hgne
four clusters corresponding to the four illuminants arevghn
different colors, and each cluster has 24 dots. We then czgptu
a test image pair for a scene with multiple objects undemiitu
nant CWF, in Fig. 6(b,c). For speed and for display, we sathple
the test images at 24 locations, evenly distributed on tleges.
We plot the chromaticities of these 24 sample pixels in Fg),6
marked with a black star. It is obvious that these sampletpoin
mostly overlap with the CWF cluster and so the white patch of
the CWF is used for white balancing the test image.

This camera has four preset white balance settings: Auto,
Daylight, Fluorescent, and Tungsten. In our training arstirig
phases, we manually chose Daylight white balance for botih fla
and no-flash images, so as to effectively eliminate the wiate
ance for our illuminant estimate because the scaling fadimr
the white balance can be removed in the log difference psoces
For comparing our white balance result, we took another anag
for this scene under illuminant CWF using the ‘Auto’ whitd-ba
ance function (Fig. 6(d)). The image contains subjects kvhie
predominantly warm in color, and so the camera mistakesdhis
a color cast induced by a warm light source and creates aigheen
color cast over the image. In contrast, our white balancelties
shown in Fig. 6(e), removes the greenish effect and is cluser
the Fluorescent white balance.

Summary

We have presented a practical approach for estimating am-
bient illuminant in a scene. The method has a number of novel
features. First, it is based on a simple image formation rneaie
obviates using complicated physical constraints on sesfand
knowledge of camera sensors and flash spectra. In our method,
surfaces in the scene need not be known, and informationt abou



the camera and flash is not required. Second, in our method, a
novel reference illuminant temperature locus is proposgtch
specifies the path for changes of illuminant temperatutesan

15

be used to estimate the scene illuminant. Third, based on our
estimate of ambient illuminant, an easy but more accuraigeewh

. S balance scheme can be carried out for automatically balgnci
1 el images.
* Image
0sf References
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(d)

(e)
Figure 6. White balance (HP618 camera). (a): Ambient illuminant estimate
for the test image; (b): no-flash test image; (c): flashed test image; (d): Auto
white balance; (e): Our white balance result based on the correct estimate of

ambient illuminant.
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