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ABSTRACT 

 
Reasoning from image formation, we have shown that there exists a greyscale image – the 

invariant image – that depends only on the reflectances in the scene. Since illumination dependence is 
removed, one aspect of the invariant image is that shadows are effectively removed. Moreover, given 
either a calibration, or clean data with good noise statistics, this invariant is easily found. However, 
we found that the performance was much poorer on ordinary images that include the typical nonlinear 
processing in cameras. The contribution of this paper is that we can find a good invariant 
notwithstanding input image nonlinearities. Our strategy is to follow standard colorimetric procedure 
and convert image RGBs to the appropriate colour space for our method.  We do this by converting 
first to the linear sRGB colour space and then concatenating conversion to XYZ tristimulus values by 
a spectral sharpening transform. We handle a suite of images which were intractable to the original 
method and are now able to find a shadow-free intrinsic reflectance image. 

 
1. INTRODUCTION 

 
The light entering a camera is a result of interaction between scene illumination and object 

surface. If the illuminating light changes in its intensity or colour, so will the RGB values recorded by 
the camera, and as a result unwanted artefacts, e.g. shadows, are introduced into the image. Separating 
such illumination effects from surface reflectance has become a fundamental task in computer vision. 
One approach to this problem is an illumination-invariant method.1,2 In this body of work the goal is 
to effectively eliminate the effect of illumination changes from recorded images. This is achieved by 
deriving a 1-d invariant image, from a 3-band colour image, that is independent of both the colour and 
intensity of the scene illuminant. Since illumination dependence is removed, one aspect of the 
invariant image is that shadows are removed or greatly attenuated.   

To form such an invariant image, current methods usually employ a multi-step procedure. For 
a particular colour camera, a target composed of colour surfaces (or, possibly, just a rather colourful 
scene) is imaged under different lights. The captured RGB values for each pixel are first transformed 
into a 2D band-ratio chromaticity colour space, e.g., {G/R, B/R}, and then logarithms are taken. 
Under the assumption  of approximately Plankcian lighting, the 2-d log-ratio values for the same 
surface across different lighting tend to fall on a straight line. For one camera, all such lines are 
parallel, so that an invariant direction is orthogonal to these lines. The invariant image is thus the 
projection of the log-chromaticity values onto the invariant direction.  

A crucial piece of information is the angle for the invariant direction. The usual strategy1 
requires a preliminary calibration routine, using the camera involved to capture images of a colour 
target under different lights. The calibration step is avoided in a new strategy2 in which we show that 
the invariant direction is that which minimise entropy in the resulting 1-d quantity. 

However, we found that performance was much poorer on ordinary images that include 
typical nonlinear processing in cameras;3 real cameras also have sensors that are far from Dirac delta 
functions. As shown in §4, in that case the log-ratio chromaticity values do not form parallel lines and 
hence some shadows may not completely removed. This motivates this work. To reduce the impact of 
these limitations, we wish to employ a pre-processing procedure which consists of transforming the 
input image to a new one that can be considered as having been taken with a linearised and sharpened 
camera, with the invariant image finding routine carried out in the new colour space. To do so, we 



 

first transform the input image to standard linearised sRGB space. Then we can convert pixel values 
to XYZ using the standard sRGB-to-XYZ conversion. The conversion specifies a gamma of 2.2 and a 
white point of D65 for XYZ colour-matching functions. The resulting XYZ tristimulus values are then 
further sharpened by a sharpening transform. We find that this sharpened sRGB colour space does 
indeed improve the invariant. 

 
2. PRINCIPLE OF INVARIANT IMAGES  

 
Let us begin by summarising previous work1 which showed that the colour constancy problem 

at a single pixel can be solved under the assumptions of Planckian scene illumination, Lambertian 
surfaces, and narrowband camera sensors. At a pixel, if an illuminant with spectral power distribution 
(SPD) )(λE  is incident onto a surface )(λS , then the camera sensor response can be expressed as 
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where )(λkQ  denotes the spectral sensitivity of the kth camera sensor, k = 1,2,3, and σ is a constant 

Lambertian shading factor. To derive the 1-d invariant image, two assumptions must be made: first, 
the camera sensors are Dirac delta functions: )()( kkk qQ λλδλ −= ; second, illumination is restricted 

to be Planckian. With Wien’s approximation, an illuminant SPD can be parameterised by its colour 
temperature T:  
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where 21, cc  are constants and I controls magnitude. Sensor responses then take the form 
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We form band-ratio 2-vector chromaticities, e.g. pkkr ρρ /= , where k = 1,3 and p = 2 (meaning band 

ratios R/G and B/G). This chromaticity operation effectively removes intensity and shading 
information. We then take the log of the chromaticities (denoted with a prime): 

Teessrr pkpkkk /)()/log()log(' −+=≡  

where we define kkkk qScs )(5
1 λλ−=  and kk ce λ/2−= . As temperature changes, the 2-vectors will form 

a straight line in our 2-d log-ratio chromaticity space. The invariant image is formed by projecting 2-
vectors onto the direction orthogonal to the line. The main issue in finding an invariant to illuminant 
thus becomes deciding on direction pk ee − . This is solved either by a calibration routine1 or the 

minimum-entropy method.2 
  
 

3. A SHARPENED SRGB COLOUR SPACE  
  

The invariant image finding technique relies on the notion that camera sensors can be at least 
roughly approximated by narrowband sensors. Of course, this clearly does not hold in most cases.  
Therefore, a study6 was carried out to determine an optimum matrixing scheme for linearly 
transforming camera RGB values to an intermediate, sharpened, colour space in which the 
assumptions of the invariant image algorithm held more accurately. It turned out in that study that a 
straightforward spectral sharpening transform5 was not in fact the optimum linear transform. 

Here, we explore how a standardised sharp colour space might be utilised to replace an 
optimization – i.e., we aim at a standard workflow to transform input RGB values into sharpened ones 
such that finding the invariant image proceeds directly, without any need for calculation of an 
unknown linear transform.  To this end, we begin by making use of the standardised sRGB colour 
space.4 The sRGB (“Standard”) space, developed by Hewlett-Packard and Microsoft, is meant to 
fulfill the role of a default RGB colour space, forming a single recommendation for an intermediate 
linear colour space. The sRGB standard includes an sRGB-to-XYZ conversion matrix M. The first 
step transforms nonlinear sRGB to a linear sRGB colour space, essentially via gamma correction of 



 

input image pixels (but using a linear transform on the portion of values close to zero). The resulting 
linear sRGB is then converted to XYZ with a D65 white point: i.e., XYZ tristimulus values for image 
pixels, under standard illuminant D65. The XYZ D65 colour-matching functions derived from sRGB 
are in fact already quite sharp. However, we show here that making use of a further sharpening 
transform allows the invariant image finding routine to work correctly. 

 Denote the transformation from sRGB to linear sRGB space as a function )(ρS  where ρ  is 
an input RGB triple, and the transform matrix for taking linear sRGB values into XYZ-D65 values as 
M. Hence we capture the transform from the image to XYZ-D65 as:  

)(ρρ SM→  
In order to sharpen the sRGB sensors, we wish to determine a further sharpening transform 

matrix5 T. The so-called “database-sharpening” variant of spectral sharpening usually consists of 
producing matrix M directly from two sets of patch images formed with the camera under two 
different lights, such that the transformed images perform best in regard to diagonal colour constancy; 
i.e., they can be well converted to each other using a diagonal matrix transform. Here, we would 
compute eigenvectors of the least-squares transform from colour patches under one light to colours 
under another light. But in fact we know that what we would like to sharpen are the XYZ colour-
matching functions themselves under D65. Therefore we first form the least-squares transform P from 
XYZ-D65 to XYZ-D50 (or to any other standard light — it does not greatly matter what light the 
XYZ-D65 is converted to), and then diagonalise this: 
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The resulting eigenvector matrix is our desired sharpening transform T. The XYZ colour-matching 
functions under D65 after the sharpening transform have narrower curves.  

Hence we can form a matrix Q via a concatenation of these two matrices: the 33× matrix M 
taking us from linear sRGB colour space to XYZ, and the matrix T that sharpens the XYZ colour-
matching curves: TMQ = . Now we can perform the invariant image finding routine on an input 
image by first matrixing the linearised sRGB values with Q and then operating within that new colour 
space, equivalent to a sharpened sRGB space. 

The procedure for finding an invariant image involves using logarithms of colour ratios. Since 
the log involves a singularity, this may create mathematical problems at small values. To correct this, 
we as well change the previous procedure1 by making use of a generalised logarithm function: 

)1()( /1 −= αα xxg , 
In the limit ∞→α this approaches a log function. This step also improves the resulting, shadow-free 
images. 

    
4. RESULTS 
 

Figure 1 shows output of the invariant image finder, applied to real, nonlinear images. In all 
cases, the shadows are removed quite effectively. To compare, simply using gamma to linearise the 
input colour image and then finding the invariant does not do well for an input image that is indeed 
nonlinear RGB.  But transforming to sRGB and then to sharpened sRGB, and then finding the 
invariant, does indeed do well. 

 
5. CONCLUSION 
 

We have presented a scheme for linearising and sharpening real image data, such that finding 
the invariant has better performance. The method utilises an sRGB colour space for linearising the 
input image points and then transforming to XYZ tristimulus values. To make use of sharper XYZ 
colour-matching curves, a database-sharpening method is used and the sharpening matrix obtained is 
then concatenated with the sRGB-XYZ transform to form a sharpened sRGB colour space. We have 
shown that the results of finding an invariant image benefit greatly from making use of this sharpened 
sRGB transform. 

 



 

          
 

          
 

          
 

            
 

Figure 1 (a): Input; (b): invariant image using gamma linearisation; (c): invariant image using linear sRGB 
colour space; (d): invariant image using sharpened sRGB.     
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