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With huge amounts of multimedia information connected to the global information
network (Internet), efficient and effective image retrieval from large image and video
repositories has become an imminent research issue. This article presents our research
in the C-BIRD (content-based image retrieval in digital-libraries) project. In addition
to the use of common features such as color, texture, shape, and their conjuncts,
and the combined content-based and description-based techniques, it is shown that
(a) color-channel-normalization enables search by illumination invariance, and (b)
feature localization and a three-step matching algorithm (color hypothesis, texture
support, shape verification) facilitate search by object model in image and video
databases. C© 1999 Academic Press

Key Words: color; content-based retrieval; digital library; feature localization; gen-
eralized hough transform; image and video databases; modeling and matching; seg-
mentation; shape; texture.

1. INTRODUCTION

Image and video indexing and retrieval has lately drawn the attention of many researchers
in the computer science community [1–9]. With the advent of the World-Wide Web (WWW),
research in computer vision, artificial intelligence, databases, etc. is taken to a larger scale
to address the problem of information retrieval from large repositories of images. Previous
pattern recognition and image analysis algorithms in the vision and AI fields dealt with
small sets of still images and did not scale. With large collections of images and video
frames, scalability, speed, and efficiency are the essence for the success of an image and
video retrieval system.

There are two main families of image and video indexing and retrieval systems: those
based on the content of the images (content-based) like color, texture, shape, objects, etc., and
those based on the description of the images (description-based) like keywords, size, caption,
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etc. While description-based image retrieval systems are relatively easier to implement and
to design user interface for, they suffer from the same problems as the information retrieval
systems in text databases or Web search engines. It has been demonstrated that search
engines using current methods based on simple keyword matching perform poorly. The
precision1 of these search engines is very low and their recall2 is inadequate. It has been
demonstrated in [10] that any single web search engine provides the user with only 15–42%
of the relevant documents. Furnaset al. [11] show that due to widespread synonymy and
polysemy in natural languages, indexing methods based on the occurrence of single words
do not perform adequately.

Content-based image retrieval systems use visual features to index images. These systems
differ mainly in the way they extract the visual features and index images and the way they
are queried. Some systems are queried by providing an image sample. These systems search
for similar images in the database by comparing the feature vector (or signature) extracted
from the sample with the available feature vectors. The image retrieval system Image
Surfer, provided by Yahoo, for example, is based on this type of search. Other systems
are queried by specifying or sketching image features like color, shape, or texture which
are translated into a feature vector to be matched with the known feature vectors in the
database. QBIC [2] and WebSeek [7], for example, provide both sample-based queries and
the image feature specification queries. WebSeer [12] on the other hand, combines image
descriptions, like keywords, and image content, like specifying the number of faces in an
image, and uses image content to distinguish between photographs and figures. However, the
visual features extracted are very limited. Another major difference between image retrieval
systems is in the domain they index. While Virage [4] indexes solely image databases, using
COIR (content-oriented image retrieval) [13], AMORE (advanced multimedia oriented
retrieval engine) [9] indexes images from the World-Wide Web. Content-based systems
give a relatively satisfactory result with regard to the visual clues; however, their precision
and recall are still not optimized.

Effective strategies for image retrieval will benefit from exploiting both content-based
and description-based retrieval techniques and will combine conjunctions and disjunctions
of image features and descriptions in the queries, as well as providing users with adequate
and efficient user interfaces for both querying and browsing.

We have been developing the C-BIRD (content-based image retrieval in digital-libraries)
system, which combines automatically generated keywords and visual descriptors like
color, texture, shape, and feature localization, to index images and videos in the World-
Wide Web. This paper presents our new results ofSearch by Illumination invariance,
Search by Object Modeland the discussion offeature localizationversus image seg-
mentation.

Swain and Ballard’s work on color object recognition by means of a fast matching of
color histograms [14] began an interest in the use of simple color-based features for image
and video database retrieval. In this method, a database of coarse histograms indexed by
three color values is built up. A very simple and fast histogram matching strategy can
often identify the correct match for a new image, or a near-match, by using an L1 metric
of histogram differences [14]. It was soon realized that, along with confounding factors
such as object pose, noise, occlusion, shadows, clutter, specularities, and pixel saturation,

1 Precision—the ratio of relevant documents to the total number of documents retrieved.
2 Recall—the percentage of relevant documents among all possible relevant documents.
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a major problem arose because of the effect of changing illumination on images of color
objects [15]. After all, it would be quite natural for an object in a database to be presented
as it appears imaged under some other lighting.

Several color object recognition schemes exist that purport to take illumination change
into account in an invariant fashion. In [16] we address the problem of illumination change
by extending the original Swain and Ballard method to include illumination invariance in
a natural and simpler way than heretofore. First, it is argued that a normalization on each
color channel of the images is really all that is required to deal properly with illumination
invariance. Second, with an aim of reducing the dimensionality of the feature space involved,
a full-color (3D) representation is replaced by 2D chromaticity histograms. It is shown
that the essential illumination-invariant color information is maintained across this data
reduction. The normalization step has the effect of undoing a changing-illumination induced
shift in pixel color-space position and in chromaticity space.

Histograms in chromaticity space are indexed by two values and are treated as though
they were images. In order to greatly improve the efficiency in searching large image and
video databases, the chromaticity histogram-images are compressed and then indexed into
a database with a small feature vector based on the compressed histogram. In the current
implementation the chromaticity histogram-image is first reduced by using a wavelet scaling
function. Then, the discrete cosine transform (DCT) is applied, followed with a zonal coding
[17] of the DCT image. This results in an effective low-pass filtering of the chromaticity
histogram. The resulting indexing scheme is very efficient in that it uses a DCT-chromaticity
vector of only 36 values. We have also applied this technique to video segmentation [18].
Since it is much more frequent that illumination changes due to camera motions and object
motions in video, our color-channel-normalization method is shown to clearly outperform
other cut-detection methods that only rely on color histograms.

Most existing techniques for content-based image retrieval rely on global image features
such as color and texture. These global methods are based on simple statistics extracted
from the entire images. They are easy to obtain and to store in a database, and their matching
takes little time. Inevitably, the global methods lack the power of locating specific objects
and identifying their details (size, position, orientation, etc.). Some extensions to the global
method include search by color layout [2], by sketch [6, 9], and by color regions according
to their spatial arrangements [7, 8].

It has long been argued thatsegmentationplays an important role in human vision [19].
Ever since the 1960s and 1970s,image segmentationhas been one of the most persistent
research areas in computer vision. It is hoped that recognition would become much easier
after segmentation. However, it is well known that a good image segmentation is often
impossible to attain. Commonly, images are either “over-segmented” or “under-segmented.”
As Marr [20] pointed out, “the difficulties in trying to formulate what should be recovered
as a region from an image are so great as to amount almost to philosophical problems.”
In [21] it is argued that, like many vision problems, the problem of image segmentation is
“ill-defined.”

Realizing the inadequacy of global features and methods such as the color histogram
(or texture) for content-based image retrieval, more and more researchers have proposed
image segmentation (based on color, texture, and shape) [7, 8, 22] as a main step toward
an effective content-based image retrieval. Apparently, as long as a good segmentation is
obtained, powerful constraints such asspatial relationshipscan be enforced. To overcome
the difficulties in achieving a sound segmentation, heuristics such as size-of-the-region and
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maximum-number-of-regions are naturally developed to avoid over-segmentation; also, mo-
tion in the spatiotemporal domain is exploited to improve image segmentation in video [8].

This paper argues that, despite its popularity, the traditional image segmentation is not
a good image preprocessing tool for the content-based retrieval from image and video
databases. Instead, a new approach offeature localizationis proposed. Based on thelocales
extracted from the feature localization, a three-step algorithm that employs color hypothesis,
texture support, and shape verification is developed. Since the first two steps enable the
estimation of the size, orientation, and location of the object, the use of the generalized
Hough transform (GHT) in the last step becomes very efficient and viable.

In contrast to most existing approaches, our work has the following characteristics:
(a) the use of color-channel-normalization for illuminant-invariant image and video retrieval,
(b) the exploitation of intrinsic and compact feature vectors and the three-step matching
algorithm for search by object model, and (c) the exploration of feature localization in
content-based image and video retrieval.

The remainder of this paper is organized as follows. In Section 2, we describe the
illumination-invariant color indexing technology based on chromaticity of the normalized
images. The discussion of feature localization versus image segmentation is in Section 3.
Section 4 presents the modeling and matching techniques. Section 5 describes the experi-
mental results. Section 6 summarizes our conclusions and future enhancements.

2. ILLUMINATION-INVARIANT COLOR INDEXING

In this section it is shown that a simple color indexing method that is efficient and invariant
under illuminant change can be derived for search by illumination invariance if we store a
representation of a chromaticity histogram for each image that is first normalized, reduced
in size by a wavelet transformation, and then further reduced by going to the frequency
domain and discarding higher-frequency DCT coefficients.

2.1. Chromaticity Histogram of Color-Channel-Normalized Image

Define the chromaticity (r , g) for each pixel by [23]

r = R/(R+ G+ B), g = G/(R+ G+ B). (1)

The chromaticity is the projection of an RGB triple onto the planar triangle joining unit
distance along each of the color axes. It is important to note that, although the definition of
the chromaticity immediately provides some normalization; i.e.,r + g+ b= 1 if b is defined
accordingly, and it provides invariance to the intensity of the light by dividing by the sum
of the three color bands, the usage of chromaticity itself is insufficient for illumination
invariance when the color (chrominance) of the light changes.

A color-channel-normalization method was proposed in [16]. Given an image of size
m× n, each of the RGB channels is treated as a long vector of lengthm · n. It is shown in [16]
that by employing an L2 normalization on each of the three RGB vectors, the effect of any
illumination change is approximately compensated. The color-channel-normalization step
effectively accomplishes illumination invariance. The usage of chromaticity provides two
additional advantages: (a) the color space is reduced from 3D (e.g., RGB, HSV, etc.) to 2D,
hence less computations; (b) the chromaticity value is indeed guaranteed to be in the range
of [0, 1.0]. This helps the formation of a small (well-bounded) 2D histogram space later.
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From the chromaticity image, a chromaticity histogram can be obtained. This histogram
itself is viewed as ahistogram-image; i.e., each bin value is viewed as a pixel value. Some
image compression techniques will then be applied to this histogram image. Note that since
r + g≤ 1, the chromaticity entries must lie below the main diagonal; thus only half of the
pixels in the histogram-image are used.

2.2. Histogram Intersection

In [14], a very useful histogram metric is developed, which we adopt in C-BIRD for
both the usual color histogram matching and the uncompressed chromaticity histogram
matching. Adapting Swain and Ballard’s definition to the present situation, we define the
intersection of chromaticity histogramsHa andHb as

µ ≡
∑
i, j

min{Ha(i, j ), Hb(i, j )}. (2)

Swain and Ballard normalize intersection (or match) values by the number of pixels in
the model histogram; thus, matches are between 0 and 1. Alternatively, one can make the
volume under each histogram equal to unity, effectively making each image have the same
number of pixels and turning the histogram into a probability density. Time for histogram
intersection is proportional to the number of histogram bins, and so it is very fast.

It can be shown that histogram intersection is equivalent to 1 minus an L1 distance, and
so (1−µ) forms a metricδ, with δ= 1−µ= (1/n)

∑ |Ha− Hb|, wheren is the number
of histogram bins. The utility of this metric is that it helps to alleviate the effects of noise
in the following way. Suppose an image has significant noise and it does not occur in
the particular model image chromaticity histogram being compared to, then such noise
values might tend to dominate, in an L2, squared-differences norm. Instead, here, zero
occurrences in the model histogram are counted and such effects do not contribute to the
metric.

Content-based retrieval proceeds by intersecting the chromaticity histogram of an un-
known object with similar histograms precomputed and stored in a database. The highest
value ofµ, or in other words the smallest distance value (1−µ) indicates the database
image that matches best.

2.3. Chromaticity Histogram-Image Compression

Chromaticity histogram matching without compression could be computationally inten-
sive. We would like to recover an accurate approximation of histogram-images without
sacrificing efficiency. As a guiding principle it would also be sensible to maintain a lin-
ear relationship between the histogram-image and its compressed representation. We can
adhere to this principle by applying only linear operations while compressing the histogram-
images. Therefore, here we first apply a linear low-pass filter to both histogram-images,
resulting in new histogramsH andH ′. To best approximate the chromaticity histograms,
the low-pass filtered histogram-images should approximate the original ones as closely as
possible, yet be of lower resolution. The scaling function of bi-orthonormal wavelets, as a
symmetrical low-pass filter, can be exploited to that end. Basically, scaling functions with
more “taps” use polynomials of higher order to approximate the original function (the num-
ber of taps is the number of nonzero coefficients) [24]. Our main concern is to capture the
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most detail but in lower resolution. In [16], a good balance is achieved between efficiency
and precision by using the symmetrical 9-tap filter.

After applying the scaling function several times to the original histogram-images, as-
suming for simplicity square histogram-images with resolution 2n× 2n, the size 16× 16
lower resolution histogram-images are obtained.

Now consider the DCT: if we denote the result ofH transformed via a DCT bŷH then,
since the DCT is linear, we could confidently index on̂H .

Since the lower frequencies in the DCT capture most of the energy of an image, after
applying the DCT we can retain just the lower frequency coefficients for histogram-image
database indexing with fairly good accuracy—a very effective and efficient way of realizing
a further low-pass filtering. By experiment [16] it is found that using only 36 coefficients
worked well, these being those in the first 36 numbers in the upper left corner of the DCT
coefficient matrix.3

Denote byHd 36 values derived from the first 36 DCT coefficients. We index on the L2
distance betweenHd for the model histogram-image and that for the test histogram-image.

Populating the database, then, consists of calculating off-line the 36 valuesHd, viewed
as indices for each model image. For image query, first the 36 values for the query image
are computed, thus obtainingH ′d; then for every model image, the L2 distance [

∑
(H ′d −

Hd)2]1/2 is calculated. The model image minimizing the distance is taken to be a match for
the query image.

Note that in this method only reduced, DCT transformed, quantized histogram-images are
used—no inverse transforms are necessary and the indexing process is carried out entirely
in the compressed domain.

The choice that the reduced resolution of the wavelet chromaticity histogram-images be
16× 16 and that the number of DCT coefficients retained be 36 is made quite empirically.
Detailed analysis and some variation of the choice of the DCT coefficients are provided
in [16].

3. FEATURE LOCALIZATION vs IMAGE SEGMENTATION

3.1. Definition of Region Revisited

Image segmentation is a process to segment an entire image into disjoint regions. A
region consists of a set of pixels that share certain properties, e.g., similar color (or gray-
level intensity) and similar texture. As in [25], ifR is a region,

1. R is connected, iff all pixels in R are connected,4

2. Ri ∩ Rj =φ, i 6= j ,
3. ∪m

k=1Rk= I , the entire image.

Although regions do not have to be connected, most available region-based and/or edge-
based segmentation methods would yield connected regions, and it is error-prone to merge

3 Instead of using a conventional 8× 8 window for the DCT, a 16× 16 window is adopted. As a result, a finer
resolution (twice as high as with 8× 8) in the spatial frequency domain is realized. Since the low-pass filtering
after DCT can only retain a limited number of coefficients for efficiency, the net effect of having a larger (16× 16)
window is that a more detailed parameterized description at the lower end of the spectrum is facilitated. This is
beneficial when very low-resolution wavelet images are used for matching in our method.

4 Either 4-connected or 8-connected. See [25] for more details.



IMAGE AND VIDEO RETRIEVAL 225

some of them into nonconnected regions. In short, the traditional segmentation algorithms
assume (1) regions are mostlyconnected, (2) regions aredisjoint, (3) segmentation is
completein that any pixel will be assigned to some region and the union of all regions is
the entire image.

Such a segmentation algorithm will yield more than a dozen purple regions, one for each
character, for the title of the book shown in Fig. 7A. It will also yield (unexpectedly) many
white regions, since all the white blobs inside the letters “A,” “P,” “R,” “O” will unfortunately
be identified as regions unless some really effective algorithm can identify them as belonging
to a nonconnected region, together with the two white boxes. The above example, albeit
simple and not at all unusual, indicates that the traditional image segmentation does not
yield useful grouping and representation for object recognition.

3.2. Locale for Feature Localization

We argue that a more useful and attainable process is feature localization that will identify
features by their locality and proximity. A new conceptlocaleis hence defined. Locales use
squares of pixels (tiles) instead of pixels as their smallest unit at the image level.

DEFINITION. A localeLx is a local enclosure (or locality) of featurex. Lx has the fol-
lowing descriptors:

• envelopeLx—a set of tiles to represent the locality ofLx.
• geometric parameters—mass M(Lx), centroidC(Lx), eccentricity E(Lx), and shape

parameters for the locale, etc.

A tile is a square area in an image, its size is chosen as 16× 16 pixels in this paper. Tile
is the building-unit for envelopes. A tile is “red” if a sufficient number of pixels (e.g., 10%)
within the tile are red. It follows that a tile can be both “red” and “blue” if some of its pixels
are red and some are blue. While pixel is the building-block for image segmentation, tile
is the building-block for feature localization. Tiles are grouped into an envelope, if they
are geometrically close. The closeness will be measured by eccentricity and distance to be
discussed below.

Figure 1 shows a square image that has 8× 8 tiles, two locales for color red, and one
locale for color blue. The envelopeL1

red in Fig. 1, for example, consists of five tiles.

FIG. 1. An image of 8× 8 tiles and locales for colors red and blue.



226 LI, ZA ÏANE, AND TAUBER

M(Lx) is the number of pixels inLx that actually have featurex, e.g., the number of
pixels that are red.M(Lx) is usually less than the area ofLx, although it could be equal
to it. C(Lx) is simply the centroid of the mass.E(Lx) is a measure of the average distance
from pixels inLx to the centroid; it measures the eccentricity ofLx. Note,M , C, E, etc. are
measured in unit of pixels, not in tiles. This guarantees the granularity. Hence the feature
localization is not merely a low-resolution variation of image segmentation.

The procedure for generating the locales basically usesmerge. First, simple statistics
(M,C, E) is gathered within each tile. Afterwards, a method similar to “pyramid-linking”
[26] is used to merge the tiles into locales. In terms of the parent–child relation, the over-
lapped pyramid is used.

Working bottom-up, all tiles having featurex are linked to their parent and merged intoLx

if the merged locale will haveE(Lx)<τ , whereτ is a threshold normalized againstM(Lx).
Otherwise, they will be linked to two different parents belonging to different envelopesLi

x

andL j
x. During the merge,M(Lx), C(Lx), andE(Lx) are updated accordingly.

From the above definition, it is important to note that in most cases the following are
true:

1. (∃x)Lx is not connected,
2. (∃x)(∃y)Lx ∩Ly 6=φ, x 6= y,
3. ∪xLx 6= I , the entire image.

Namely, (1) pixels inside a locale for some feature are not necessarily connected,
(2) locales are not always disjoint; their envelopes can be overlapped, (3) not all pixels
in an image must be assigned to some locale in the feature localization process.

Locale is not simply a variant of nonconnected region, the main difference between locale
and nonconnected region is illustrated by the above property (2). In the proposed feature
localization, it is the approximate location that is identified, not the precise membership as
which pixel belongs to which region. The difference is not a philosophical one. If indeed only
some simple process is to be applied, e.g., template matching, then the precise membership
of the region is important. In the domain of content-based image retrieval, where a very
large amount of image and video data are processed, such simple and precise matches are
not feasible. Instead, a more heuristic (evidential) process is going to be adopted which
usually involves multiple features and their spatial relationships. For this purpose, it should
be evident that the “blobby” locales are easier to extract and are more appropriate than
regions formed by (connected) pixels.

Property (3) indicates that, unlike the image segmentation, the feature localization is
incomplete. Use color localization as an example, we will likely not be interested in all
colors or all color spots in an image, at least not some tiny noise spots. When only the
locales of the few prominent colors are identified, the union of them is not the whole
image.

3.3. Specifics for Extracting Locales

The tasks involved in extracting locales are (1) image tile generation and (2) enve-
lope growing. The following is a detailed description of the tasks for identifying color
locales.

3.3.1. Image tile generation.Tile size was chosen to be 16× 16, because it is large
enough to generate meaningful statistics for the underlying features, but also small enough
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to guarantee the granularity.5 The choice of the tile size will, of course, be dependent on the
image resolution. If a lower resolution image is chosen, the tile size can readily be reduced
to, e.g. 8× 8.

Color pixels in a tile are classified as ofdominant coloror transitional color. The tran-
sitional color often occurs between two color regions, simply because of the smooth color
transition in the sensory data. It could also be due to the anti-aliasing effect or noise.

The dominant color is identified by comparing the intensity value of the current pixel to
its eight immediate neighbors. The criterion is that it is not on a slope of rising/declining
intensity values (with a chosen threshold 10).

While identifying dominant pixels, their geometric data are also gathered in the same
pass. At this initial stage, each tile is considered as a locale:

• M(L f )= count of the pixels having feature f.

• C(L f )=
∑M(L f )

i=1 P/M(L f ), whereP is the point coordinate.

• E(L f ) =
∑M(L f )

i=1 ((Px − Cx(L f ))2 + (Py−Cy(L f ))2)/M(L f )=
∑M(L f )

i=1 (P2
x + P2

y )/
M(L f )−Cx(L f )2−Cy(L f )2, whereCx,Cy, Px, Py are thex andy coordinates forC and
P, respectively.

As shown above, the intermediate data generated is just
∑M(L f )

i=1 (P2
x + P2

y ) which can be
calculated efficiently in a progressive manner.

Dominant colors and associated geometric statistics are added to a tile color list. Dominant
pixel geometry data is added to the first element with color similar to it in the color list, and
a weighted color average is performed on the list element to obtain a better color definition.
If no element with similar color exists, then a new element is created in the list for that
pixel containing only its color and geometry information. Similar colors are contained in
the same volume set of a 32× 32× 32 box in a 256× 256× 256 RGB space.

After all the dominant colors have been added to the color list, the list is sorted byM(L f )
in descending order, so that transitional colors have a chance to match first to the most
frequent dominant color.

Next, the pixels with transitional colors are being added to the tile color list. We compare
every transitional pixeli against its neighborhood of 5× 5 pixels. If any of the neighbors
have dominant colors then the neighbor pixel chosen is that which has a color of minimum
Euclidean distance in RGB space from pixeli . The geometry statistics of pixeli are added
to the color list element with the closest color to the chosen pixel, but the color information
of pixel i is ignored, rather than being averaged with the list element color. If none of the
neighbors of pixeli has dominant colors then the pixeli will be added to a transitional
color list.

Finally, both color lists are checked for elements with color similar to other elements in
the same list, which is possible because, after performing the color averaging, the color can
gradually change to be similar to other colors in the list. All similar elements are merged
together. However, there cannot be any similar elements between the two lists, so to merge
the two color lists we only need to append the transition colors list to the end of the dominant
colors list.

5 The size 16× 16 happens to be the size of the macroblocks for the MPEG motion vectors. Although not
addressed in this paper, this has been proven convenient in our current work when motion parameters are brought
in consideration for retrieving the MPEG videos.
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3.3.2. Envelope growing.Generating locales (or final envelopes) requires the use of a
dynamic pyramid linking procedure. A 4× 4 overlapped pyramid structure [26] is used,
and parent nodes compete for links to child nodes in a fair competition.

The tile list for the image is considered as an enumeration of the pyramid child nodes,
each containing a color list with associated geometry and envelope information. To obtain a
fully linked pyramid and, therefore, a final color list for the single top-most parent node—
which is a locales list, we apply a linking procedure iteratively until we reach the level with
only one node.

PROCEDURE. Envelope Growing by Pyramidal Linking.

begin
Initial Linking Step:
/* (Use 2× 2 nonoverlapped pyramid in which each child has only one parent */

For each child node
For eache∈ {color list elements of the child node}

For each similar color elementpeof the parent node
C= the eccentricity of mergede andpe
If C<τ (a pyramid level dependent threshold)

Merge the color and geometry statistics ofe into pe;
Make a parent–child link betweene andpe;
/* One link only for eache at this initial stage. */
Break (from the lastFor loop);

If e is not linked
Create a new nodepe in the parent’s color list;
Make a link between the child and the parent.

Link Updating Step:
/* Use 4× 4 overlapped pyramid in which each child has four parents */

Repeat until child-parent links do not change anymore
For each child node

For eache∈ {color list elements of the child node}
Find all similar color elementspe’s from 4 parent nodes;
If merging with one of thepe’s yields a more compact locale
than the currently linkedpe

Switche’s parent to the newpeand update the statistics.
Finalization Step:

Merge similar colors and remove empty entries from parent list.
Go up one more level in the pyramid and repeat the above.

end

During each iteration in the link updating step, the parent list nodes must remain constant,
so that the linking procedure is consistent in each iteration. Updating the geometry statistics
is done on an additional tentative parent list, and after the iteration the parent list is updated.

Obviously, merging criteria are needed so that the linking procedure will produce good
spatial envelopes and terminate. We observe that if there is a closer choice in terms of actual
pixel distance between two color list elements’ centroids, it is visually and conceptually
more likely to be a part of the same feature of the image. Thus, the criterion is compactness,
and the competition is for the closest parent with similar features to a child. That would also
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guarantee termination of the linking procedure, since the overall distance of all the nodes
keeps getting smaller in at least pixel-size steps. It is possible that a closer parent would
actually create a more disperse envelope than features are likely to exhibit, so we require that
the normalized eccentricity be less than a threshold. The eccentricity is normalized by the
shape and mass (M) of the color element. We analyze two extreme cases of acceptable shapes
and mass in order to obtain an estimate of the magnitude of the normalized eccentricity.

If the shape is a circular disk of radiusr0 then

E =
r0∑

r=0

2πr × r 2

πr 2
0

= 1

2
(r0+ 1)2 = M

2π
+
√

M

π
+ 1

2
. (3)

The normalized eccentricity is therefore approximately (1/M)E.
If the shape is a bar-like region of width 2x0+ 1 and height 1,

E =
x0∑

x=0

2× x2

2x0+ 1
= 1

3
(x0+ 1)x0 = M2− 1

12
. (4)

The normalized eccentricity is therefore approximately (1/M2)E.
As derived, the circular disk’s normalized eccentricity is

Ê(M) = 1

M
E = 1

2π
+
√

1

πM
+ 1

2M
. (5)

We argue that the larger the locale is, the less sensitive it is to noise or holes, and therefore,
it should approach the most compact eccentricity possible, which is that of the circular
disk. So the above equation specifies a threshold that is valid for all locale shapes with
significant mass. Also, since small locales are more sensitive to noise and shape, the above
equation will not apply, so we would like to assign them a higher threshold to allow more
leniency in the merging. UsinĝE(M) as a basis function, we multiply it by another function
G(M) of the form:G(M)= 1+C1e−µ1M . This exponential function has the property that it
approaches 1 whenM is very large; so the product would equal 1/2π . However, whenM is
small, the function exponentially increases the threshold required for a very compact region
based on the locale size. After multiplying, the function that we get is asymptotically, and
characteristically for smallM , equivalent to 1/2π +C2e−µ2M = 1/2π + 1.76e−0.00025M .
The parameters (C, µ) were estimated, based on empirical data.

The merging procedure is simply an adjustment of the envelope and a geometric correc-
tion, which can be done because the intermediate statistics are retrievable from the final
statistics.

Locale extraction for all images in the database is not made at run time but before any
search query is submitted. Locales are essentially used for the search by object model
described in the next section. Locales for a given object model are extracted at run time
when the object is presented by the user.

4. SEARCH BY OBJECT MODEL

This section describes our method for search by object model. Arecognition kernel[27]
is defined as a multiresolution model for each object. Features of an object are extracted at
levels that are most appropriate to yield only the necessary yet sufficient details. Together
they form the kernel. Beside its multiresolution nature, which will not be emphasized in
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this paper, the recognition kernel encompasses intrinsic features such as color, texture, and
shape which are vital for the retrieval of objects. The following two subsections describe
our approaches tomodelingandmatching, respectively, and Section 4.3 provides further
implementation details.

4.1. Color, Texture, and Shape in Object Modeling

1. Color. Colors in a model image are sorted according to their frequency (number of
pixels) in the RGB color histogram. The first few (e.g., five) are calledmost frequent colors
(MFCs). When color is extracted from relatively low resolution images, where only very
few prominent colors are preserved, the MFCs become especially dominant.

Locale(s) for each MFC in the object model will be extracted first. Each pair of the
centroids for two of the MFC locales can be connected to produce anMFC vector. The
length of the MFC vectors and the angles between them characterize the color distribution,
size, and orientation of the object. To reduce the total number of MFC vectors, only the
vectors that connect the first MFC centroid to the other MFC centroids are used. Hence, for
k (k≥ 2) MFCs, the total number of MFC vectors isk − 1.

For simplicity, the RGB color model is adopted. It suffices for the purpose of the content-
based retrieval in C-BIRD. Alternatively, some luminance-chrominance color models (e.g.,
YUV, LUV) can be used which would reduce the representational redundancy present in
the RGB model.

2. Texture.As the color histogram can be defined in a 3D space (RGB, LUV, etc.), texture
histogram can also be defined in a 3D or 2D space. Two of the Tamura texture measures are
coarsenessanddirectionality[28]. Recent studies [29, 30] also suggest that they are among
the few most effective perceptual dimensions in discriminating texture patterns.

In our edge-based approach, the directionality is simply measured by the gradient direc-
tion φ of the edge pixels. It is especially useful in handling rotations. When an object is
rotated on a 2D plane (e.g., a book is placed on the desk with a different orientation), all the
edge orientations are simply incremented (or decremented) by aθ . The coarseness can be
characterized byedge separationwhich is measured by the distance of the nearest edge pixel
along the direction ofφ. Apparently, the edge separation is sensitive to the scale/resolution
of the images.

The current C-BIRD implementation uses a 2D texture space which is composed ofS
(edge separation) andφ (directionality). The texture statistics are extracted for each locale;
in other words, they arelocale-based. They are derived from the edge image of the luminance
image Y, whereY= 0.299R+ 0.587G+ 0.114B.

3. Shape.The generalized Hough transform (GHT) [31] is adopted to represent the shape
of the object. Briefly, each edge point in the object model is represented by a vectorr i (ψi , ri )
connecting the edge point to a chosen reference point for the object. Allr i ’s are stored in
an R-table which serves as an object model. The R-table is indexed by the edge orientation
φi of the edge point. At the matching time, each edge point in the database image uses the
R-table to cast its vote to an accumulator array. As a result, a peak will be formed at the
location of the corresponding reference point in the accumulator array if the object indeed
appears in the database image.

The major advantage of the GHT (and its variants) over other shape representations [32]
is its insensitivity to noise and occlusion [33, 34]. It can also be applied hierarchically to
describe the object (or a portion of the object) at multiple resolutions. It is known that the
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discriminative power of the GHT diminishes when the aim is to recognize the object at all
possible scales and orientations, because then the GHT matching will have to be attempted
at numerous itertations and the decision often becomes unattainable. We will hence propose
the following three-step matching algorithm in which the GHT will only be applied after the
first two steps when a certain hypothesis of a possible object size, orientation, and location
is made.

4.2. The Three-step Matching Algorithm

A three-step matching algorithm for searching by object models in image and video
databases is developed, i.e. (1) color hypothesis, (2) texture support, (3) shape verification.
It is generally accepted that color is fairly invariant to scaling and rotation; hence the feature
color is used in the first step of the matching. After color localization, a hypothesis of the exis-
tence of an object at a certain location, size, and orientation can be made. If there is a sufficient
similarity in their texture between the object model and the image at the vicinity of the hy-
pothesized enclosure, then a shape verification procedure based on the GHT will be invoked.

For both color and shape, there is an issue ofsimilarity. It is dealt with effectively using
the MFC vectors and the geometric and texture parameters of the locales. First, if the model
object appears in the image with exactly the same size and orientation, then the massM ,
eccentricityE of each locale, the lengthρi and orientationαi of each MFC vector, and the
anglesβ j between the pairs of the MFC vectors are all identical, whether they are extracted
from the model or from the object in the image. Second, if the object in the image has
a different size and/or orientation, thenM andρi should be scaled according to the size
ratio,αi should be incremented by a rotational angleθ , whereasβ j would remain the same.
Certain tolerance for error is implemented to support the similarity. In summary, we have
the following matching algorithm.

MATCHING ALGORITHM.

begin
/* Image tile generation */
Within each 16× 16 tile of an image

GatherM , C, E for each MFC associated with the object model;
/* Color localization */
Use overlapped pyramid linking to group tiles into localeL’s for each MFC;
/* Color hypothesis */
If (#-of-similar-color-locales≥ 2) and their MFC-vectors
are ‘similar’ to the MFC-vectors in the model

Make hypothesis of size, orientation, and bounding-box of a matching object;
/* Texture support */
For all locales of the hypothesized matching object

if texture measures are consistent with the hypothesized size and orientation
Proceed to check the shape using the GHT;

/* Shape verification */
Within (and at the vicinity of) the hypothesized bounding-box

All edge pixels use R-table of the (rotated/scaled) object model to vote;
If #-of-votes near the reference point exceeds a chosen threshold

Confirm the detection of the object;
end
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4.3. Specifics for Search by Object Model

4.3.1. Locale-based texture measure.Texture statistics is gathered under each
envelope/locale. We use edge detection and separation algorithms on the full-resolution im-
age. No downsampling is applied at this step because texture is very resolution-dependent.
To generate an edge-map we use the Sobel edge operators and a nonmaxima edge suppres-
sion. A global threshold for edge detection applying to the entire image often yields poor
results. In particular, the amount of edges for the object model could be severely affected
by the possibly varying background, which will directly affect the texture measures. In
C-BIRD, edge detection is conducted within individual locales (and their immediately sur-
rounding areas to detect the possible boundary edge pixels of the locales). We threshold the
edge-map using the median of the intensity values of the edge pixels inside each envelope.
Application of the local threshold for each locale improves the consistency of the edge
detection and, hence, the quality of the texture measure.

To generate theS (edge separation) information, for every edge pixel in an envelope we
measure the pixel distance from it along its gradient line to the closest edge pixel inside
the same envelope that has a similar gradient angle within a threshold of 15◦. The distances
from both sides of the pixel (alongφ andφ+ 180◦) are taken into account. If there is no
other edge pixel along the gradient line, then the separation distance is “infinity.” Also, if
the separation is larger than a specified maximum (192 pixels for 640× 480 images), then
S is considered to be “infinity.”

A histogram ofS(edge separation) versusφ (edge gradient angle/directionality) is created
for the texture measure of each locale. The texture histograms is normalized by simply using
percentage values. Initially, the size of the histograms is 193× 180, whereS= 193 refers
to infinity. For efficiency, the histograms are later greatly subsampled. To reduce the impact
of noises and the inevitable deviations between the model and the object in the database,
the texture histograms are also smoothed by applying a Gaussian operator. The resulting
histogram is quantized at 9× 8, whereS axis is divided into eight cells plus the ninth cell
for the infinity, and theφ axis is divided into eight cells.

4.3.2. Estimation of scale and rotation and execution of the GHT.The database images
are screened by considering only the images that have all the locale colors of the model
image. LetM(Lm

MFC1
), M(Lm

MFCi
), M(Ldb

MFC1
), andM(Ldb

MFCi
) denote the mass of the first

and i th MFCs from the model image and the database image, respectively,M FVm
i−1 and

M FVdb
i−1 the (i − 1)th vectors that connect the centroids of these MFC locales. For each

pair of the MFC vectors from the model image and the database images, the following are
checked to determine whether an hypothesis of the existence of an object with a certain

scale and orientation is warranted: If
√

M(Ldb
MFC1

)/M(Lm
MFC1

) = k, then

√
M
(
Ldb

MFCi

)/
M
(
Lm

MFCi

) ≈ k;
∣∣M FVdb

i−1

∣∣/∣∣M FVm
i−1

∣∣ ≈ k;

if α(M FVdb
1 )− α(M FVm

1 ) = θ then

α
(
M FVdb

i−1

)− α(M FVm
i−1

) ≈ θ.
The “≈” symbol allows error tolerance of the above measures. A simple weighted average

error is used to determined whether it passes the threshold for the “color hypothesis” step.
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If successful, then the weighted average scale factork̄ and rotationθ̄ are employed as the
hypothesized scale and rotation factors.

The texture histograms for each pair of the matching locales from the model image and
the database image are compared after the adjustment according tok̄ andθ̄ . Namely, in the
database texture histogram the angle value is incremented byθ̄ , and the separation value is
multiplied by k̄.

As in the color histogram matching (Eq. (2)), the texture histogramsHm
i , andHdb

i (k̄, θ̄ )
are matched byhistogram intersection, i.e., by taking the sum of the minimum of the texture
histograms,

ν ≡
∑

min
{
Hm

i , Hdb
i (k̄, θ̄ )

}
. (6)

If ν > thresholdτ0, then the “color hypothesis” has the “texture support.”
The implementation of the generalized Hough transform (GHT) is fairly straightforward

[31], except

1. the GHT is only performed on a portion of the database image at the location containing
all of the matched locales to save time;

2. the voting for the GHT is only for the single scale and rotationk̄ andθ̄ .

After the GHT voting, the accumulate array is smoothed (i.e., every 5× 5 neighborhood
is averaged) to aid the peak allocation. The maximum value in the accumulate array is then
located. If it exceeds the threshold (50% of total edges in the R-table for the object, adjusted
by k̄), then its location indicates the location of the matched object in the database image.

5. EXPERIMENTAL RESULTS

This section demonstrates some of our preliminary results.

5.1. General Descriptions on System Design

The C-BIRD system has been implemented on both Unix and PC platforms. On the plat-
forms, we used the same search engine and preprocessor written in C++. The user interface
is implemented in Perl and HTML as a Web application using any Web browser, as well as a
java applet. Figure 2 shows the general architecture for C-BIRD implementation. The system
is accessible from http://jupiter.cs.sfu.ca/cbird/cbird.cgi and http://jupiter.cs.sfu.ca/cbird/
java/ (IE 4.0 or Netscape 4.0). The C-BIRD system rests on four major components:

• extraction of images from the WWW (Image Excavator);
• processing of images to extract image features and storing precomputed data in a

database (Pre-Processor);
• querying (User Interface);
• matching query with image features in the database (Search Engine).

The Image Excavator extracts images from an image repository. This repository can be
the WWW space; in such case, the process crawls the Web searching for images, or a set of
still images on disk or CD-ROM. Frames can also be extracted from video streams using
cut-detection algorithms [35, 18, 6] and processed as still images. Once images are extracted
from the repository, they are given as input to the image analyzer (C-BIRD preprocessor)
that extracts visual content features like color and edge characteristics. These visual features,
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FIG. 2. (a) C-BIRD general architecture. (b) Excavator: the Web-crawling process for image extraction.

along with the context feature like image URL, parent URL, keywords, etc., extracted with
the Image Excavator, are stored in a database. The collection of images and the extraction
of image features are processes that are done off-line before queries are submitted. When
a query is submitted, accessing the original data in the image repository is not necessary.
Only the precomputed data stored in the database is used for image feature matching. This
makes C-BIRD more scalable and allows fast query responses for a large number of users
and a huge set of images.

We have implemented several types of searches and any combinations of them in
C-BIRD:

1. search by conjunctions and disjunctions of keywords;
2. search by color histogram: similarity with color histogram in a sample image. Color

can also be specified in percentage within the image or layout in a 1× 1, 2× 2, 4× 4, or
8× 8 grid;
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3. search by texture: texture here is characterized by edge density and orientation; its
layout can also be specified;

4. search by illumination invariance: similarity with color chromaticity using color-
channel-normalized images;

5. search by object model: specification of an object to look for in images.

The left of Fig. 3a shows the user interface using Netscape to browse the image repository
or the image set resulting from a query. While browsing, users can submit a query by image
similarity. The right of Fig. 3a shows a user interface to specify color layout for a given
query. Figure 3b shows an example of an output (images and their associated keywords)
from the Image Excavator after parsing a web page.

The Image Excavator is a web crawler that we built to follow links from web page to
web page in search of images. The text present in each web page is parsed and some
representative keywords are retained and associated to the images found in the web page.
The keyword extraction process uses a semantic network of English words and builds con-
cept hierarchies with the selected words. The process of keyword extraction is explained in
[36, 37].

The database used by C-BIRD contains mainly meta-data extracted by the preprocessor
and the Image Excavator. As explained above, only features collected in this database at
preprocessing time, are used by the search engine for image or image feature matching.
During run time, minimal processing is done. For each image collected, the database contains
some description information, a feature descriptor, and a layout descriptor, as well as a
set of multiresolution subimages (i.e., search windows) feature descriptors. Neither the
original image nor the subimages are directly stored in the database but only their feature
descriptors.

We use our illuminance invariant method to detect cuts in videos and to segment a video
into clips (frame sequences). The starting time and duration of the image sequence are
stored with the meta-data. While the thumbnail is generated from the middle frame of the
clip, color, and texture features are extracted from all frames.

The current test database has over 1300 images. The meta-data is stored in a SQL server
running on a Pentium-II 333-MHz PC with 128 MB of RAM. Search times are in the order
of 0.1 to 2 s, depending upon the type of search, except for the search by object, which may
take up to 10 s.

Figure 4 demonstrates the use of conjunction of different searches, content-based and
description-based. Figure 4a is the top-20 matches of a query based on the color layout
where the top cells were blue (i.e., for blue sky). Figure 4b is the result for a combination
of content-based and description-based query, with “blue sky” specified as for Fig. 4a and
an additional keyword “airplane.” Figure 4c is the result of the query “blue sky and green
grassland” specified with a color layout grid with the top cells blue, the bottom cells green
and a medium edge density.

5.2. Search by Illumination Invariance

The experimental results for search by illumination invariance are very promising.
Figure 5 provides a comparison between the ordinary search by color histogram and our
search by illumination invariance. The image sample selected for both searches is the first
T-shirt image which is taken under a dim bluish light. The entire database is searched and the
first 15 matches (sometimes mismatches) are shown in descending order of their matching
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FIG. 3. (a) C-BIRD Web user interface. (b) Output from the Image Excavator.
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FIG. 4. Conjuction of searches.

scores. As expected, the by-color-histogram method (Fig. 5a) is only capable of turning out
many dark images, of which the third image happens to be a correct match (the same T-shirt
being folded slightly differently and rotated). However, its matching score ranks behind
a book. The result of by-illumination-invariance shown in Fig. 5b is far better. All three
occurrences of the sample T-shirt, the third one under a redish light, are found. Notably, it
also finds many T-shirts under various illuminations. Since the sample T-shirt has basically
two colors (dark stripes on white cloth), the matches are mostly correct in terms of their
chromaticities, albeit unexpected.

Figure 6 depicts some selected frames from a clip of “goldfish” scene in a 3-min video that
contains 22 cuts/clips. Because the camera was chasing the fish, the reflectance changes
significantly. By selecting the threshold very carefully, the color histogram method still
missed one cut and mistakenly added three more cuts (one of them at the third frame in the
goldfish clip shown). As shown in [18] the color histogram is simply not able to satisfy both
the precision and recall in video segmentation. Our illumination invariant method, however,
detects all cuts correctly, using a fixed threshold which works for other test videos as well.

5.3. Search by Object Model

5.3.1. Locale construction.The locale construction algorithm is implemented in the
C-BIRD system. Its threshold parameters are chosen to be optimized for the average object
size, although they also work well for objects up to five times the magnitude scale. The
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FIG. 5. Comparison of two results: (a) result of search by color histogram; (b) result of search by illumination
invariance.

FIG. 11. Result of the three-step matching.
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FIG. 8. The locales generated for the sample image in Fig. 7. Every image shows a different locale which is
composed of the color tiles.

execution speed of the method is fairly fast (less than a second for each 640× 480 image).
In all images tested, most of the locales correctly enveloped features and separated similar
features of different objects from each other or background noise. We present here the
results from each step in the locale construction method, as applied to a sample image.

We first identify the pixels with dominant colors and the colors that the transitional pixels
would merge into. The results are presented in Fig. 7. It is shown that transitional pixels are
changed to the closest dominant color in their neighborhood.

We generate the image tiles array using the dominant colors we identified, and then
generate all the locales for the image. The locales are shown in Fig. 8. Most features are
correctly enveloped.

5.3.2. Result of the three-step matching algorithm.Figures 9 and 10 illustrate an ex-
ample of the three-step matching in search by object model. The “pink book” model is
shown in Fig. 9a. One of the database books is in Fig. 9b, the actual rotation of the book is
55◦, and the actual scale is 1.37. The hypothesized rotationθ̄ is 60◦ and scalēk is 1.44; the
rotation disparity between the two MFC vectors is 20◦, and the scale disparity among the
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FIG. 6. Selected frames of a video clip.

MFCs and MFC vectors is 0.1. The texture measureν values for all three locales exceed
the threshold of 50% (with 100% representing a perfect match). Hence, the third step—shape
verification is carried out.

The GHT matching result is illustrated in Fig. 10. With the hypothesizedθ̄ andk̄, the GHT
matching takes very little time. The brightest spot represents the highest vote count (close
to 70% of the number of edges in the model images) and it corresponds to the reference
point of the pink book. The (relatively) bright stripes also indicate high vote counts, they are
caused by the many edge pixels along the straight boundaries of the book, and (correctly)
they are not as large as the vote counts at the peak. Figure 10b depicts a regenerated edge
map at the location of the detected book. The result is quite satisfactory despite the slight
errors of the book’s scale and orientation.

FIG. 7. The dominant colors identification algorithm is applied to the sample image shown in A. On the top,
a portion of the image result is amplified for display. A. The original image. B. The image with only dominant
pixels; all other pixels are grey. C. The image with both the dominant pixels and the transitional pixels that assume
a dominant color.
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FIG. 9. Illustration of the MFCs and MFC vectors. (a) The “pink book” model image: the pink locale has
a mass of 21,352 pixels and centroid at (78, 122); the white locale has a mass of 6564 pixels and centroid at
(82, 86); and the purple locale has a mass of 1236 and centroid at (70, 108). (b) One of the database images: the
pink locale has a mass of 40,522 pixels and centroid at (440, 194); the white locale has a mass of 12,644 pixels
and centroid at (394, 172); and the purple locale has a mass of 1992 and centroid at (416, 206).

Figure 11 shows the result for the query “find the above pink book from all images (over
1300) in the database.” As shown, four of the five occurrences of this book with various
sizes, positions and orientations are correctly retrieved. The fifth pink book is hypothesized
at the first two steps and then rejected at the GHT step. It is because the white area next
to the top of the pink book was merged with the white locale of the book, which caused
enough hardship for our current implementation.

We have so far worked with rectangular shaped books as our models. Our three-step
algorithm, however, does not rely on any simple shape such as a rectangle, especially when
the GHT is used for shape matching. In our JAVA interface, users are also able to crop out
any object/pattern in any image and use it as a model to search.

Several content-based image and video retrieval systems use region-based search meth-
ods. For example, QBIC [2] uses rectangular shaped colored regions; Video-Q [8] keeps
the description and spatial relationship of regions, so that user can sketch the trajectory of
moving color regions for the retrieval of certain moving objects. These systems rely heavily
on a good segmentation preprocess and they do not have a systematic means of retrieving
objects. To the best of our knowledge, C-BIRD is the first system that successfully performs
object model search from image and video databases.

6. CONCLUSION AND DISCUSSION

Content-based image and video retrieval is an important issue in the research and devel-
opment of digital libraries which usually employ large multimedia databases. This paper
presented our prototype system C-BIRD for content-based image retrieval from large image
and video databases. Issues in both database design and image content based retrieval are
addressed. Two unique features for C-BIRD, i.e., search by illumination invariance and
search by object model, are discussed in detail.
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FIG. 10. Result of the generalized Hough transform. (a) A gray-level encoded display for the GHT accumulate
array. The brightest spot represents the highest vote count (the peak) and it corresponds to the reference point of
the pink book. (b) A regenerated edge map of the detected book.

First, the simple idea of normalizing color images separately in each band is adopted as
a reasonable approach to color constancy preprocessing in the context of indexing in image
and video database. We transform to a 2D representation by using histograms of chro-
maticity. Viewing these 2D feature space histograms as images, we apply a wavelet-based
image reduction transformation for low-pass filtering, followed by DCT and truncation.
The resulting indexing scheme uses only 36 integers as feature vectors to index into the
image database and, hence, is very efficient. Experiments show good results because of the
illuminant-invariance.

Second, feature localization and a three-step matching algorithm are presented to sup-
port the search by object model. Unlike most existing systems which use only features
(color, texture, sketch, etc.) to retrieve similar images, the modeling and matching methods
described are capable of retrieving a range of different sizes, 2D rotations, and multiple oc-
currences of specified objects in the images. It is shown that, instead of image segmentation,
feature localization should be used as a preprocessing step before matching.

We are currently expanding our database to include more images and videos, especially
to automate the Web-crawling process. The precision and recall of the C-BIRD system



IMAGE AND VIDEO RETRIEVAL 243

from our current database are satisfactory. A more comprehensive analysis on them will be
undertaken with the expanded database. At present, only models of 2D objects are supported.
Further study on 3D modeling and matching will be a major challenge as it has been for
the last few decades to the computer vision research community.
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