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With huge amounts of multimedia information connected to the global information
network (Internet), efficient and effective image retrieval from large image and video
repositories has become animminentresearchissue. This article presents our research
in the C-BIRD (content-based image retrieval in digital-libraries) project. In addition
to the use of common features such as color, texture, shape, and their conjuncts,
and the combined content-based and description-based techniques, it is shown that
(a) color-channel-normalization enables search by illumination invariance, and (b)
feature localization and a three-step matching algorithm (color hypothesis, texture
support, shape verification) facilitate search by object model in image and video
databases. © 1999 Academic Press
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1. INTRODUCTION

Image and video indexing and retrieval has lately drawn the attention of many researc
inthe computer science community [1-9]. With the advent of the World-Wide Web (WWW
research in computer vision, artificial intelligence, databases, etc. is taken to a larger s
to address the problem of information retrieval from large repositories of images. Previ
pattern recognition and image analysis algorithms in the vision and Al fields dealt w
small sets of still images and did not scale. With large collections of images and vic
frames, scalability, speed, and efficiency are the essence for the success of an imag
video retrieval system.

There are two main families of image and video indexing and retrieval systems: th
based onthe content oftheimages (content-based) like color, texture, shape, objects, etc
those based on the description of the images (description-based) like keywords, size, caj
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etc. While description-based image retrieval systems are relatively easier to implement
to design user interface for, they suffer from the same problems as the information retrie
systems in text databases or Web search engines. It has been demonstrated that ¢
engines using current methods based on simple keyword matching perform poorly.
precisiort of these search engines is very low and their rédalinadequate. It has been
demonstrated in [10] that any single web search engine provides the user with only 15—
of the relevant documents. Furnatsal. [11] show that due to widespread synonymy anc
polysemy in natural languages, indexing methods based on the occurrence of single w
do not perform adequately.

Content-based image retrieval systems use visual features to index images. These sy
differ mainly in the way they extract the visual features and index images and the way tl
are queried. Some systems are queried by providing an image sample. These systems ¢
for similar images in the database by comparing the feature vector (or signature) extra
from the sample with the available feature vectors. The image retrieval system Im:
Surfer, provided by Yahoo, for example, is based on this type of search. Other syst
are queried by specifying or sketching image features like color, shape, or texture wt
are translated into a feature vector to be matched with the known feature vectors in
database. QBIC [2] and WebSeek [7], for example, provide both sample-based queries
the image feature specification queries. WebSeer [12] on the other hand, combines in
descriptions, like keywords, and image content, like specifying the number of faces in
image, and uses image contentto distinguish between photographs and figures. Howeve
visual features extracted are very limited. Another major difference between image retrie
systems is in the domain they index. While Virage [4] indexes solely image databases, u:
COIR (content-oriented image retrieval) [13], AMORE (advanced multimedia oriente
retrieval engine) [9] indexes images from the World-Wide Web. Content-based syste
give a relatively satisfactory result with regard to the visual clues; however, their precis
and recall are still not optimized.

Effective strategies for image retrieval will benefit from exploiting both content-base
and description-based retrieval techniques and will combine conjunctions and disjuncti
of image features and descriptions in the queries, as well as providing users with adeg
and efficient user interfaces for both querying and browsing.

We have been developing the C-BIRD (content-based image retrieval in digital-librari
system, which combines automatically generated keywords and visual descriptors
color, texture, shape, and feature localization, to index images and videos in the Wo
Wide Web. This paper presents our new resultsSefrch by Illlumination invariance,
Search by Object Modednd the discussion deature localizationversus image seg-
mentation.

Swain and Ballard’s work on color object recognition by means of a fast matching
color histograms [14] began an interest in the use of simple color-based features for i
and video database retrieval. In this method, a database of coarse histograms indexe
three color values is built up. A very simple and fast histogram matching strategy ¢
often identify the correct match for a new image, or a near-match, by using an L1 me
of histogram differences [14]. It was soon realized that, along with confounding factc
such as object pose, noise, occlusion, shadows, clutter, specularities, and pixel sature

1 Precision—the ratio of relevant documents to the total number of documents retrieved.
2 Recall—the percentage of relevant documents among all possible relevant documents.
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a major problem arose because of the effect of changing illumination on images of cc
objects [15]. After all, it would be quite natural for an object in a database to be presen
as it appears imaged under some other lighting.

Several color object recognition schemes exist that purport to take illumination chal
into account in an invariant fashion. In [16] we address the problem of illumination chan
by extending the original Swain and Ballard method to include illumination invariance
a natural and simpler way than heretofore. First, it is argued that a normalization on e
color channel of the images is really all that is required to deal properly with illuminatic
invariance. Second, with an aim of reducing the dimensionality of the feature space invol
a full-color (3D) representation is replaced by 2D chromaticity histograms. It is shov
that the essential illumination-invariant color information is maintained across this d
reduction. The normalization step has the effect of undoing a changing-illumination indu
shift in pixel color-space position and in chromaticity space.

Histograms in chromaticity space are indexed by two values and are treated as thc
they were images. In order to greatly improve the efficiency in searching large image
video databases, the chromaticity histogram-images are compressed and then indexe
a database with a small feature vector based on the compressed histogram. In the ct
implementation the chromaticity histogram-image is first reduced by using awavelet sca
function. Then, the discrete cosine transform (DCT) is applied, followed with a zonal codi
[17] of the DCT image. This results in an effective low-pass filtering of the chromatici
histogram. The resulting indexing scheme is very efficient in that it uses a DCT-chromatic
vector of only 36 values. We have also applied this technique to video segmentation [.
Since itis much more frequent that illumination changes due to camera motions and ok
motions in video, our color-channel-normalization method is shown to clearly outperfo
other cut-detection methods that only rely on color histograms.

Most existing techniques for content-based image retrieval rely on global image featt
such as color and texture. These global methods are based on simple statistics extr
from the entire images. They are easy to obtain and to store in a database, and their mat
takes little time. Inevitably, the global methods lack the power of locating specific obje
and identifying their details (size, position, orientation, etc.). Some extensions to the glc
method include search by color layout [2], by sketch [6, 9], and by color regions accord
to their spatial arrangements [7, 8].

It has long been argued thsggmentatiomplays an important role in human vision [19].
Ever since the 1960s and 197@vage segmentatiohas been one of the most persisten
research areas in computer vision. It is hoped that recognition would become much e:
after segmentation. However, it is well known that a good image segmentation is of
impossible to attain. Commonly, images are either “over-segmented” or “under-segment
As Marr [20] pointed out, “the difficulties in trying to formulate what should be recovere
as a region from an image are so great as to amount almost to philosophical problel
In [21] it is argued that, like many vision problems, the problem of image segmentatior
“ill-defined.”

Realizing the inadequacy of global features and methods such as the color histog
(or texture) for content-based image retrieval, more and more researchers have pror
image segmentation (based on color, texture, and shape) [7, 8, 22] as a main step to
an effective content-based image retrieval. Apparently, as long as a good segmentati
obtained, powerful constraints suchsgmtial relationshipgan be enforced. To overcome
the difficulties in achieving a sound segmentation, heuristics such as size-of-the-region
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maximum-number-of-regions are naturally developed to avoid over-segmentation; also,
tion in the spatiotemporal domain is exploited to improve image segmentation in video |

This paper argues that, despite its popularity, the traditional image segmentation is
a good image preprocessing tool for the content-based retrieval from image and vi
databases. Instead, a new approadbature localizatiors proposed. Based on tlexales
extracted from the feature localization, a three-step algorithm that employs color hypothe
texture support, and shape verification is developed. Since the first two steps enable
estimation of the size, orientation, and location of the object, the use of the generali
Hough transform (GHT) in the last step becomes very efficient and viable.

In contrast to most existing approaches, our work has the following characteristi
(a)the use of color-channel-normalization for illuminant-invariantimage and video retriev
(b) the exploitation of intrinsic and compact feature vectors and the three-step matct
algorithm for search by object model, and (c) the exploration of feature localization
content-based image and video retrieval.

The remainder of this paper is organized as follows. In Section 2, we describe
illumination-invariant color indexing technology based on chromaticity of the normalize
images. The discussion of feature localization versus image segmentation is in Sectic
Section 4 presents the modeling and matching techniques. Section 5 describes the e
mental results. Section 6 summarizes our conclusions and future enhancements.

2. ILLUMINATION-INVARIANT COLOR INDEXING

In this section itis shown that a simple color indexing method that is efficient and invari
under illuminant change can be derived for search by illumination invariance if we stor
representation of a chromaticity histogram for each image that is first normalized, redu
in size by a wavelet transformation, and then further reduced by going to the freque
domain and discarding higher-frequency DCT coefficients.

2.1. Chromaticity Histogram of Color-Channel-Normalized Image

Define the chromaticityr( g) for each pixel by [23]
r=R/(R+G+B), g=G/(R+G+ B). Q)

The chromaticity is the projection of an RGB triple onto the planar triangle joining un
distance along each of the color axes. It is important to note that, although the definitior
the chromaticity immediately provides some normalization;i.¢.g + b= 1if bis defined
accordingly, and it provides invariance to the intensity of the light by dividing by the su
of the three color bands, the usage of chromaticity itself is insufficient for illuminatic
invariance when the color (chrominance) of the light changes.

A color-channel-normalization method was proposed in [16]. Given an image of si
m x n, each ofthe RGB channels is treated as a long vector of lengthItis shown in [16]
that by employing an L2 normalization on each of the three RGB vectors, the effect of ¢
illumination change is approximately compensated. The color-channel-normalization <
effectively accomplishes illumination invariance. The usage of chromaticity provides t\
additional advantages: (a) the color space is reduced from 3D (e.g., RGB, HSV, etc.) to
hence less computations; (b) the chromaticity value is indeed guaranteed to be in the r.
of [0, 1.0]. This helps the formation of a small (well-bounded) 2D histogram space latel
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From the chromaticity image, a chromaticity histogram can be obtained. This histogr
itself is viewed as &istogram-imaggi.e., each bin value is viewed as a pixel value. Som
image compression techniques will then be applied to this histogram image. Note that s
r +g <1, the chromaticity entries must lie below the main diagonal; thus only half of tf
pixels in the histogram-image are used.

2.2. Histogram Intersection

In [14], a very useful histogram metric is developed, which we adopt in C-BIRD fc
both the usual color histogram matching and the uncompressed chromaticity histog
matching. Adapting Swain and Ballard’s definition to the present situation, we define |
intersection of chromaticity histograni, andH, as

w=y_ min{Ha(, j), H(i, j)}. (2)
i

Swain and Ballard normalize intersection (or match) values by the number of pixels
the model histogram; thus, matches are between 0 and 1. Alternatively, one can mak
volume under each histogram equal to unity, effectively making each image have the s
number of pixels and turning the histogram into a probability density. Time for histogre
intersection is proportional to the number of histogram bins, and so it is very fast.

It can be shown that histogram intersection is equivalent to 1 minus an L1 distance,
so (1— ) forms a metrics, with§ =1— pu=(1/n) }_ |Ha — Hyl, wheren is the number
of histogram bins. The utility of this metric is that it helps to alleviate the effects of noi:
in the following way. Suppose an image has significant noise and it does not occul
the particular model image chromaticity histogram being compared to, then such nc
values might tend to dominate, in an L2, squared-differences norm. Instead, here,
occurrences in the model histogram are counted and such effects do not contribute tc
metric.

Content-based retrieval proceeds by intersecting the chromaticity histogram of an
known object with similar histograms precomputed and stored in a database. The hig
value of u, or in other words the smallest distance value-(1) indicates the database
image that matches best.

2.3. Chromaticity Histogram-Image Compression

Chromaticity histogram matching without compression could be computationally inte
sive. We would like to recover an accurate approximation of histogram-images with
sacrificing efficiency. As a guiding principle it would also be sensible to maintain a li
ear relationship between the histogram-image and its compressed representation. W
adhere to this principle by applying only linear operations while compressing the histogre
images. Therefore, here we first apply a linear low-pass filter to both histogram-imag
resulting in new histogramd andH'. To best approximate the chromaticity histograms
the low-pass filtered histogram-images should approximate the original ones as close
possible, yet be of lower resolution. The scaling function of bi-orthonormal wavelets, a
symmetrical low-pass filter, can be exploited to that end. Basically, scaling functions w
more “taps” use polynomials of higher order to approximate the original function (the nui
ber of taps is the number of nonzero coefficients) [24]. Our main concern is to capture
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most detail but in lower resolution. In [16], a good balance is achieved between efficier
and precision by using the symmetrical 9-tap filter.

After applying the scaling function several times to the original histogram-images, :
suming for simplicity square histogram-images with resolutibrx 2", the size 16< 16
lower resolution histogram-images are obtained.

Now consider the DCT: if we denote the resultibftransformed via a DCT bﬁ then,
since the DCT is linear, we could confidently index iin

Since the lower frequencies in the DCT capture most of the energy of an image, a
applying the DCT we can retain just the lower frequency coefficients for histogram-ima
database indexing with fairly good accuracy—a very effective and efficient way of realizi
a further low-pass filtering. By experiment [16] it is found that using only 36 coefficien
worked well, these being those in the first 36 numbers in the upper left corner of the D
coefficient matrixé

Denote byH 4 36 values derived from the first 36 DCT coefficients. We index on the L
distance betweeH 4 for the model histogram-image and that for the test histogram-imag

Populating the database, then, consists of calculating off-line the 36 vdlyesewed
as indices for each model image. For image query, first the 36 values for the query im
are computed, thus obtainirigy; then for every model image, the L2 distande([Hy —
Hg)?]¥?is calculated. The model image minimizing the distance is taken to be a match
the query image.

Note that in this method only reduced, DCT transformed, quantized histogram-images
used—no inverse transforms are necessary and the indexing process is carried out en
in the compressed domain.

The choice that the reduced resolution of the wavelet chromaticity histogram-images
16 x 16 and that the number of DCT coefficients retained be 36 is made quite empirica
Detailed analysis and some variation of the choice of the DCT coefficients are provic
in [16].

3. FEATURE LOCALIZATION vs IMAGE SEGMENTATION

3.1. Definition of Region Revisited

Image segmentation is a process to segment an entire image into disjoint region:
region consists of a set of pixels that share certain properties, e.g., similar color (or g
level intensity) and similar texture. As in [25], R is a region,

1. Ris connectediff all pixels in R are connected,
2. RNRj=9,i#]j,
3. UiL R«=1, the entire image.

Although regions do not have to be connected, most available region-based and/or e
based segmentation methods would yield connected regions, and it is error-prone to m

3 Instead of using a conventionab88 window for the DCT, a 16« 16 window is adopted. As a result, a finer
resolution (twice as high as with>88) in the spatial frequency domain is realized. Since the low-pass filtering
after DCT can only retain a limited number of coefficients for efficiency, the net effect of having a large . @)6
window is that a more detailed parameterized description at the lower end of the spectrum is facilitated. Th
beneficial when very low-resolution wavelet images are used for matching in our method.

4 Either 4-connected or 8-connected. See [25] for more details.
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some of them into nonconnected regions. In short, the traditional segmentation algorit!
assume (1) regions are mostipnnected (2) regions arelisjoint, (3) segmentation is
completen that any pixel will be assigned to some region and the union of all regions
the entire image.

Such a segmentation algorithm will yield more than a dozen purple regions, one for e
character, for the title of the book shown in Fig. 7A. It will also yield (unexpectedly) mar
white regions, since all the white blobs inside the letters “A,” “P,” “R,” “O” will unfortunately
be identified as regions unless some really effective algorithm can identify them as belon
to a nonconnected region, together with the two white boxes. The above example, a
simple and not at all unusual, indicates that the traditional image segmentation does
yield useful grouping and representation for object recognition.

3.2. Locale for Feature Localization

We argue that a more useful and attainable process is feature localization that will ider
features by their locality and proximity. A new concégtaleis hence defined. Locales use
squares of pixelgifes) instead of pixels as their smallest unit at the image level.

Derinimion. A locale Ly is a local enclosure (or locality) of feature £y has the fol-
lowing descriptors:

e envelopel ,—a set of tiles to represent the locality 6.
e geometric parametersmass MLy), centroid C(Ly), eccentricity ELy), and shape
parameters for the locale, etc.

Atile is a square area in an image, its size is chosen aslipixels in this paper. Tile
is the building-unit for envelopes. Atile is “red” if a sufficient number of pixels (e.g., 10%
within the tile are red. It follows that a tile can be both “red” and “blue” if some of its pixel
are red and some are blue. While pixel is the building-block for image segmentation,
is the building-block for feature localization. Tiles are grouped into an envelope, if th
are geometrically close. The closeness will be measured by eccentricity and distance |
discussed below.

Figure 1 shows a square image that has&tiles, two locales for color red, and one
locale for color blue. The envelopel, in Fig. 1, for example, consists of five tiles.

FIG. 1. Animage of 8x 8 tiles and locales for colors red and blue.
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M(Ly) is the number of pixels iy that actually have featune, e.g., the number of
pixels that are redMI(Ly) is usually less than the area bf, although it could be equal
to it. C(Ly) is simply the centroid of the mass(Ly) is a measure of the average distance
from pixels inLy to the centroid; it measures the eccentricity’gf Note,M, C, E, etc. are
measured in unit of pixels, not in tiles. This guarantees the granularity. Hence the fea
localization is not merely a low-resolution variation of image segmentation.

The procedure for generating the locales basically nsege First, simple statistics
(M, C, E) is gathered within each tile. Afterwards, a method similar to “pyramid-linking’
[26] is used to merge the tiles into locales. In terms of the parent—child relation, the ov
lapped pyramid is used.

Working bottom-up, all tiles having featuxere linked to their parent and merged iftp
if the merged locale will hav& (L) < t, wherer is a threshold normalized againd{(Ly).
Otherwise, they will be linked to two different parents belonging to different envelopes
andLy. During the mergeM (L), C(£Lx), andE(Ly) are updated accordingly.

From the above definition, it is important to note that in most cases the following &
true:

1. (3@x)Ly is not connected

2. @X)EY)LxNLy# P, XF#Y,
3. UxLy # |, the entire image.

Namely, (1) pixels inside a locale for some feature are not necessarily connec
(2) locales are not always disjoint; their envelopes can be overlapped, (3) not all pix
in an image must be assigned to some locale in the feature localization process.

Locale is not simply a variant of nonconnected region, the main difference between loc
and nonconnected region is illustrated by the above property (2). In the proposed fea
localization, it is the approximate location that is identified, not the precise membershir
which pixel belongs to which region. The difference is not a philosophical one. Ifindeed or
some simple process is to be applied, e.g., template matching, then the precise membe
of the region is important. In the domain of content-based image retrieval, where a v
large amount of image and video data are processed, such simple and precise match
not feasible. Instead, a more heuristic (evidential) process is going to be adopted wi
usually involves multiple features and their spatial relationships. For this purpose, it sho
be evident that the “blobby” locales are easier to extract and are more appropriate 1
regions formed by (connected) pixels.

Property (3) indicates that, unlike the image segmentation, the feature localizatior
incomplete. Use color localization as an example, we will likely not be interested in
colors or all color spots in an image, at least not some tiny noise spots. When only
locales of the few prominent colors are identified, the union of them is not the whc
image.

3.3. Specifics for Extracting Locales

The tasks involved in extracting locales are (1) image tile generation and (2) en
lope growing. The following is a detailed description of the tasks for identifying colc
locales.

3.3.1. Image tile generation.Tile size was chosen to be 3616, because it is large
enough to generate meaningful statistics for the underlying features, but also small enc
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to guarantee the granularftyLhe choice of the tile size will, of course, be dependent on th
image resolution. If a lower resolution image is chosen, the tile size can readily be redu
to, e.g. 8x 8.

Color pixels in a tile are classified as @dminant coloror transitional color. The tran-
sitional color often occurs between two color regions, simply because of the smooth c
transition in the sensory data. It could also be due to the anti-aliasing effect or noise.

The dominant color is identified by comparing the intensity value of the current pixel
its eight immediate neighbors. The criterion is that it is not on a slope of rising/declinil
intensity values (with a chosen threshold 10).

While identifying dominant pixels, their geometric data are also gathered in the sa
pass. At this initial stage, each tile is considered as a locale:

e M(L;)=count of the pixels having feature f.

o C(Ly)= Zi“i(f*) P/M(L+), whereP is the point coordinate.

o E(L0)= S0 (P = CuL)P + (Py = Cy(L )/ M(L1) = Xy V(P2 + P2)/
M(L+) — Cx(L1)? — Cy(L+)? whereCy, Cy, Py, Py, are thex andy coordinates fo€ and
P, respectively.

As shown above, the intermediate data generated isﬁuhgf‘)(Pf + Py2) which can be
calculated efficiently in a progressive manner.

Dominant colors and associated geometric statistics are added to a tile color list. Domi
pixel geometry data is added to the first element with color similar to it in the color list, a
a weighted color average is performed on the list element to obtain a better color definit
If no element with similar color exists, then a new element is created in the list for tt
pixel containing only its color and geometry information. Similar colors are contained
the same volume set of a 3232 x 32 box in a 256« 256 x 256 RGB space.

After all the dominant colors have been added to the color list, the list is sortel{ By)
in descending order, so that transitional colors have a chance to match first to the r
frequent dominant color.

Next, the pixels with transitional colors are being added to the tile color list. We compe
every transitional pixel against its neighborhood of:65 pixels. If any of the neighbors
have dominant colors then the neighbor pixel chosen is that which has a color of minim
Euclidean distance in RGB space from pikel'he geometry statistics of pixebre added
to the color list element with the closest color to the chosen pixel, but the color informati
of pixel i is ignored, rather than being averaged with the list element color. If none of t
neighbors of pixel has dominant colors then the pixelill be added to a transitional
color list.

Finally, both color lists are checked for elements with color similar to other elements
the same list, which is possible because, after performing the color averaging, the color
gradually change to be similar to other colors in the list. All similar elements are merg
together. However, there cannot be any similar elements between the two lists, so to m
the two color lists we only need to append the transition colors list to the end of the domin
colors list.

5The size 16« 16 happens to be the size of the macroblocks for the MPEG motion vectors. Although
addressed in this paper, this has been proven convenient in our current work when motion parameters are bi
in consideration for retrieving the MPEG videos.
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3.3.2. Envelope growing.Generating locales (or final envelopes) requires the use of
dynamic pyramid linking procedure. A4 overlapped pyramid structure [26] is used,
and parent nodes compete for links to child nodes in a fair competition.

The tile list for the image is considered as an enumeration of the pyramid child nod
each containing a color list with associated geometry and envelope information. To obta
fully linked pyramid and, therefore, a final color list for the single top-most parent node-
which is alocales list, we apply a linking procedure iteratively until we reach the level wi
only one node.

Procebure  Envelope Growing by Pyramidal Linking.

begin
Initial Linking Step:
/* (Use 2x 2 nonoverlapped pyramid in which each child has only one parent */
For each child node
For eacte € {color list elements of the child nogle
For each similar color elemepte of the parent node
C =the eccentricity of mergedandpe
If C <t (a pyramid level dependent threshold)
Merge the color and geometry statisticsedhto pe
Make a parent—child link betweerandpe
/* One link only for eache at this initial stage. */
Break (from the lasFor loop);
If eis not linked
Create a new nodeein the parent’s color list;
Make a link between the child and the parent.
Link Updating Step:
/* Use 4x 4 overlapped pyramid in which each child has four parents */
Repeat until child-parent links do not change anymore
For each child node
For eacte € {color list elements of the child nogle
Find all similar color elementges from 4 parent nodes;
If merging with one of thee€s yields a more compact locale
than the currently linkege
Switche's parent to the neypeand update the statistics.
Finalization Step:
Merge similar colors and remove empty entries from parent list.
Go up one more level in the pyramid and repeat the above.
end

During each iteration in the link updating step, the parent list nodes must remain const
so that the linking procedure is consistent in each iteration. Updating the geometry statis
is done on an additional tentative parent list, and after the iteration the parent list is upda

Obviously, merging criteria are needed so that the linking procedure will produce go
spatial envelopes and terminate. We observe that if there is a closer choice in terms of a
pixel distance between two color list elements’ centroids, it is visually and conceptus
more likely to be a part of the same feature of the image. Thus, the criterion is compactn
and the competition is for the closest parent with similar features to a child. That would a



IMAGE AND VIDEO RETRIEVAL 229

guarantee termination of the linking procedure, since the overall distance of all the no

keeps getting smaller in at least pixel-size steps. It is possible that a closer parent w

actually create a more disperse envelope than features are likely to exhibit, so we require

the normalized eccentricity be less than a threshold. The eccentricity is normalized by

shape and mas®A) of the color element. We analyze two extreme cases of acceptable sha

and mass in order to obtain an estimate of the magnitude of the normalized eccentricit
If the shape is a circular disk of radiugthen

o 27r xr2 1 M M 1
Z nrd 2(0+ ) 2n+ n+2 (3)

The normalized eccentricity is therefore approximate M E.
If the shape is a bar-like region of widtkx@+ 1 and height 1,

X0 9w x2 1 M2 -1
E=2 1= 300t o= "5 4)

The normalized eccentricity is therefore approximateyMZ) E.
As derived, the circular disk’s normalized eccentricity is

- 1 1 I 1
EM)= —E=—+,/—— 4. 5
M =3E=2 Vam T am ©)

We argue that the larger the locale is, the less sensitive it is to noise or holes, and there
it should approach the most compact eccentricity possible, which is that of the circt
disk. So the above equation specifies a threshold that is valid for all locale shapes
significant mass. Also, since small locales are more sensitive to noise and shape, the ¢
equation will not apply, so we would like to assign them a higher threshold to allow mc
leniency in the merging. Usinﬁ(M) as a basis function, we multiply it by another function
G(M) of the form:G(M) = 1+ C,e*+M, This exponential function has the property that it
approaches 1 wheM is very large; so the product would equéPt . However, wherM is
small, the function exponentially increases the threshold required for a very compact re
based on the locale size. After multiplying, the function that we get is asymptotically, a
characteristically for smalM, equivalent to 127 + Coe #2M =1/27 4 1.76e~00002M
The parameter<], 1) were estimated, based on empirical data.

The merging procedure is simply an adjustment of the envelope and a geometric cor
tion, which can be done because the intermediate statistics are retrievable from the
statistics.

Locale extraction for all images in the database is not made at run time but before
search query is submitted. Locales are essentially used for the search by object m
described in the next section. Locales for a given object model are extracted at run t
when the object is presented by the user.

4. SEARCH BY OBJECT MODEL

This section describes our method for search by object modelcdgnition kerne]27]
is defined as a multiresolution model for each object. Features of an object are extractt
levels that are most appropriate to yield only the necessary yet sufficient details. Toge
they form the kernel. Beside its multiresolution nature, which will not be emphasized



230 LI, ZATANE, AND TAUBER

this paper, the recognition kernel encompasses intrinsic features such as color, texture
shape which are vital for the retrieval of objects. The following two subsections descti
our approaches tmodelingand matching respectively, and Section 4.3 provides further
implementation details.

4.1. Color, Texture, and Shape in Object Modeling

1. Color. Colors in a model image are sorted according to their frequency (number
pixels) in the RGB color histogram. The first few (e.g., five) are cathedt frequent colors
(MFCs). When color is extracted from relatively low resolution images, where only ve
few prominent colors are preserved, the MFCs become especially dominant.

Locale(s) for each MFC in the object model will be extracted first. Each pair of tf
centroids for two of the MFC locales can be connected to produddRD vector The
length of the MFC vectors and the angles between them characterize the color distribu
size, and orientation of the object. To reduce the total number of MFC vectors, only 1
vectors that connect the first MFC centroid to the other MFC centroids are used. Hence
k (k> 2) MFCs, the total number of MFC vectorskis- 1.

For simplicity, the RGB color model is adopted. It suffices for the purpose of the contel
based retrieval in C-BIRD. Alternatively, some luminance-chrominance color models (e
YUV, LUV) can be used which would reduce the representational redundancy presen
the RGB model.

2. Texture As the color histogram can be defined in a 3D space (RGB, LUV, etc.), textu
histogram can also be defined in a 3D or 2D space. Two of the Tamura texture measure
coarsenesanddirectionality[28]. Recent studies [29, 30] also suggest that they are amoil
the few most effective perceptual dimensions in discriminating texture patterns.

In our edge-based approach, the directionality is simply measured by the gradient di
tion ¢ of the edge pixels. It is especially useful in handling rotations. When an object
rotated on a 2D plane (e.g., a book is placed on the desk with a different orientation), all
edge orientations are simply incremented (or decrementedpbylae coarseness can be
characterized bgdge separatiowhich is measured by the distance of the nearest edge pix
along the direction op. Apparently, the edge separation is sensitive to the scale/resoluti
of the images.

The current C-BIRD implementation uses a 2D texture space which is compo&ed c
(edge separation) argd(directionality). The texture statistics are extracted for each local
in otherwords, they alecale-basedThey are derived from the edge image of the luminanc
image Y, whereY =0.299R + 0.587G + 0.114B.

3. ShapeThe generalized Hough transform (GHT) [31] is adopted to represent the she
of the object. Briefly, each edge pointin the object model is represented by anégtor;)
connecting the edge point to a chosen reference point for the objeet/Adlre stored in
an R-table which serves as an object model. The R-table is indexed by the edge orient:
¢; of the edge point. At the matching time, each edge point in the database image use:
R-table to cast its vote to an accumulator array. As a result, a peak will be formed at
location of the corresponding reference point in the accumulator array if the object ind
appears in the database image.

The major advantage of the GHT (and its variants) over other shape representations
is its insensitivity to noise and occlusion [33, 34]. It can also be applied hierarchically
describe the object (or a portion of the object) at multiple resolutions. It is known that t
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discriminative power of the GHT diminishes when the aim is to recognize the object at
possible scales and orientations, because then the GHT matching will have to be atten
at numerous itertations and the decision often becomes unattainable. We will hence pro
the following three-step matching algorithm in which the GHT will only be applied after tf
first two steps when a certain hypothesis of a possible object size, orientation, and loce
is made.

4.2. The Three-step Matching Algorithm

A three-step matching algorithm for searching by object models in image and vid
databases is developed, i.e. (1) color hypothesis, (2) texture support, (3) shape verifice
Itis generally accepted that color is fairly invariant to scaling and rotation; hence the feat
colorisused inthefirst step of the matching. After color localization, a hypothesis of the e
tence of an objectata certainlocation, size, and orientation can be made. Ifthere is a suffi
similarity in their texture between the object model and the image at the vicinity of the I
pothesized enclosure, then a shape verification procedure based on the GHT will be invc

For both color and shape, there is an issusimiilarity. It is dealt with effectively using
the MFC vectors and the geometric and texture parameters of the locales. First, if the m
object appears in the image with exactly the same size and orientation, then thBimas
eccentricityE of each locale, the length and orientationy; of each MFC vector, and the
angless; between the pairs of the MFC vectors are all identical, whether they are extrac
from the model or from the object in the image. Second, if the object in the image |
a different size and/or orientation, thém and p; should be scaled according to the size
ratio,«; should be incremented by a rotational arglevhereag; would remain the same.
Certain tolerance for error is implemented to support the similarity. In summary, we hz
the following matching algorithm.

MATCHING ALGORITHM.

begin
/* Image tile generation */
Within each 16x 16 tile of an image
GatherM, C, E for each MFC associated with the object model;
/* Color localization */
Use overlapped pyramid linking to group tiles into locéle for each MFC;
/* Color hypothesis */
If (#-of-similar-color-locales> 2) and their MFC-vectors
are ‘similar’ to the MFC-vectors in the model
Make hypothesis of size, orientation, and bounding-box of a matching objec
[* Texture support */
For all locales of the hypothesized matching object
if texture measures are consistent with the hypothesized size and orientatio
Proceed to check the shape using the GHT;
/* Shape verification */
Within (and at the vicinity of) the hypothesized bounding-box
All edge pixels use R-table of the (rotated/scaled) object model to vote;
If #-of-votes near the reference point exceeds a chosen threshold
Confirm the detection of the object;
end
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4.3. Specifics for Search by Object Model

4.3.1. Locale-based texture measurgexture statistics is gathered under eact
envelope/locale. We use edge detection and separation algorithms on the full-resolutior
age. No downsampling is applied at this step because texture is very resolution-depen
To generate an edge-map we use the Sobel edge operators and a honmaxima edge su
sion. A global threshold for edge detection applying to the entire image often yields pc
results. In particular, the amount of edges for the object model could be severely affec
by the possibly varying background, which will directly affect the texture measures.
C-BIRD, edge detection is conducted within individual locales (and their immediately st
rounding areas to detect the possible boundary edge pixels of the locales). We threshol
edge-map using the median of the intensity values of the edge pixels inside each enve
Application of the local threshold for each locale improves the consistency of the ec
detection and, hence, the quality of the texture measure.

To generate th& (edge separation) information, for every edge pixel in an envelope v
measure the pixel distance from it along its gradient line to the closest edge pixel ins
the same envelope that has a similar gradient angle within a threshold. dtbdistances
from both sides of the pixel (alongg and¢ + 180°) are taken into account. If there is no
other edge pixel along the gradient line, then the separation distance is “infinity.” Also
the separation is larger than a specified maximum (192 pixels fox68D images), then
Sis considered to be “infinity.”

Ahistogram ofS(edge separation) versgigedge gradient angle/directionality) is created
for the texture measure of each locale. The texture histograms is normalized by simply u:
percentage values. Initially, the size of the histograms isx1980, whereS= 193 refers
to infinity. For efficiency, the histograms are later greatly subsampled. To reduce the img
of noises and the inevitable deviations between the model and the object in the datat
the texture histograms are also smoothed by applying a Gaussian operator. The rest
histogram is quantized at98, whereS axis is divided into eight cells plus the ninth cell
for the infinity, and thep axis is divided into eight cells.

4.3.2. Estimation of scale and rotation and execution of the GH'he database images
are screened by considering only the images that have all the locale colors of the m
image. LetM(Lec,), M(Lhec ), M(Lifkc,), andM(Lif-. ) denote the mass of the first
andith MFCs from the model image and the database image, respectitély;™, and
MFV®, the § — 1)th vectors that connect the centroids of these MFC locales. For ea
pair of the MFC vectors from the model image and the database images, the following
checked to determine whether an hypothesis of the existence of an object with a cel

scale and orientation is warranted\/ﬂ\/l (EMFCl)/M (L¥ec,) =k, then

ML) /M(Eee) ~ i [MEVES]/[MFV™, | ~ K
if «(MFV®) —a(MFV™ = 6 then
a(MFV®) —a(MFV™,) ~ 6.

The “~” symbol allows error tolerance of the above measures. A simple weighted aver:
error is used to determined whether it passes the threshold for the “color hypothesis” s
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If successful, then the weighted average scale factord rotatiory are employed as the
hypothesized scale and rotation factors.

The texture histograms for each pair of the matching locales from the model image
the database image are compared after the adjustment accor@agdéf Namely, in the
database texture histogram the angle value is incrementegang the separation value is
multiplied byk.

As in the color histogram matching (Eq. (2)), the texture histogreifisandH idb(E 9_)
are matched blistogram intersection.e., by taking the sum of the minimum of the texture
histograms,

v=">Y"min{H" H(k, 0)}. (6)

If v > thresholdr, then the “color hypothesis” has the “texture support.”
The implementation of the generalized Hough transform (GHT) is fairly straightforwa
[31], except

1. the GHT isonly performed on a portion of the database image at the location contair
all of the matched locales to save time; _ B
2. the voting for the GHT is only for the single scale and rotak@ndé.

After the GHT voting, the accumulate array is smoothed (i.e., everp Hieighborhood
is averaged) to aid the peak allocation. The maximum value in the accumulate array is 1
located. If it exceeds the threshold (50% of total edges in the R-table for the object, adju:
by IZ) then its location indicates the location of the matched object in the database ima

5. EXPERIMENTAL RESULTS

This section demonstrates some of our preliminary results.

5.1. General Descriptions on System Design

The C-BIRD system has been implemented on both Unix and PC platforms. On the p
forms, we used the same search engine and preprocessor written in C++. The user inte
isimplemented in Perl and HTML as a Web application using any Web browser, as well ¢
java applet. Figure 2 shows the general architecture for C-BIRD implementation. The sys
is accessible from http://jupiter.cs.sfu.ca/chird/chird.cgi and http://jupiter.cs.sfu.ca/chbi
java/ (IE 4.0 or Netscape 4.0). The C-BIRD system rests on four major components:

e extraction of images from the WWW (Image Excavator);

e processing of images to extract image features and storing precomputed data
database (Pre-Processor);

e querying (User Interface);

e matching query with image features in the database (Search Engine).

The Image Excavator extracts images from an image repository. This repository cal
the WWW space; in such case, the process crawls the Web searching for images, or a
still images on disk or CD-ROM. Frames can also be extracted from video streams u
cut-detection algorithms [35, 18, 6] and processed as stillimages. Once images are extr:
from the repository, they are given as input to the image analyzer (C-BIRD preproces:
that extracts visual content features like color and edge characteristics. These visual feat
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FIG. 2. (a) C-BIRD general architecture. (b) Excavator: the Web-crawling process for image extraction.

along with the context feature like image URL, parent URL, keywords, etc., extracted w
the Image Excavator, are stored in a database. The collection of images and the extra
of image features are processes that are done off-line before queries are submitted. \
a query is submitted, accessing the original data in the image repository is not neces:
Only the precomputed data stored in the database is used for image feature matching.
makes C-BIRD more scalable and allows fast query responses for a large number of
and a huge set of images.

We have implemented several types of searches and any combinations of ther
C-BIRD:

1. search by conjunctions and disjunctions of keywords;

2. search by color histogram: similarity with color histogram in a sample image. Col
can also be specified in percentage within the image or layout irn & 2 x 2, 4 x 4, or
8 x 8 grid;
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3. search by texture: texture here is characterized by edge density and orientatior
layout can also be specified,;

4. search by illumination invariance: similarity with color chromaticity using color
channel-normalized images;

5. search by object model: specification of an object to look for in images.

The left of Fig. 3a shows the user interface using Netscape to browse the image repos
or the image set resulting from a query. While browsing, users can submit a query by im
similarity. The right of Fig. 3a shows a user interface to specify color layout for a give
query. Figure 3b shows an example of an output (images and their associated keywc
from the Image Excavator after parsing a web page.

The Image Excavator is a web crawler that we built to follow links from web page
web page in search of images. The text present in each web page is parsed and
representative keywords are retained and associated to the images found in the web
The keyword extraction process uses a semantic network of English words and builds
cept hierarchies with the selected words. The process of keyword extraction is explaine
[36, 37].

The database used by C-BIRD contains mainly meta-data extracted by the preproce
and the Image Excavator. As explained above, only features collected in this databa:
preprocessing time, are used by the search engine for image or image feature matc
During runtime, minimal processing is done. For each image collected, the database con
some description information, a feature descriptor, and a layout descriptor, as well
set of multiresolution subimages (i.e., search windows) feature descriptors. Neither
original image nor the subimages are directly stored in the database but only their fea
descriptors.

We use our illuminance invariant method to detect cuts in videos and to segment a vi
into clips (frame sequences). The starting time and duration of the image sequence
stored with the meta-data. While the thumbnail is generated from the middle frame of
clip, color, and texture features are extracted from all frames.

The current test database has over 1300 images. The meta-data is stored in a SQL ¢
running on a Pentium-Il 333-MHz PC with 128 MB of RAM. Search times are in the ordi
of 0.1to 2 s, depending upon the type of search, except for the search by object, which
take up to 10 s.

Figure 4 demonstrates the use of conjunction of different searches, content-basec
description-based. Figure 4a is the top-20 matches of a query based on the color la
where the top cells were blue (i.e., for blue sky). Figure 4b is the result for a combinat
of content-based and description-based query, with “blue sky” specified as for Fig. 4a
an additional keyword “airplane.” Figure 4c is the result of the query “blue sky and gre
grassland” specified with a color layout grid with the top cells blue, the bottom cells gre
and a medium edge density.

5.2. Search by lllumination Invariance

The experimental results for search by illumination invariance are very promisir
Figure 5 provides a comparison between the ordinary search by color histogram and
search by illumination invariance. The image sample selected for both searches is the
T-shirtimage which is taken under a dim bluish light. The entire database is searched an
first 15 matches (sometimes mismatches) are shown in descending order of their matc
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FIG. 3. (a) C-BIRD Web user interface. (b) Output from the Image Excavator.
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FIG. 4. Conjuction of searches.

scores. As expected, the by-color-histogram method (Fig. 5a) is only capable of turning
many dark images, of which the third image happens to be a correct match (the same T-
being folded slightly differently and rotated). However, its matching score ranks behi
a book. The result of by-illumination-invariance shown in Fig. 5b is far better. All thre
occurrences of the sample T-shirt, the third one under a redish light, are found. Notabl
also finds many T-shirts under various illuminations. Since the sample T-shirt has basic
two colors (dark stripes on white cloth), the matches are mostly correct in terms of tf
chromaticities, albeit unexpected.

Figure 6 depicts some selected frames from a clip of “goldfish” scene in a 3-min video t
contains 22 cuts/clips. Because the camera was chasing the fish, the reflectance ch
significantly. By selecting the threshold very carefully, the color histogram method s
missed one cut and mistakenly added three more cuts (one of them at the third frame i
goldfish clip shown). As shown in [18] the color histogram is simply not able to satisfy bo
the precision and recall in video segmentation. Our illumination invariant method, howe\
detects all cuts correctly, using a fixed threshold which works for other test videos as w

5.3. Search by Object Model

5.3.1. Locale construction.The locale construction algorithm is implemented in the
C-BIRD system. Its threshold parameters are chosen to be optimized for the average o
size, although they also work well for objects up to five times the magnitude scale. T
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FIG.5. Comparison of two results: (a) result of search by color histogram; (b) result of search by illuminati
invariance.
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FIG. 11. Result of the three-step matching.
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FIG. 8. The locales generated for the sample image in Fig. 7. Every image shows a different locale whic
composed of the color tiles.

execution speed of the method is fairly fast (less than a second for each4B®image).
In all images tested, most of the locales correctly enveloped features and separated si
features of different objects from each other or background noise. We present here
results from each step in the locale construction method, as applied to a sample image
We first identify the pixels with dominant colors and the colors that the transitional pixe
would merge into. The results are presented in Fig. 7. It is shown that transitional pixels
changed to the closest dominant color in their neighborhood.
We generate the image tiles array using the dominant colors we identified, and t
generate all the locales for the image. The locales are shown in Fig. 8. Most features
correctly enveloped.

5.3.2. Result of the three-step matching algorithfiigures 9 and 10 illustrate an ex-
ample of the three-step matching in search by object model. The “pink book” model
shown in Fig. 9a. One of the database books is in Fig. 9b, the actual rotation of the boc
55°, and the actual scale is 1.37. The hypothesized rotatier60° and scale is 1.44; the
rotation disparity between the two MFC vectors i$,28nd the scale disparity among the
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FIG. 6. Selected frames of a video clip.

MFCs and MFC vectors is 0.1. The texture measux@lues for all three locales exceed
the threshold of 50% (with 100% representing a perfect match). Hence, the third step—st
verification is carried out.

The GHT matching resultisillustrated in Fig. 10. With the hypothes@_zmutjlz, the GHT
matching takes very little time. The brightest spot represents the highest vote count (c
to 70% of the number of edges in the model images) and it corresponds to the refere
point of the pink book. The (relatively) bright stripes also indicate high vote counts, they ¢
caused by the many edge pixels along the straight boundaries of the book, and (corre
they are not as large as the vote counts at the peak. Figure 10b depicts a regeneratec
map at the location of the detected book. The result is quite satisfactory despite the sl
errors of the book’s scale and orientation.

FIG. 7. The dominant colors identification algorithm is applied to the sample image shown in A. On the tc
a portion of the image result is amplified for display. A. The original image. B. The image with only domina
pixels; all other pixels are grey. C. The image with both the dominant pixels and the transitional pixels that ass
a dominant color.



IMAGE AND VIDEO RETRIEVAL 241

FIG. 9. lllustration of the MFCs and MFC vectors. (a) The “pink book” model image: the pink locale ha
a mass of 21,352 pixels and centroid at (78, 122); the white locale has a mass of 6564 pixels and centrc
(82, 86); and the purple locale has a mass of 1236 and centroid at (70, 108). (b) One of the database image
pink locale has a mass of 40,522 pixels and centroid at (440, 194); the white locale has a mass of 12,644 y
and centroid at (394, 172); and the purple locale has a mass of 1992 and centroid at (416, 206).

Figure 11 shows the result for the query “find the above pink book from all images (o
1300) in the database.” As shown, four of the five occurrences of this book with varic
sizes, positions and orientations are correctly retrieved. The fifth pink book is hypothesi
at the first two steps and then rejected at the GHT step. It is because the white area
to the top of the pink book was merged with the white locale of the book, which caus
enough hardship for our current implementation.

We have so far worked with rectangular shaped books as our models. Our three-
algorithm, however, does not rely on any simple shape such as a rectangle, especially \
the GHT is used for shape matching. In our JAVA interface, users are also able to crop
any object/pattern in any image and use it as a model to search.

Several content-based image and video retrieval systems use region-based search
ods. For example, QBIC [2] uses rectangular shaped colored regions; Video-Q [8] ke
the description and spatial relationship of regions, so that user can sketch the trajecto
moving color regions for the retrieval of certain moving objects. These systems rely hea
on a good segmentation preprocess and they do not have a systematic means of retri
objects. To the best of our knowledge, C-BIRD is the first system that successfully perfol
object model search from image and video databases.

6. CONCLUSION AND DISCUSSION

Content-based image and video retrieval is an important issue in the research and d
opment of digital libraries which usually employ large multimedia databases. This pa|
presented our prototype system C-BIRD for content-based image retrieval from large im
and video databases. Issues in both database design and image content based retrie
addressed. Two unique features for C-BIRD, i.e., search by illumination invariance ¢
search by object model, are discussed in detail.
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FIG.10. Resultofthe generalized Hough transform. (a) A gray-level encoded display for the GHT accumul
array. The brightest spot represents the highest vote count (the peak) and it corresponds to the reference pt
the pink book. (b) A regenerated edge map of the detected book.

First, the simple idea of normalizing color images separately in each band is adoptel
a reasonable approach to color constancy preprocessing in the context of indexing in in
and video database. We transform to a 2D representation by using histograms of c
maticity. Viewing these 2D feature space histograms as images, we apply a wavelet-b
image reduction transformation for low-pass filtering, followed by DCT and truncatio
The resulting indexing scheme uses only 36 integers as feature vectors to index into
image database and, hence, is very efficient. Experiments show good results because
illuminant-invariance.

Second, feature localization and a three-step matching algorithm are presented to
port the search by object model. Unlike most existing systems which use only featu
(color, texture, sketch, etc.) to retrieve similar images, the modeling and matching meth
described are capable of retrieving a range of different sizes, 2D rotations, and multiple
currences of specified objects in the images. It is shown that, instead of image segmente
feature localization should be used as a preprocessing step before matching.

We are currently expanding our database to include more images and videos, espec
to automate the Web-crawling process. The precision and recall of the C-BIRD syst
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from our current database are satisfactory. A more comprehensive analysis on them wi
undertaken with the expanded database. At present, only models of 2D objects are supp
Further study on 3D modeling and matching will be a major challenge as it has been
the last few decades to the computer vision research community.
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