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Abstract—The task of recovering three-dimensional (3-D) ge-
ometry from two-dimensional views of a scene is called 3-D recon-
struction. It is an extremely active research area in computer vi-
sion. There is a large body of 3-D reconstruction algorithms avail-
able in the literature. These algorithms are often designed to pro-
vide different tradeoffs between speed, accuracy, and practicality.
In addition, even the output of various algorithms can be quite dif-
ferent. For example, some algorithms only produce a sparse 3-D
reconstruction while others are able to output a dense reconstruc-
tion. The selection of the appropriate 3-D reconstruction algorithm
relies heavily on the intended application as well as the available
resources. The goal of this paper is to review some of the com-
monly used motion-parallax-based 3-D reconstruction techniques
and make clear the assumptions under which they are designed.
To do so efficiently, we classify the reviewed reconstruction algo-
rithms into two large categories depending on whether a prior cal-
ibration of the camera is required. Under each category, related
algorithms are further grouped according to the common proper-
ties they share.

Index Terms—Camera self calibration, motion parallax, stereo
vision, three-dimensional reconstruction, triangulation.

I. INTRODUCTION

NALYSIS and interpretation of visual information are

at the heart of all computer vision research. The human
visual system perceives the three-dimensional (3-D) world as
retinal images in our eyes through a process called projection.
The availability of both physiological and psychological cues
gives the human visual system the ability to perceive depth.
Some examples of these cues include binocular parallax,
monocular movement parallax, accommodation, convergence,
linear perspective, shades and shadows, and so on [1]. Com-
puter vision researchers exploit these visual cues to design
algorithms to emulate the way our eyes perceive depth. Binoc-
ular parallax is the most important depth cue in our visual
system. It refers to the slightly different images sensed by the
left and right eyes because of their slight difference in location.
The biological visual system combines these two images to
reconstruct a 3-D description of the world that it sees. In a
similar manner, our visual system exploits the monocular
motion parallax by fusing together slightly different images
taken at slightly different locations in the world. Even though
these two cues are physiologically different, we can however
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regard binocular parallax as a special case of monocular motion
parallax from the computational perspective. Therefore, we
will loosely refer to both as motion parallax in this paper.

In this paper, we shall restrict ourselves to motion-par-
allax-based reconstruction algorithms. Even with this restric-
tion, there is still an incredible amount of recent research
results. It is therefore essential for both new comers as well as
veteran researchers to arm themselves with the state-of-the-art
developments. One of the important goals of this paper is to
offer precisely this up to date information to other researchers.
In addition, we believe that a proper classification of the
available algorithms in the literature will not only pave the
way for a systematic study of 3-D reconstruction, but also help
in developing insights into many of the core issues within the
underlying problem.

We will begin this paper by proposing a classification of the
available methods. Then, after a brief review of projective geom-
etry and associated notations used in this paper, we will closely
examine the algorithms within each category. Concluding re-
marks will be given in Section VI.

II. CLASSIFICATION OF RECONSTRUCTION ALGORITHMS

An important step towards emulating the human visual
system is the ability to compute 3-D properties of the world
from two or more two-dimensional (2-D) images. Algo-
rithms that hope to fulfill this purpose need to operate on
the measurements of light in free space. The complete set
of all such measurements is known as the plenoptic function
P(V,,Vy, V., 0,4, A, t), which represents the radiance in space
as a function of viewing position V,,, V,,, and V_, the angles 6
and ¢ in which the light rays pass through the pupil, the wave
length A, and time ¢ [2]. Motion parallax is captured within
the plenoptic function by translating the observer through a
range of viewing positions. Since the information needed for
reconstruction algorithms can all be found within the plenoptic
function, it is natural to wonder whether the plenoptic function
itself is enough to unambiguously describe the 3-D structure
of the scene. This important question is answered by Baker et
al. [3]. They found that this problem is unambiguous if and
only if there is no extended region in the scene that is radiating
a constant intensity, color, and polarization. From here on,
we shall assume the scene is unambiguous in that it does not
contain extended constant intensity regions. Armed with this
knowledge, we can effectively discuss 3-D reconstruction in
the context of unambiguous scenes and develop a meaningful
classification of the available algorithms.

Various algorithms have been proposed to solve the 3-D re-
construction problem. Even though these algorithms may po-
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tentially differ in their initial assumptions and sparsity of input
and output, the ultimate goal they have in common is to produce
a 3-D description of the underlying scene. Because of the vast
amount of algorithms available, it is helpful to group them into
classes and study each class individually. Here, we propose such
a classification shown in Fig. 1.

Accurate camera calibration is vitally important for any 3-D
reconstruction task. Therefore, instead of grouping together al-
gorithms according to the sparsity of their input and output (e.g.,
the reconstruction of extracted image features versus the re-
covery of dense depth maps) or the number of frames they need
to compute the reconstruction, we feel that it is more natural to
place emphasis on the methods in which camera calibration is
obtained in the algorithms.

In our classification, we differentiate between algorithms
that assume a prior calibration of the camera (pre-calibrated)
and those that can obtain the calibration at run time (online
calibrated). This distinction is significant in practical set-
tings as well. For example, when the goal is to obtain a 3-D
model as accurately as possible and we have access to the
camera such that a full calibration of it can be performed, it
is much more beneficial to select one of the pre-calibrated
reconstruction algorithms. However, if we wish to reconstruct
a scene from some previously recorded video sequence, we
would then have to use an online calibrated reconstruction
method. Algorithms within both the pre-calibrated and online
calibrated categories are further divided according to the
common principles in which the algorithms are designed. In
the pre-calibrated case, we have the classes “image-based
algorithms”, “voxel-based algorithms”, and ‘“object-based
algorithms”. The first class “image-based algorithms” contains
algorithms that compute reconstructions from either sparsely
matched image features or dense stereo correspondences. The
algorithms in the class “voxel-based algorithms” are those that
works by discretizing the scene space into a set of voxels. The
“object-based algorithms” use variational principles to deform
an initial set of surfaces toward the objects to be detected and
reconstructed. On the online calibrated side, algorithms are
classified according to how the calibration of the camera is
computed. At present, there are two classes: “scene constraint”
and “geometric constraint”. Algorithms that fall within the
class “scene constraint” are those that take advantage of special
scene structures such as parallel lines within the scene and
compute the vanishing points in each principle direction to

3D Reconstruction

Object Based

Online
Calibrated
) Geometric
Scene Constraint Constraint

determine the cameras’s intrinsic and extrinsic parameters. By
contrast, the algorithms in the second class do not assume any
prior knowledge of scene structure. They estimate the camera
parameters using the projected image of an abstract geometric
object called the absolute conic. Apparently, the five categories
in our classification cover only a majority of the most popular
algorithms. As the need arises, new classes can be defined and
added easily into our classification.

III. REVIEW OF PROJECTIVE GEOMETRY

The use of Euclidean geometry is common place when de-
scribing 3-D entities. The intuitive notion of parallelism, angle
between lines, ratio of lengths, and so on are readily quantified
using Euclidean geometry. However, when considering the
imaging process, Euclidean geometry is inadequate. This is
because the perspective projection process performed by the
camera does not preserve any of the entities mentioned before.
Therefore, we need a more general form of geometry to be able
to describe the image formation process.

Projective geometry includes Euclidean geometry as a special
case. The group of transformations associated with projec-
tive geometry subsumes that of Euclidean geometry which
is completely depicted with rotation and translation. In par-
ticular, it includes the perspective projection. Furthermore,
working within the projective framework often yields much
simpler formulas, reduces the need to handle many special
cases, and most important of all, creates a natural concept
of duality. As an example of projective duality, a 2-D point
with coordinate (a/c,b/c) and a line az + by + ¢ =0 are
both represented as the three vector (a,b,c). Thus, for any
theorems proven for points, there is a corresponding dual
proof for lines. Under projective geometry, the action of a
perspective camera becomes a linear operation.

A. Pinhole Camera Model

A camera is a device that maps points in 3-D space onto a
plane called the image plane. The point X = (X, Y, Z)T in3-D
is mapped to a 2-D point on the image plane where the line from
the point X to the center of projection C intersects the image
plane. Using similar triangles, it is easy to show that the point
X projects to the 2-D point (fX/Z, fY/Z)*, where f is the
focal length of the camera. The line from the camera center per-
pendicular to the image plane is called the principal ray and the
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principal ray intersects the image plane at the principal point.
Using homogeneous coordinates, we can express this projection
operation in matrix form as

X / 0
1Y | = f 0
z 10

X
Y
7 ()
1

If we call the above transformation matrix P, we can write the
above equation in algebraic form as

x = PX. 2)

The above formulation assumes that the camera coordinate
system coincides with the world coordinate system. Generally,
the principal point will be at the location (p.,p,), and the
mapping from a 3-D location (X,Y,Z)T to the 2-D image
plane is

X fY g
(X,Y,2)" — (7 the Tty ) (3)
If we let K be the matrix
f Px
K = I oy “4)
1

then we can rewrite the projection equation as x = K[I|0]X,
and we have P = K][I|0]. The matrix K is called the camera
calibration matrix. Notice that we still have the assumption that
the camera coordinate system coincides with the world coor-
dinate system. To remove this assumption, we need to translate
and rotate the 3-D input point into the camera coordinate system
from the world coordinate system. This is done in the following
equation:

®)

X
R —RC Y

XCB,H] - [ 0 1 } Z
1

where R is the 3 X 3 rotation matrix that rotates the world co-
ordinate system into the camera coordinate system and C is the
three vector representing the position of the camera center in the
world coordinate system. Writing everything algebraically, we
have

x = KR[I| - CJX. (6)

For additional generality, the camera calibration matrix may be
written in the form

ay S T
K= Qy Yo @)
1

where the added parameter s is referred to as the skew of the
camera. The skew parameter is normally O, but it may take on
nonzero values in some unusual circumstances. A nonzero skew

value would imply that the z and y axes of the image plane
are not perpendicular. This is very unlikely to happen in prac-
tice. However, when taking an image of an image or enlarging
an image, the skew parameter of the resulting image can be
nonzero. Equation (7) also handles the case where the camera
produces nonsquare pixels. In that case, we have o, = fm,
and oy = frn,, where m, and n, represent the pixel dimen-
sions in the  and y directions, respectively. In terms of pixels
coordinates, we have g = m,p, and yo = myDp,.

B. Epipolar Geometry

The projective geometry between two views of a scene is
completely described by the epipolar geometry. In other words,
the epipolar geometry is the intrinsic geometry of two views.
It has important applications in stereo matching as it limits the
search for correspondence into a one-dimensional search space.

Consider a point X in 3-D that is imaged in two views. In
the first view, its image is point x, while in the second view, its
image is x’. For a typical stereo matching problem, we have the
point X in one image and wish to find its correspondence x’ in
another image. We observe that both camera centers C and C’,
the points x, x’, and X are coplanar. This plane is the epipolar
plane 7. The line that connects the two camera centers is called
the baseline. The points e and €’ where the baseline intersects
the two views are called epipoles. The lines connecting x, e and
x’, €’ are the epipolar lines. From the definition of perspective
projection, we know that the points C, x, and X are collinear
and that any point on this line between x and X projects as x in
the first image. Therefore, we see that the correspondence of x
must lie on the projection of the line from x to X in the second
image. An illustration of epipolar geometry is shown in Fig. 2.

C. Fundamental Matrix

The fundamental matrix is the algebraic representation of
epipolar geometry. It forms the mapping between a point x in
one image and the epipolar line that contains its correspondence
in the second image. Derivations of the fundamental matrix can
be found in [4] and [5]. Since the dot product of a point and the
line on which it belongs to is zero, we arrive at the epipolar con-
straint

T

x Fx=0 (8)

where F' is the fundamental matrix. Some properties of the fun-
damental matrix include [4] the following.

o If F is the fundamental matrix of the pair of cameras
(P, P"), then F'T is the fundamental matrix for (P’, P).

* For the point x in the first image, its epipolar line is given
by I’ = Fx. Similarly, for x’ in the second image, its
epipolar line is1 = FTx’.

* The epipolar line I’ = F'x contains the epipole €', where
an epipole is the projection of the other camera center onto
the current image plane.

* F satisfies the constraint det(F) = 0, which means that
F is not of full rank.

 F'is a projective map that takes a point to a line. If 1 and I/
are corresponding epipolar lines, then any point on 1 maps
to the same line I’. Thus, there is no inverse mapping.
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The eight-point algorithm can be used to estimate the funda-
mental matrix between two views. With appropriate normaliza-
tion of point coordinates, this simple algorithm is able to yield
very good results [6].

D. Infinite Homography

A plane 7 relates the projection of points on it in one image
with their correspondences in the second image. This is a pro-
jective relationship and we call it the homography between two
views induced by the plane 7. The homography induced by the
plane at infinity is particularly important. We call it the infinite
homography and denote it as H .. The form of the infinite ho-
mography may be derived as a limiting process from the homo-
graphies induced by planes of increasing distance away from
the first camera on a calibrated stereo rig. From the derivation
given in [4], we have

H, =KRK! &)

where K and K’ are the calibration matrices of the first and
second camera respectively, and R is the orientation of the
second camera with respect to the first camera.

By definition, H., maps points on the plane at infinity 7.
Thus, it maps the vanishing points from one image to the other.
As we shall see in Sections IV and V, the infinite homography
is important for online calibrated reconstruction algorithms as it
propagates calibration information from one view to the next.

IV. PRE-CALIBRATED RECONSTRUCTION

Pre-calibrated reconstruction algorithms are those that
require an accurate prior calibration of the cameras. In other
words, both the camera’s intrinsic and extrinsic parameters
need to be computed. One of the most popular camera calibra-
tion technique was developed by Tsai [7]. This method relies
on the availability of a 3-D calibration object with special
markers on it. In addition, it is required that the markers are not
all coplanar. This calibration object provides correspondence
between points on the image and 3-D points in space. A more
practical method was recently proposed by Zhang [8]. This
method only requires the camera to observe a planar pattern
in at least two different orientations. The camera calibration
toolbox [9] is a efficient implementation of calibration al-
gorithms. It can be used both as a stand alone application in
Matlab or as part of the Intel Computer Vision Library [10].
Using the calibration parameters, the projection matrices can be
trivially computed using the expression for P in (6). The block
diagram for calibrated reconstruction algorithms is shown in
Fig. 3.

Because the camera calibration provides metric information
about the scene, the resulting reconstruction is called a metric re-
construction. Because the absolute translation, rotation, and scale
of the world coordinate system is unknown, a metric reconstruc-
tion only estimates the shape up to a similarity transform. These
inherent indeterminacies are called gauge freedoms. Morris et
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al. [11] showed that the selection of the unknown scale factor
can significantly affect the accuracy of the estimated shape
and proposed a way to determine what measurement should
be made to maximize the shape accuracy.

Algorithms belonging to different classes under the calibrated
reconstruction category generally differ in the last step “Deter-
mine 3-D Points”. Each class of algorithms will be discussed in
detail in Sections IV-A-IV-D.

A. Image-Based Reconstruction

Using sparse image features or dense pixel matchings are
both considered image-based methods. Reconstruction of
selected image features or dense matchings between images
follow a very similar path. The only difference is the amount
of data processed. The method used to determine the 3-D point
from pairs of matched image pixels (the last step in Fig. 3) is
usually triangulation. In the absence of noise, triangulation is
trivial. However, with the presence of noise, the triangulation
problem is much more complicated as the back projected rays
from the two images will not generally meet in 3-D space.
We therefore need to find a suitable point of “intersection”.
Because of the known camera calibration, our reconstruction is
metric. Hence the concept of distance and perpendicularity is
clearly defined. Therefore, the simplest method is to estimate
the required 3-D location as the midpoint of the common
perpendicular between the two back projected rays. In addition,
with an assumed Gaussian noise model, a provably optimal
triangulation method is available. From a pair of point corre-
spondences x and x’, this algorithm seeks an alternate pair x
and X’ such that the sum of squared distances to the original
pair of points is minimized subject to the epipolar constraint.
Thus, the optimal points to select are those that lie on a pair of
corresponding epipolar lines closest to the original point corre-
spondence. This pair of epipolar lines, l and I, can be found the
minimizing the distance between them and the original point
correspondence. Furthermore, by parameterizing the pencil of
epipolar lines in the first image by a suitable parameter ¢, this
minimization problem can be reduced to finding the real roots
of a polynomial of degree 6. The complete algorithm can be
found in [12].

1) Feature Detection and Correspondence: For fea-
ture-based algorithms, the crucial steps to an accurate
reconstruction are feature detection and feature correspon-
dence. The pioneer work on feature detection is done by
Moravec in [13], [14]. The features, or “points of interest”, are
defined as locations where large intensity variations in every
direction occur. The un-normalized local autocorrelation in
four directions are computed and the lowest result is taken as
the measure of interest. These measurement values are then
thresholded with nonmaximum suppression applied. Harris
and Stephens [15] built on the idea of the interest operator but
used the first order image derivative to estimate local auto-
correlation. The variation of the autocorrelation over different
orientations is found by calculating functions related to the
principle curvatures of the local autocorrelation. This algorithm
gives robust detection but poor localization accuracy at certain
junction types. Other corner-detection methods based on the

product of gradient magnitude and edge contour curvature
were independently proposed by Beaudet [16], Kitchen and
Rosenfeld [17], Dreschler and Nagel [18], [19], and Zuniga and
Haralick [20]. In their work, a corner is defined as the point of
maximum planar curvature for the line of steepest slope.

More recent works on corner detection include the Smallest
Univalue Segment Assimilating Nucleus (SUSAN) detector
proposed by Smith and Brady [21] and the curvature scale
space approach proposed by Mokhtarian and Suomela [22].
The SUSAN approach works by observing that each image
point has a local area of similar brightness associated with
it. The corner location is found using only the size, centroid,
and second moments of the local area or USAN. In contrast,
the curvature scale space (CSS) approach works by finding
locations of maximum absolute curvature of edge contours and
tracking these locations through multiple scales to improve
localization. Both of these methods are robust with respect to
image noise.

To successfully solve a structure from motion problem, we
not only need to be able to detect features in one frame, but
also locate the corresponding features in other frames as well.
This problem is known as the stereo correspondence problem.
There are number of elements that may affect the performance
of any stereo correspondence algorithm such as change in light
condition, foreshortening effects, uncorrelated image noise, and
occlusion.

Two different approaches exist for solving the stereo corre-
spondence problem. The first approach finds a set of features
in one frame and attempts to track them through subsequent
frames. In contrast, the second method tries to locate a set of
features in each frame and finds the correspondence between
the detected features. The first approach is often characterized
as feature tracking and is exemplified by the work of Tomasi
and Kanade [23]. The second approach, often referred to as
feature correspondence, can be implemented using several
methods. When computational resources are limited or that
real-time performance is required, the correspondence problem
can be solve using the correlation-based methods [24]. Cor-
relation scores are computed by comparing a fixed window
in the first image and a moving window in the second image.
The pixel in the second image that received the highest corre-
lation score is chosen to be the match. Marr and Poggio [25]
proposed a relaxation-based method for stereo correspondence.
The relaxation method works by propagating constraints to
reorganize potential matches. Pilu [26] proposed an elegant
SVD-based matching method. The SVD method builds a
correlation weighted proximity matrix and then factors it
using the SVD algorithm. A new matrix is recomposed by
replacing the elements of the diagonal matrix with 1. If the
i7th element in the new matrix is the greatest element in both
its row and column, then the sth feature in the first image is in
correspondence with the jth feature in the second image. The
stereo correspondence problem can also be cast into an opti-
mization problem. Baker and Binford [27], Ohta and Kanade
[28] employed dynamic programming to match edge-delimited
intervals. Li [29] also used dynamic programming to solve the
correspondence problem. In this work, the figural continuity
constraint is enforce by matching lines in Hough space.
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2) Dense Stereo Matching: Similar to feature-based algo-
rithms, the success of dense reconstruction algorithms relies
heavily on the accuracy of the densely matched pixels. When
the sampling along the time axis is also dense, the pixel dis-
placements between consecutive frames can be approximated
by optical flow [30]. Assuming that the camera is a rigid body,
the motion field of the projected points on the optical plane sat-
isfies the differential equation

Xeam =@ X Xeam +V (10)
where w and v are angular and linear velocities of the camera
respectively. It can be shown that the relationship between the
image plane motion field u(x) = [u,,u,]” and the motion of
the camera can be expressed as

u(x) = %A(w)v + B(z)w

Y
where Z is the depth and A(x) and B(x) are as defined in [31].
Thus, we see that the optical flow field has two components gen-
erated by the angular velocity and the linear translation respec-
tively. Also, it is clear that no structure information is contained
within the angular component of optical flow. This confirms our
intuition that scene structure cannot be computed from images
taken by a rotating camera.

A 3-D structure can be triangulated using the optical flow ap-
proximation since we have pixel to pixel matches between the
two frames. This method has the advantage that the scene struc-
ture can be computed from two or more frames from a single
calibrated camera. There are various methods to approximate
the optical flow. A good review of a large number of methods
is given in [30]. In practice, under the assumption of dense tem-
poral sampling, the optical flow can be efficiently approximated
by sparse feature displacements [32]. However, even if we can
discount the effect of occlusions, lighting and shading changes
on the accuracy of the estimated optical flow, the accuracy of the
3-D reconstruction is still very much constrained by the fact that
the baseline between consecutive frames is usually very small.
Thus, more reliable ways to compute the 3-D scene structure
need to offer a large enough baseline.

Two calibrated cameras can be setup so that the epipolar lines
between the two views are horizontal and that the corresponding
epipolar lines lie on the same scan line on both images [33].
With this setup, many traditional stereo correspondence algo-
rithms can be applied to compute the horizontal disparity be-
tween the two views. The correspondence problem can be ef-
fectively solved within the Markov random field (MRF) frame-
work. In particular, if we assume that the images resulting from
the two views of the scene are realizations of MRFs, then be-
cause of the Markov—Gibbs equivalence [34], the set of random
variables F' = {F}, F»,..., F,,} defined over the set of pixel
matchings (or disparities) follow the Gibbs distribution of the
form

o= (1/TU(F)

Z e—(1/TYU(S)
fEF

P(F=f)= (12)

where T is a constant called temperature, and U ( f) is the energy
function

U(f) = Velf)-

ceC

(13)

The energy function is summed over all the clique potential
V.(f) over all possible cliques C. If we consider the stereo cor-
respondence problem as a labeling problem (the disparity value
being the label on each pixel), then we can formulate the so-
lution as being the labeling that maximizes the posterior prob-
ability. Using the prior model P(f), the posterior probability
P(f|d) with the observation d depends on the likelihood en-
ergy U(f|d) = U(d|f) + U(f). Thus, finding themaximum a
posteriori (MAP) estimate is equivalent to finding the solution
to

f*=arg mfin U(f|d)- (14)

Since the MAP-MRF framework requires the solution of a
nonlinear optimization problem, locally optimal solutions can
be readily obtained using gradient-based methods. Recently,
globally optimal solutions to such problems using graph
theoretic algorithms have been proposed [35]-[37]. In their
work, Kolmogorov et al. casted this optimization problem as
a minimum cut problem in graph theory. In their formulation,
the energy function has the form

U(fld) =D Dp(f)+ Y Vo T(fp # fo)

peEL pgqeEN

5)

where L is the set of pixels, IV is an appropriate neighborhood
system, and the function 1" is 0 when f, = f, and 1 otherwise.
The first term assigns a cost to each pixels with disparity f,, and
the second term penalizes neighboring pixels having different
disparities. This optimization problem can be solved using a
Max-flow/Min-cut algorithm. For the case of binary labels, the
graph G = (V, E) is constructed as described in [38] and the
global minimum can be obtained. However, for general disparity
values, a local minimum in a strong sense can be found using the
graph cut algorithm [35]. The result of their algorithm is shown
in Fig. 4. Scharstein and Szeliski [39] provided a taxonomy of
the various stereo correspondence algorithms, as well as an up
to date review and comparison of the popular algorithms.

B. Voxel-Based Reconstruction

Because of the rapid growth of computational storage and
processing power, volumetric representation of scene structure
becomes practical. Various approaches to recover volumetric
scene structure from a sequences of images have been proposed.
Earlier attempts to solve this problem approximate the visual
hull of the image objects. The visual hull of an object is de-
fined as the maximal shape that gives the same silhouette as the
actual object for all views outside the convex hull of the ob-
ject. Methods that approximate the visual hull are referred to as
volume intersection or silhouette intersection.

Similar to the convex hull, the visual hull is an approxima-
tion of the actual shape of the object. However, the size of the
visual hull decreases monotonically with the number of 2-D im-
ages [41]. A necessary pre-processing step to compute the visual
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(b)

Fig. 4. Matching result from the graph cut algorithm [40]: (a) left image, (b) right image, (c) ground truth disparity, and (d) computed disparity.

hull is the segmentation of each 2-D image into object fore-
ground and background. The segmented 2-D silhouettes from
each image are then back projected and intersected to yield a
volume segment representation which can be further processed
into a surface description. This is the basic approach taken by
Martin et al. [42]. This work is extended into octree representa-
tions by a number of other researchers [43]-[46].

A method related to volume intersection is the voxel occu-
pancy algorithm proposed by Snow et al. [47]. In voxel occu-
pancy, the scene is represented by a set of voxels and the algo-
rithm labels each voxel as being either filled or empty. Thus,
this is a labeling problem and can be solved using the graph cut
algorithm as outlined in Section IV-A-II. However, the voxel oc-
cupancy method generalizes on the volume intersection method
in the sense that it provides the notion of spatial smoothness as
a term within the energy function that it tries to minimize.

An alternative volumetric reconstruction method utilizes
color consistency to identify surface points in the scene. Color
consistency requires that the projection of all surface point
in different views to have consistent color. Specifically, if a
nonoccluded point belongs to the surface of the object, then
its projection onto different views should have approximately
the same color. Conversely, the projections of a point not
on the surface usually do not have a consistent color. Color
consistency can be mathematically defined as the standard
deviation, the L;, Ly, or L, norm of the colors of the pixels
that a particular voxel projects to in each view. Algorithms that
exploit color consistency are all variants of the voxel coloring
approach. In practice, voxel coloring starts by initializing the
scene with only opaque voxels. As the algorithm iterates, voxels
are tested for color consistency. Only consistent voxels are kept
while inconsistent voxels are carved out. The algorithm stops
when all voxels are consistent. As voxels often occlude each
other, it is vitally important for voxel coloring algorithms to
determine the visibility of a particular voxel before performing
the consistency test.

Determining the visibility (the set of pixels that a particular
voxel can be seen) of a voxel is relatively difficult as the set
of occluding voxels changes frequently as voxels are constantly
being carved. To simplify this task, Seitz and Dyer [48], [49] im-
posed the ordinal visibility constraint on the camera locations.
This constraint requires that all cameras be located on one side
of the scene in a way that all voxels can be visited in a near to far
order relative to every camera. To determine visibility, an occlu-
sion bit map is used that consists of 1 bit for every camera pixel
in the input. From the near to far order, every voxel is tested
for consistency. If a voxel is found to be consistent, then all oc-

clusion bits along all back projected rays from each view are
marked as occluded. Then, the visibility of a voxel is simply
the pixels in its projections such that the occlusion bit is clear.
Note that voxel coloring algorithms based on the ordinal vis-
ibility constraint only needs to traverse each voxel once. Re-
construction results from Seitz’s algorithm is shown in Fig. 5.
However, further performance improvements of this algorithm
is still possible. Prock [50] proposed a multiresolution voxel col-
oring scheme which reduced the running time by up to 40 times.
Culbertson [51] et al. proposed the generalized voxel coloring
methods which computes visibility exactly and hence yields a
color-consistent model.

Compared with the image-based methods which need to
solve the difficult correspondence problem, the voxel-based
methods have the advantage allowing geometric reasoning
to be performed in 3-D. Thus, no explicit correspondence is
needed. Furthermore, the occlusion problem is handled much
more elegantly. These reasons account for the success of the
voxel-based algorithms. One of the main design considerations
of voxel-based algorithm is that memory consumption. For
a moderate scene having 100 voxels in each dimension, the
entire scene would require a total of 10° voxels to represent.
Therefore, memory constraints would often lead to coarse
reconstructions. Moreover, the ordinal visibility constraint
imposes a very tight constraint on the camera locations. In
particular, camera configurations that surround the scene is
not allowed. In Section IV-C, we will explore object-based
reconstruction techniques that will alleviate this restriction.

C. Object-Based Reconstruction

While voxel-based reconstruction algorithms fill the scene
with voxels and the reconstruction algorithm determines visi-
bility of each voxel, object-based reconstruction algorithms aim
atrecovering a surface description of the objects in the scene. The
level-set reconstruction method proposed by Faugeras et al. [52]
is the first object centered 3-D reconstruction technique from
image sequences. Applying variational principles used in their
previous work for dense depth recovery [53], [54], Faugeras et al.
reformulated the reconstruction problem into a surface evolution
problem that can be solved using the level-set technique.

The level-set approach starts by choosing a surface that min-
imizes some energy functional

(16)

Therefore, we need to choose a ®(X) such that it is small at
good matching locations and large otherwise. Once ®(X) is



LU et al.: A SURVEY OF MOTION-PARALLAX-BASED 3-D RECONSTRUCTION ALGORITHMS 539

(a)
Fig. 5.

chosen, a surface S which minimizes (16) can be found using
gradient descent. A simple choice of ®(X) can be the summed
square error of the matching pixels

B(X) = % > @i5(X) (17)
i#£]
$,5(X) = (Li(x) - I;(x"))*. (18)

However, this choice of ® is very sensitive to noise and local
texture. Therefore, Faugeras et al. suggested comparing neigh-
borhoods around the matching points instead.

Essentially, the level-set reconstruction method evolves a
time varying surface toward the objects in the scene. This
is accomplished by moving the surface along the direction
of its inwardly pointing normal. The velocity in which the
surface moves depends on the cross correlation measure across
views. When the evolving surface is far from the true surface
of the object, the velocity is high because of the poor cross
correlation. When the evolving surface moves near the true
surface, the velocity decreases as the cross correlation becomes
significantly better. An interesting property of the level-set
method is that it can handle arbitrary topological changes as
the zero level set can break apart and merge if necessary. Some
reconstruction results are shown in Fig. 6.

(b)

Voxel coloring results [49]: (a) input image, (b) image from reconstruction, and (c) a novel view.

(b)

Fig. 6. Reconstruction using the level-set method [52]: (a) input images and (b) evolving reconstruction results.

The level-set approach proposed by Faugeras et al. assumes
perfectly Lambertian surfaces. In particular, it does not address
stereo matching problems caused by specularities present in the
scene. An improved level-set approach that handles specular sur-
faces is proposed by Jin et al. [55]. A further improvement that
handles specular, as well as translucent surfaces, is given in [56].

D. Comparison of Pre-Calibrated Reconstruction Algorithms

In this section, we compare the pre-calibrated reconstruc-
tion algorithms that were reviewed in Sections IV-A-IV-C. A
quantitative comparison of these algorithms in terms of recon-
struction accuracy cannot be meaningfully performed since the
output from the various classes of algorithms are quite different.
For image-based algorithms, the reconstruction is composed of
a set of sparse 3-D points, voxel-based algorithms mark a set of
visible voxels from each view, and the object-based algorithms
produce a description of the surface enclosing the objects in the
scene. Thus, we provide a qualitative comparison of these al-
gorithms in terms of occlusion handing, the need for explicit
feature tracking and matching, the ability to place cameras arbi-
trarily, and the need to remove background before applying the
algorithm. The comparison is shown in Table I.

In order to select a pre-calibrated reconstruction algorithm for
any application, it is essential to know the format of the required



540

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 34, NO. 4, NOVEMBER 2004

TABLE 1
COMPARISON OF PRE-CALIBRATED RECONSTRUCTION ALGORITHMS

Occlusion | Explicit Feature | Camera Background
Handling | Correspondence | Placement Removal
Feature Tracking No No Arbitrary No
Feature Detection + Matching || No Yes Arbitrary’ No
Dense Stereo Algorithms Yes No Arbitrary No
Voxel Occupancy No No Arbitrary Yes
Voxel Coloring Yes No Constrained | Yes
Level-set Yes No Arbitrary Yes
Point Matches
Compute Upgrade to

Compute the
Fundamental Matrices

B ———

Images I], 12, |

N

Proj. Reconstruction

Metric Reconstruction Reconstructed 3D Points

g - - -

A

Compute
Camera Calibration

Fig. 7. Block diagram for online calibrated reconstruction.

output. In cases where only sparse 3-D output is needed, per-
forming the reconstruction task using either feature tracking or
feature detection and matching, with triangulation may be more
appropriate. If succinct features are present on the objects of in-
terest, these features can be detected and tracked (or matched)
veryreliably, yielding good reconstructed results. Another advan-
tage of these algorithms is that no explicit background removal
is necessary as the desired features are not present in the back-
ground. This property no only simplifies preprocessing, it also
enables the algorithm to be robust against background noise.
However, if the eventual goal of the application is view syn-
thesis, then voxel-based methods may be good choices. Because
voxels are explicitly marked in 3-D, they can be easily pro-
jected onto any 2-D view given the desired movements of the
camera. This class of algorithms performs best when there is
an abundance of memory which allows the scene to be approx-
imated by a large number of small voxels. The advantage of the
voxel-based approach is that the output is in simple voxel form
which is a commonly used format in computer graphics. Thus,
any further processing can be easily performed with this rep-
resentation. In addition, the voxel coloring algorithm is fairly
efficient as each voxel only needs to be visited once. However,
because color consistency is heavily enforced in the voxel-based
approach, background removal should be performed prior to re-
construction to prevent mismatch with background pixels that
just happen to have similar colors as the foreground pixels. An-
other disadvantage of voxel coloring is that cameras cannot be
arbitrarily placed because of the ordinal visibility constraint.
The level-set algorithm offers an alternative to the voxel-based
approach, but without the limitation on camera placements.
This method works well when there is a number of dominant
objects in the scene with unknown topology. However, similar

to the voxel-based algorithms, background removal is necessary
in order to achieve good reconstruction results.

V. ONLINE CALIBRATED RECONSTRUCTION

Under various circumstances, we may not have the luxury of
performing the calibration task using a pre-made calibration ob-
ject. It is a very realistic scenario for a number of applications.
For example, in a video indexing application, we are only given
the final video data without even knowing what type of video
camera these videos were taken from, not to mention getting
the same camera to take a video sequence of the calibration ob-
ject. Furthermore, the intrinsic parameters of the camera may be
changing during the acquisition of the video sequence because
of focusing and zooming. Therefore, 3-D reconstruction tasks
under these scenarios would have to be performed using online
calibrated reconstruction methods.

The key difference between online calibrated reconstruction
methods is the way the camera’s parameters are estimated. This
on-the-fly estimation of camera parameters is often referred to
as camera self calibration or autocalibration. Autocalibration
methods can be divided into two classes: those that exploit scene
constraints and those that exploit geometric constraints. Hence,
we divide the online calibrated reconstruction methods using
these two classes. A block diagram for typical online calibrated
reconstruction algorithms is shown in Fig. 7.

Algorithms that exploit scene constraints do not require the
fundamental matrices and the initial projective reconstruction
to determine the calibration parameters. Thus, only algorithms
that apply geometric constraints follow the dashed lines in the
diagram.
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A. Projective Reconstruction

Using the estimated fundamental matrix, we can compute a
projective reconstruction of the 3-D scene. A projective recon-
struction consists of a set of 3-D points {X; } and a set of camera
projection matrices {P;}. However, being a projective recon-
struction means that the reconstruction is determined only up to
a projective transform. Thus, for any projective transformation
H,{P;H='} and { HX;} yield an equally valid reconstruction.

From the estimated fundamental matrix between two view,
a pair of projection matrices can always be retrieved [57]. The
two camera matrices are chosen to be P = [I|0] and P’ =
[[€']x F|€']. Using these projection matrices, we can compute a
projective reconstruction of the detected features with a simple
linear triangulation method. Since x = PX and x’ = P'X, we
can eliminate the scale factor by taking the cross product of the
left hand side with the right-hand side. Doing so produces three
linear equations for each point, out of which two are linearly in-
dependent. Stacking the equations for the corresponding points
and writing them in matrix form, we have

yp~— —Pp

AX = X=0 (19)
:L‘/plgT _ pllT
y/p/ST _ p/2T

where p'’" are the rows of the projection matrix P. The solution
of (19) is the singular vector corresponding to the smallest sin-
gular value of the SVD of A. Methods for optimal triangulation
are discussed in [12].

When the image sequence contains more than two frames,
it may be more efficient to solve the projective reconstruction
problem for all feature correspondences and all views at once. A
method for doing that is presented by Tomasi and Kanade [58]
for projective reconstruction of orthographic cameras. The full
perspective method is proposed by Sturm and Triggs [59]. An
important assumption of all factorization-based methods is that
all feature correspondences are visible in all views. That is, there
are no occluded points. This may seem to be an unreasonable
assumption for large sequences, but we can always get around it
by breaking large sequences into a number of smaller sequences.
In addition, Tomasi and Kanade [58] proposed a modification to
the usual factorization algorithm to recover a small set of missing
points. The way the perspective version of the factorization
algorithm works is to first estimate a set of projective depths,
Aip, for feature p in view ¢ and then construct a measurement
matrix by stacking together the product of the features in each
view and the estimated projective depths in all views. After that,
the measurement matrix can be factored using the SVD into the
projection matrices and the 3-D locations of each feature. Putting
the above discussion into mathematical form, we have

[ AuXi1 A12Xi12 AnXin
A21X11 A22X12 A2nX1n
W = ) .
LAm1X11  Ama2Xi2 AmnXin
- P
P,
= | | X Xe X (20)
_Pm

The projective depths are recovered using a re-statement of the
epipolar constraint
(Fijxip)Ajp = (€3 X Xip)Aip 21
where Fj; is the fundamental matrix that maps points in view %
into epipolar lines in view j.
Using (21), we can find the ratio between the projective
depths in consecutive frames as

lleij X %7
(eij X Xip) - (FijX;p)

Therefore, we can chain together this relationship and estimate
the complete set of projective depths for a feature x from some
arbitrary initial value such as Ay, = 1.

Of course, to ensure good numerical conditioning, some nor-
malization needs to be done. First, we need to normalize the
image coordinates of features as described in [6]. In addition, we
need to condition the m x n matrix [A;,] by repeatedly rescaling
the rows and columns such that the Frobenius norm of the row
or column is 1 after each rescaling. This conditioning step ter-
minates when the entries of the matrix do not change signifi-
cantly. Experiments indicate that their algorithm performs quite
well under real imaging conditions. However, the shortcoming
of this algorithm is that it is quite sensitive to correspondence
errors. Therefore, it is always a good idea to reject the outlier
matchings using the epipolar constraint before invoking this al-
gorithm.

Ajp =

Aip- (22)

B. Calibration Using Scene Constraints

If images are taken within constrained environments, the
camera self calibration step can usually be simplified con-
siderably. One example of such constrained environment is
the architectural or man-made scene. The most noticeable
characteristic within this environment is that it contain a large
number of parallel lines. Parallel lines in each direction inter-
sect at a point on the plane at infinity. The projection of these
intersection points are the vanishing points. The knowledge of
the position of the vanishing points in three dominant directions
in an image greatly simplifies the determination of the intrinsic
parameters of the camera used to produce this image. In fact,
we can obtain closed form solutions for these parameters as a
function of the vanishing points [60].

Before we can take advantage of the parallel structures within
the scene for self calibration, the vanishing points have to be
computed first.

1) Computing the Vanishing Points: The estimation of van-
ishing points from detected line segments can be divided into
two steps: the accumulation step and the search step. The goal of
the accumulation step is to use the detected line segments to vote
for some location in the accumulation space which could poten-
tially share the same vanishing point. The search step searches
the accumulation space for cells that possess a large number of
votes.

Various types of accumulation spaces are developed. Barnard
[61] proposed the use of the Gaussian sphere centered on the
optical center of the camera as the accumulation space. The ad-
vantage of this method is that the computational complexity is
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low as the unbounded space of R? is mapped into a bounded
space. Further improvements on this method are suggested by
Quan and Mohr [62], Lutton [63], and Magee and Aggarwal
[64]. However, as pointed out by Rother [65], the main draw-
back of this method is that distances between points and lines
on the image plane are not invariant to translation and rotation.
This problem can be avoided if the line segments are not trans-
formed into a bounded space. This is exactly the approach taken
by Rother [65] in which he considered the intersection of all
pairs of noncollinear line segments and used the entire image
plane as the accumulation space.

After the accumulation process, the search step is performed
to find the vanishing points. The search method employed in
[62], [64] is very straight forward. It repeatedly searches for
the most dominant cell and removes all line segments corre-
sponding to it until the maximum vote drops below a certain
threshold. A modified version of this method that explicitly
enforces the orthogonality condition is developed by van den
Heuvel in [66].

2) Computing the Camera Calibration: Having detected the
vanishing points in an image, the intrinsic parameters of the
camera can now be estimated. When a point X is perspectively
projected to the point x on the image plane, we have the usual
projection equation x = PX, where P = K[R| — t] is the
projection matrix. The matrix R and the vector t represent the
rotation and translation of the camera relative to the world coor-
dinate system respectively, while the matrix K is the calibration
matrix containing the intrinsic parameters.

Caprile and Torre [60] presented a geometric derivation
which establishes that the orthocenter of the triangle formed by
the vanishing points in three mutually orthogonal directions is
the principal point. Hartley [4] computes the focal length using
the calibrating conic centered on the orthocenter of the triangle
formed by the vanishing points. In his formulation, when the
aspect ratio is unity and the skew is zero, the reflection v’ of
one vanishing point, say vy, about the orthocenter is the pole
of the line 1 joining the other two vanishing points v, and v
with respect to the calibrating conic. This relationship can be
written mathematically as

1=Cv (23)
where C' is the quadratic form of the calibrating conic. Thus,
the focal length can be computed as the radius of the calibrating
conic. In the work of Liebowitz and Zisserman [67], they define
constraints on the image of the absolute conic in terms of the
estimated locations of the vanishing points. The image of the
absolute conic w is then estimated as the singular vector corre-
sponding to the smallest singular value of the SVD of the con-
straint matrix. Since w = K~TK 1, it can then be factored
using Cholesky factorization to obtain the calibration matrix K.

C. Calibration Using Geometric Constraints

The more flexible class of algorithms can perform self
calibration using only geometric constraints that are inherently
available in the image sequences themselves. In this section,
we shall examine the underlying principle that allows us to

perform self calibration. Several different methods will be
presented and analyzed.

1) The Dual Image of the Absolute Quadric Method
(DIAC): In order to perform self calibration, we need a
projective entity that conveys the calibration information from
frame to frame. In addition, we make the observation that if
all objects in the scene are rigid, moving around in it with a
video camera is equivalent to applying similarity transforms
to the entire scene and taking snapshots of the transformed
scene. With this in mind, we find that the conic represented by
the identity matrix I on the plane at infinity is invariant under
similarity transforms. Since the only class of transformation
that does not move the plane at infinity is the affine transform
and that any affine transform can be written in the form

Hy= {OAT ﬂ 24)

we have A~TTA-! = I, which implies that AAT = I. This
means that A is orthogonal and hence H 4 must be a similarity
transform. We call this conic the absolute conic. The dual of the
absolute conic is the absolute dual quadric Q7. Its representa-
tion in matrix form is
« _ |Isxs O

The absolute dual quadric has the same property that it is in-
variant under similarity transforms.

Any point on the plane at infinity can be written as X, =
(d”,0)T. When imaged by a general camera P = K R[I| - C],
we have

x = PX, = KRd. (26)
Thus, the planar homography between the plane at infinity and

the image plane is H = K R. With this, we see that the image
of the absolute conic (IAC) is given by

w=(KR)™"I(KR)™' = K""RR'K™' = (KK")™".

27
Therefore, it is obvious that the image of the absolute conic is
invariant under translation and rotation of the camera and that it
also conveys the intrinsic parameters of the camera. It is often
more convenient to work with the dual image of the absolute
conic (DIAC) w* = KKT7 since it has a simpler form and that
it is the projected image of the dual absolute quadric.

The idea behind DIAC-based self calibration is to transfer
constraints on w* to constraints on %, using the known camera
matrices from the projective reconstruction of the scene. The
method of self calibration using Q% was introduced by Triggs
in [68]. If we make some simplifying assumptions about the
calibration matrix K, it is trivial to translate it into constraints
on the absolute dual quadric using the equation

w=K'K"T =pP'Qr pP". (28)
For example, if we assume that the principal point is located at
the origin (we can always translate it to the origin if it is not),
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the aspect ratio is unity, and that the skew is zero, we can obtain
four linear constraints

( PLT

( Pt Q PLT

( Pz Q PzT

PzT

12

23 =0

)
)is =
(PQLP™),, - (P P™)

on the entries of % using the known form of w;, as follows:

g = (29)

2 0 0
wi=|0 f2 o0 (30)
0 0 1

When there are more than three views in the sequence, a unique
solution exists.

An iterative formulation is also possible. We can define the
cost function as

o)=Y |K'KT - Pl PT| 31)

where X is the vector that contains all the parameters within
K, and Q*_ and both K*K*‘T and P!Q* P‘T are normalized
to have unit Frobenius norm. This problem can be solved using
the Levenberg-Marquardt algorithm [4].

2) The Kruppa Equations: The first self-calibration method
introduced to the computer vision community by Faugeras,
Maybank, and Luong [69], [70] employs the Kruppa equations.
The original derivation of the Kruppa equations uses the dual
image of the absolute conic and assumes the equality of the
DIACs in both views. The Kruppa’s equation in its original
form given in [71] is

[e]xw*[e/]x = Fw*FT. (32)
The form of the Kruppa’s equation given in (32) is not easily
applied in practice. To address this problem, Hartley [72] gives
an alternate derivation of the Kruppa equations using the funda-
mental matrix. In this work, the Kruppa equations are stated as

!/ !/ !/
ul'w*'uy ufw*'u, ufwr'uy
2, T =" T = 2 T o« (33)
o?vTw*vy oroaviw*vy  oaviw*vy

where u; and v; are the column vectors of corresponding ma-
trices in the SVD of F' = UDVT and o; are the singular values.
Note that DIACs in the two views are not assumed to be iden-
tical in the formulation given in (33). Cross multiplying yields
two quadratic equations in the parameters of w* and w*’. There-
fore, with the equality assumption of the DIACs, we have six
quadratic equations in the five unknown parameters of w* for
three views. We can solve this system of quadratic equations
using the method of homotopy continuation.

The advantage of using Kruppa equations is that the calibra-
tion process does not require a prior projective reconstruction as
in the case for methods that estimate the absolute dual quadric.
In addition, for two views, the Kruppa equations provide the
only constraint available on w*. However, it is often observed in
practice that the performance of this approach is inferior com-
pared to the absolute dual quadric formulation when applied in

multiple views. This is mainly because that the Kruppa equa-
tions do not explicitly enforce the degeneracy of the dual quadric
and the fact that there is a common supporting plane for the ab-
solute conic over multiple views. Furthermore, when the motion
of the camera is purely translational, the Kruppa equations re-
duce to a tautology. The ambiguities of calibration by Kruppa
equations are discussed in [73].

3) Stratified Self Calibration: In order to upgrade from a
projective reconstruction to a metric reconstruction, we need
to estimate both the calibration matrix and the position of the
plane at infinity or the infinite homography. The calibration ap-
proach using the dual absolute quadric estimates both quantities
at the same time: the DIAC contains the calibration information
and the null space of ) represents transformed position of the
plane at infinity. The advantage of such approach is obvious as it
can directly upgrade from a projective reconstruction to a metric
reconstruction. This convenience, however, comes at a price. As
we have seen in the discussion of calibration by DIAC, quite a
number of parameters need to be estimated at the same time.
Doing so will no doubt lead to inaccuracies and numerical in-
stabilities. An alternative would be to go one step at a time, from
projective to affine and then to metric. This is the intuition be-
hind the stratified calibration approach.

The most difficult part of stratified approach is the estimation
of position of m.,. Having the transformed position of 7, is
equivalent to having an affine reconstruction since applying the

projective transform
m= )

To

(34)

to the projective reconstruction correctly places 7, at (0, 0, 0,
1). We know that the only class of projective transform that fixes
the position of 7, is the class of affine transformations.

There are several methods for finding the transformed po-
sition of m,,. Many of them require prior knowledge of the
scene structure such as parallel lines and vanishing points. Some
methods that do not have this requirement are those that em-
ploy the modulus constraint [74]. The modulus constraint is a
constraint on the position of 7., in the form of a polynomial
equation. Assuming constant internal parameters, a projection

matrix P = [A|a] in the projective reconstruction relates to its
metric reconstruction Py; = K[R| — RC] by
A —ap’ = uKRK™! (35)

where p is the position of 7.,. We see that the right-hand
side is conjugate to a rotation matrix which has eigenvalues
(1,e%,e~%). Then, the left hand side must have eigenvalues
(, e, 1e=%) and the characteristic polynomial is

detA] — A+ap”) = (A = A1) (A= A2)(A = A3) (36)

— [N+ A-fs ()

where \; are the eigenvalues and
f1 :)\1 —f—)\g—}—/\g = /1,(1—|—2COS€) (38)
f2 =AMA2 + AA3+ X3 = [L2(1+2COSH) 39
fa=Adodg = i, (40)
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(b)

Fig. 8.
(d) textured reconstruction.

Eliminating 6, we arrive at the modulus constraint
3 3
fsfi” = f2"

The elements of p appear only linearly in (41). Thus, the mod-
ulus constraint can be written as a quartic polynomial in the el-
ements of p. Upon solving this polynomial, we have the trans-
formed coordinate of 7.

Having computed p, a linear algorithm now exists to compute
the calibration matrix K. As evident in (35), the infinite homog-
raphy from a camera [7|0] and the camera [A |a] is given by

(41)

Ho =A—ap’. (42)

Since the absolute conic lies on the plane at infinity and its

image is invariant between different views, we have
* * 7T

From (43), we can write six linear equation in the independent

elements of the symmetric matrix w* and obtain the homoge-

neous linear form

Ac =0 (44)

Reconstruction results using stratified self calibration [74]: (a) input images, (b) reconstructed points and cameras, (c) shaded reconstruction, and

where A is a 6 x 6 matrix formed by the elements of H, and ¢
is the dual conic w* written in vector form. Since A has rank at
most four, we need more than two views to uniquely compute c.
Reconstruction results from a system implemented by Pollefeys
etal. using the stratified self-calibration method is showninFig. 8.

4) Degenerate Camera Configurations: The theoretical
derivation of the self-calibration equations naturally opens up
questions the question of whether self calibration and metric
reconstruction can be performed on any video sequence.
Unfortunately, the answer to this question is no. There are
distinct classes of motion sequences for which self calibration
is ambiguous. We refer to these motion sequences as critical
motion sequences. Furthermore, if the selected feature points
lie on a surface of certain ruled quadric and the camera is
at a certain location with respect to this surface, then 3-D
reconstruction is ambiguous. We call such surfaces critical
surfaces. It should be made clear that these two concepts are
not equivalent: the inability to uniquely reconstruct a scene do
not imply that an accurate and unique calibration of the camera
cannot be obtained.

The probability of having all the detected features lying on a
critical surface is so small that this case can usually be safely
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TABLE II
COMPARISON OF ONLINE CALIBRATED RECONSTRUCTION ALGORITHMS
Required Scene | Camera Min. number | Require Proj.
Constraint Placement of views Recon.
Vanishing Point Yes Arbitrary 2 No
DIAC No Degenerate Config. | 3 Yes
Kruppa Equations No Degenerate Config. | 2 No
Stratified Calibration || No Degenerate Config. | 3 Yes

ignored in practice [75]. There are, however, many critical mo-
tion sequences that naturally arise from various modeling and
image acquisition applications and thus a careful study of their
properties is warranted. The basic observation that made self
calibration possible is that the image of the absolute conic is
invariant under camera motion given that the intrinsic parame-
ters of the camera are constant. Situations in which critical se-
quences occur are exactly those when at least one other conic,
besides the absolute conic, have the same projected image in all
frames. To continue the discussion, we need to give some defi-
nitions. A virtual quadric is one in which there are no real points
on it. A proper quadric is a quadric whose matrix has nonzero
determinant. Formally, we say that a sequence S is critical if
there exists a proper virtual conic @, distinct from {2, such that
its projection is the same in all frames of S. A sequence S crit-
ical for metric reconstruction does not imply that it is critical
for affine reconstructions. A sequence S is critical for affine re-
constructions if S is critical for a proper virtual conic whose
supporting plane is not 7.

A complete catalog of critical motion sequences is given in
[76]. Self-calibration algorithms for special critical motion se-
quences are given in [77]-[79]. A method of affine reconstruc-
tion of scenes with purely translating cameras is given in [80].

D. Upgrading to Metric Reconstruction

A metric reconstruction differs from the projective recon-
struction by a homography H. The form of the homography is
given in [4] as

K! 0} 45)

H= [—pTKll

where K'! is the calibration matrix of the first image and p is the
position of the plane at infinity in the projective reconstruction.

For calibration algorithms that employ the vanishing points,
the vector p can be computed from vanishing point corre-
spondence in the two views. Let the vanishing points in the
first view be {v1,va,v3} and those in the second view be
{v{,vh,vi}. The correspondence problem can be solved
using the SVD method suggested by Pilu [26]. Then, the
corresponding vanishing points can be triangulated to obtain
its 3-D coordinate in this projective reconstruction. Hartley [4]
describes a variety of triangulation algorithms that are suitable
for this purpose. Let the triangulated position of the vanishing
points be {V1, Vo, V3}. The normal N to the plane at infinity
in this projective reconstruction is

N = (V2 — Vl) X (Vg — Vl) (46)

The offset of this plane is then w = N - V; and p = N/w.
The components of the homograhy can now be assembled to
obtain H. An Euclidean reconstruction can be obtained as
{PZH/ H_IXJ'}.

For algorithms that compute the dual image of the absolute
quadric, the homography H needed to upgrade the projective
reconstruction to a metric reconstruction can be obtained by de-
composing Q% using eigenvalue decomposition into H IHT,
where I is the diagonal matrix diag(1,1,1,0). Then, apply H
to the cameras and H ! to the points to obtain the metric re-
construction. A similar procedure can be used for the stratified
calibration methods, where the required homography H can be
assembled using the computed 7., and K. For Kruppa equa-
tion-based methods, however, no prior projective reconstruction
is computed. Therefore, after estimating the calibration matrix
K, we can follow the steps in the calibrated reconstruction block
diagram to obtain a metric reconstruction of the scene.

E. Comparison of Online Calibrated Reconstruction
Algorithms

For the same reason stated in the comparison of calibrated re-
construction algorithms, quantitative comparison of online cal-
ibrated algorithms in terms of reconstruction accuracy cannot
be easily performed. In this section, we again provide qualita-
tive comparisons of online calibrated algorithms in terms of the
need for special scene constraints, camera placement, minimum
number of views required for reconstruction, and the need for an
initial projective reconstruction. However, since the online cali-
brated algorithms differs mainly in their calibration techniques,
this is essentially a comparison of the various online camera cal-
ibration methods. The comparison is shown in Table II.

The vanishing-point-based calibration method is best applied
when parallel lines exist in all three dominant directions in a
3-D scene. These methods offer closed form expressions for the
internal camera parameters. They have been successfully ap-
plied to many architectural reconstruction applications where
the 3-D shapes of buildings are computed. However, this class
of methods is very sensitive to the estimated location of the van-
ishing points. Automatic estimation of vanishing point is usually
not accurate enough and often leads to incorrect camera calibra-
tions.

The other online calibration approaches take advantage of the
geometric constraints available from the image sequence. They
offer a more flexible framework than the vanishing-point-based
methods. The DIAC method should be used when a subset of
the internal parameters is known and we only wish to solve for
the remaining ones. For example, if we know that the location
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of the principal point, the aspect ratio is unity, and that the skew
is 0, then four linear constraints are available on )%, from each
view. We can find a unique solution if there are three or more
views available. It can also be applied when we have no knowl-
edge about the individual internal parameters, but only know
that they are constant throughout all views. In that case, a total
of ten equations in the entries of Q% results from three views
for which a unique solution can be found. The disadvantage of
this method is that it assumes that Q% is positive semi-definite.
This condition can often be violated because of noisy data and
thus leading to spurious calibrations.

The approach using Kruppa equations are two view con-
straints that require only the fundamental matrix F' to be
known. This method should be used when the internal camera
parameters are constant across views. However, if the motion
between the two views are purely translational, the Kruppa
equations provide no constraint on w*. In addition, since the
performance of this approach is usually inferior to those of the
DIAC method when applied to more than two views, it should
only be used when exactly two views are available.

The stratified calibration method improves upon the DIAC
method by going one step at a time from projective to affine
and then to metric reconstruction. This method is slightly more
complex than the DIAC method, but it often offers better quality
of solutions. However, this method is ambiguous when the set
of camera motions are all about a single axis, the solution is a
one parameter family of calibration matrices.

VI. CONCLUSION

In this paper, we have surveyed a number of 3-D reconstruc-
tion algorithms that exploit the motion parallax. We divided
the algorithm into two large categories depending on whether
a prior calibration of the camera is required. Under the pre-cal-
ibrated reconstruction category, we discussed image-based al-
gorithms that rely on feature correspondence or dense stereo
matching to compute the reconstruction of the scene, voxel-
based algorithms that project the scene filling voxels back onto
each view to determine its visibility, and object-based algo-
rithms that formulates the 3-D reconstruction algorithm as a
level-set evolution problem in which a system of partial differ-
ential equations gradually converges to the object to be recon-
structed. On the online calibrated side, we discussed algorithms
that take advantage of parallel structures in the scene to com-
pute the vanishing points which aid greatly in computing closed
form solutions of the camera’s calibration parameters. In addi-
tion, we also reviewed more flexible self-calibration methods
that do not rely on specific prior scene structure, but only on
inherent geometric constraints such as the position of the ab-
solute conic. Furthermore, camera configurations in which the
absolute conic-based self calibration breaks down are also sur-
veyed and presented.

There are still a number of open issues in performing mo-
tion-parallax-based 3-D reconstruction. On the pre-calibrated
side, feature correspondence and dense stereo matching has al-
ways been open research topics for image-based methods. The
application of global optimization techniques to these problems
are currently being investigated by an increasing number of re-

searchers. For voxel and level-set-based approaches, efficient
data representations and the ability to handle non-Lambertian
surfaces are interesting research topics. On the online calibrated
side, much effort is devoted to finding numerically stable so-
lutions of camera parameters. Also, research on methods that
detect degenerate camera configurations is extremely useful in
practice in order to avoid spurious calibrations caused by these
configurations.

Because of the vast amount of literature available on this
topic, the algorithms presented in this survey is by no means ex-
haustive. However, we believe that the reviews of the algorithms
included in this paper provides a good starting point for re-
searcher entering this field in computer vision as well as giving
the veteran researchers a handy reference to the subject.
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