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Abstract

This paper addresses the problem of intelligently extracting
objects from videos. Our method assumes that the video
making process is purposive and attempts to extract those
objects that the original authors of the videos intended to
capture. We accomplish this by analyzing three types of ac-
tions of the author (saccadic movements, smooth pursuits,
and multi-baseline pursuits) in an active vision framework
using dense 2D disparity vectors computed from successive
frames of the video. We demonstrate the effectiveness of our
algorithm using real video sequences.

1 Introduction

An important step in automatic video content analysis is the
extraction of theobjects of interest from videos. This task
can be simplified if we know the kind of objects that we are
trying to extract from the videos. For example, if we wish to
detect and extract people from videos, then the approaches
described in [6] can be applied to efficiently achieve this
purpose. Another example in which prior knowledge of
the object can tremendously aid in the extraction process
is given in [5] which reliably detects and localizes the pas-
senger cars in the input videos.

In the absence of knowledge about target objects, tra-
ditional algorithms take advantage of the motion of rigid
objects to identify and extract them. In this approach, each
frame in the video is first decomposed into regions accord-
ing to coherent image features such as color and texture.
Then, subsequent frames of the video are used to estimate
the motion parameters of these regions. Regions with sim-
ilar motion are then merged and considered to be a single
object. This approach is exemplified by the works of Irani
et al. [2, 3] and Altunbasak et al. [1]. It is worth noting
that 2D parametric transformations are used to approximate
the 3D motion of objects on the image plane. This approxi-
mation is only valid when the difference in depth caused by
the motion is small relative to the distances of objects from
the camera. Three types of motion models are often used

by these algorithms: translation, affine motion, and moving
planar surface.

In this paper, we attack the object extraction problem
from a different perspective. Specifically, we model the au-
thor of the video as an active observer in a dynamic environ-
ment. The actions taken by this active observer is assumed
to be purposive. Thus, the resulting video is not a series of
random shots, but a combination of well intended camera
movements capturing a set of objects of interest. Our goal
is to extract only the objects of interest from a video and
leave behind other objects that just happen to be in the shot.
We model three types of actions performed by the active
observer: saccadic movement, smooth pursuit, and multi-
baseline pursuit. Each of these three types of actions result
in different characteristics in the disparity maps computed
from consecutive frames of the video as well as give impor-
tant hints as to what objects the active observer is interested
in. Therefore, we analyze the disparity maps to determine
the objects of interest.

Because estimating accurate disparity maps from uncali-
brated cameras under general motion is vitally important to
our object extraction process, a major part of our algorithm
is devoted to perform this estimation. We will describe a
novel uncalibrated cooperative stereo algorithm in Section
2. The active object extraction process will be discussed
in Section 3, followed by experimental results in Section 4.
The conclusion will be given in Section 5.

2 Computing Dense Disparity Under
General Motion

Performing stereo matching on consecutive frames of a pre-
recorded video is much more difficult than traditional two-
framed stereo matching. Since the camera calibration pa-
rameters are usually not known in advance, image rectifica-
tion based on only the estimated fundamental matrix may
be very inaccurate. This problem is worsened by the free
motion of the camera which can place the epipoles close
or even within the image, making most rectification algo-
rithms impractical [4]. To effectively avoid these problems

1



associated with image rectification, we have developed our
new cooperative stereo algorithm to work directly on non-
rectified images.

Our cooperative stereo algorithm uses a four dimensional
matching score volume parameterized by(x, y, dx, dy) to
compute dense stereo matchings for non-rectified images
obtained by cameras under general motion. The value asso-
ciated with each element represents the matching score of
the disparitydx anddy at (x, y). Thus, given two stereo
images,I1(x, y) andI2(x, y), we wish to find thex andy

disparities such that the two images are matched as closely
as possible.

I1(x, y) ≈ I2(x − dx, y − dy) . (1)

Let Ln(x, y, dx, dy) be the matching score computed at the
nth iteration. The initial valuesL0(x, y, dx, dy) are cal-
culated using local similarity measures such as normalized
cross correlation on windows centered at(x, y) in the first
image and(x − dx, y − dy) in the second image. For sim-
plicity, we write Ln(x, y, dx, dy) using vector notation as
Ln(x,dx).

2.1 Initial Matching and Candidate selection

We exploit both the color consistency and the epipolar con-
straint to identify an initial set of matching candidates. We
first robustly estimate the fundamental matrixF between
the two input images using tracked sparse features. Then,
for any pixel locationx in the first image, the matrixF maps
it to an epipolar linel = Fx in the second image. With this
estimate of epipolar geometry, the correct match forx is
within a narrow band around the epipolar linel. We refer
to this band as theepipolar band. The width of the epipolar
band required to include the correct match depends on the
accuracy of the estimated fundamental matrix. An indica-
tor of the quality of the estimated fundamental matrix can be
computed as the average distance of inlying features to their
respective epipolar lines. We set the width of the epipolar
band on either side of the epipolar line to be three times
that distance. The initial candidate list consists of candidate
matches having positive normalized correlation scores on
the epipolar band.

2.2 Matching Score Adjustments

A major advantage of cooperative algorithms is their ability
to perform only local computation and yet have behaviors
similar to that of global optimization algorithms. The mech-
anism making this possible is the excitation and inhibition
of candidates through local support.

The local support area used in our algorithm is similar to
that of the fixed 3D box-shaped local support proposed by
Zitnick and Kanade [7]. Because we represent disparity as

2D vectors, our local support areas consists of only sparse
elements in a 4D box. LetΦ be set containing the local sup-
port elements ofx, and letSn(x,dx) be the amount of local
support forx with disparity vectordx. Then, we calculate
the amount of local support as

Sn(x,dx) =
∑

(x′,d′

x
)∈Φ

Ln(x′,d′

x) , (2)

such that(x′,d′

x
) ∈ Φ if and only if ‖d′

x
− dx‖ < r for

some support radiusr.
Another well known characteristic of cooperative algo-

rithms is the mutual inhibition of candidate matches. Gen-
erally, the correct match will receive higher match values
and thus causing the matching values of false candidates to
decrease. LetΨ denote the set of inhibition elements. There
are two types of elements inΨ: those that project to the
pixel x in the first image; and those that project tox − dx

in the second image.
The first type of inhibition elements can be easily lo-

cated, but obtaining the second type of inhibition elements
is difficult. Since our parameterized disparity is 2D, per-
forming a full search for these inhibition elements would
require an extremely large amount of computation. There-
fore, we only perform inhibition on the first type of inhi-
bition elements and delay inhibition of the second type to
the final optimization step of the algorithm. LetΨ′ be the
set containing only the first type of inhibition elements. For
computational simplicity, we adopt the inhibition function
used in [7]:

Rn(x,dx) =

(

Sn(x,dx)
∑

(x′′,d′′

x
)∈Ψ′ Sn(x′′,d′′

x
)

)α

, (3)

whereα is a constant controlling the amount of inhibition
per iteration. To ensure a single element withinΨ will con-
verge to 1,α must be greater than 1.

To limit the amount of over-smoothing, we use the ini-
tial matching scoreL0(x,dx) computed using normalized
cross correlation to further restrict the current match values.
Putting this restriction together with the inhibition function,
we have the update equation:

Ln+1(x,dx) = L0(x,dx) · Rn(x,dx) . (4)

2.3 Final Disparity Estimates and Occlusion
Detection

After the matching scores have converged within the match-
ing score volume, we need to generate final disparity as-
signments. In our algorithm, we jointly formulate occlu-
sion detection and final disparity assignment as a maximum
weight bipartite matching problem on a graph constructed
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using matching scores computed during the iterative updat-
ing process. LetG = (V1, V2, E) be a bipartite graph with
partite setsV1 andV2. We identify the nodes inV1 with pix-
els in the first image and nodes inV2 with pixels in the sec-
ond image. There is an edge betweenv ∈ V1 andv′ ∈ V2

if the pixel represented byv′ is a matching candidate of the
pixel represented byv. The weight on the edge is the re-
spective converged matching scores in the matching score
volume. The result of this maximum weighted bipartite
matching is a graphG′ = (V1, V2, E

′) of maximum weight
such thatE′ ⊆ E and no two edges inE′ share a common
node. This effectively enforces strict two-way uniqueness.
We label pixels that do not have a match as occluded pixels.

3 Active Object Extraction

We share many common grounds with the active vision
framework. In active vision, objects of interest are being ac-
tively acquired by cameras mounted on computer controlled
platforms to simulate the visual acquisition process of hu-
mans; the output is a piece of video. In our task, we assume
that an active observer already acquired the video and ana-
lyze the motion patterns. As a result, we extract the objects
of interest from the video.

The three types of actions performed by the active ob-
server can be readily identified from the estimated disparity
maps. In particular, the magnitudes of the 2D disparity vec-
tors reveal much of the needed information. We perform
foveated analysis of the 2D disparity magnitude map. If
the input video has dimensionN × M , then we define the
foveal region as the rectangle of sizeN

4 × M
4 centered on

the image.
The saccadic movements consist of rapid motions of the

camera aimed at focusing an object on the fovea. The re-
sulting magnitudes of the 2D disparity vectors are usually
large. In addition, the closer an object is to the camera, the
larger the magnitude of the disparity. This is particularly
true for the foveal region. Thus, if the average disparity
magnitude in the fovea is greater than some threshold, then
we can classify the two consecutive frames in which the dis-
parity map is derived from as part of a saccadic movement.
Smooth pursuits are accurate movements of the camera to
keep the target on the fovea. By examining the magnitudes
of the disparity vectors, we see that disparity magnitudes of
the object of interest are very small since the camera com-
pensates for the object’s motion and tries to keep it at the
same location on the fovea. Other areas in the image usually
contain large disparity magnitudes. The multi-baseline pur-
suits are by far the most complex movements. It generally
involves a combination of camera movements such as hori-
zontal and vertical displacements (i.e., tracking and boom-
ing) coupled with necessary panning and/or tilting in order
to keep the object of interest in view. Similar to smooth pur-

suit movements, the multi-baseline pursuits result in small
disparity magnitudes within the region containing the object
of interest and large disparity magnitudes elsewhere.

From the above observations, the object of interest can
be readily detected in a video. We summarize our object
extraction algorithm as follows:

1. Compute the dense 2D disparity maps for consecutive
frames in the video using the algorithm described in
Section 2.

2. Examine magnitude of the disparity vectors in the
foveal regions of each disparity map.

3. If the average disparity magnitude in the fovea is less
than a thresholdτ , then the current action must be ei-
ther smooth pursuit or multi-baseline pursuit. Grow
a region from the fovea containing only pixels having
disparity magnitudes less thanτ .

4. Fill holes in the region computed in the previous step
and output the resulting object.

4 Experimental Results

We have implemented the proposed active object extraction
algorithm using C++ on a PC platform. We have tested our
algorithm on a number of video sequences taken by a freely
moving camera in the hands of a human user. Because of
space constraints, we only present the result on two such
sequences.

Since the thresholdτ depends on the speed of the cam-
era motion, we set it to be20% of the maximum disparity
magnitude in each frame. Fig. 1 shows the camera perform-
ing smooth pursuit of a moving toy truck. From this figure,
we can clearly see the disparity magnitudes within the re-
gion containing the toy truck are very small. As a result, the
truck is correctly extracted from both disparity maps. Fig.
2 contains a longer video which pans horizontally to the left
until the monk figurine is centered on the fovea. Then, the
camera rotates around the monk figurine in the last three
frames. This video has several interesting characteristics.
First, a number of objects are present throughout the video.
It therefore tests the algorithms ability to extract only the
object of interest. Second, a combination of saccadic and
multi-baseline pursuit are used to make this video. This
tests the algorithm’s ability to distinguish between thesetwo
types of actions. In both cases, our algorithm performs cor-
rectly by extracting only the monk figurine from the entire
video sequence.

5 Conclusion

In this paper, we have presented a novel active object extrac-
tion algorithm. This algorithm extracts only the object of in-
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Figure 1: Object extracted from smooth pursuit. (a) Input frames, (b) Computed disparity magnitudes from consecutive
frames (red pixels indicate occlusion), and (c) the extractobject of interest.

(a)

(b)

Figure 2: Object extracted from a combination of saccadic and multi-baseline pursuit. (a) The input frames and the computed
disparity magnitudes (red pixels indicate occlusion), and(b) the extracted object of interest.

terest from a given video by performing analysis of motion
patterns on the foveal region of the 2D disparity magnitudes
based on the analysis of three types of camera movements
by the author. In particular, the multi-baseline pursuit al-
lows uncalibrated camera under unrestricted motion. This
is significantly different from previous approaches such as
multi-baseline stereo in which camera displacements are
regular and controlled. Because accurate estimation of dis-
parity is an important factor for the success of this algo-
rithm, we have also developed a new uncalibrated cooper-
ative stereo algorithm that can compute 2D disparity esti-
mates directly on non-rectified images.

We are currently working on improving this object ex-
traction algorithm by considering combining low level im-
age features such as edge maps and textures with disparity
magnitudes to increase the accuracy of object boundaries.
In addition, we are seeking ways to incorporate different
views of the object of the interest into a single unified rep-
resentation.
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