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AbstractÐIn this paper, a new variable resolution technique±Foveate Wavelet

Transform (FWT) is proposed to represent digital images in an effort to efficiently

represent visual data. Compared to existing variable resolution techniques, the

strength of the proposed scheme encompasses its linearity preservation,

orientation selectivity, and flexibility while supporting interesting behaviors

resembling the animate vision system. The linearity preservation of the FWT is

due to the fact that only low and/or high-pass filterings are carried out in different

regions of an image in the transform. The orientation selectivity indicates the fact

that details along the horizontal, vertical, and diagonal directions are readily

available in the FWT representation. The flexibility of this new representation

technique is witnessed by the readiness of its extensions to represent foveae of

different number, shape, and locations. To demonstrate the efficacy of the FWT,

two applications are presented. First, an FWT-based active camera control

scheme is developed, where the computer can move a camera to track the moving

object in the scene. Second, an FWT-based method purporting to recover pan/tilt/

zoom camera movements from video clips is developed. Experiments of these two

applications have shown encouraging performances.

Index TermsÐActive vision, wavelet transform, variable resolution techniques,

gaze control, object tracking, motion detection.

æ

1 INTRODUCTION

IN most vision applications, due to the great amount of visual

information involved in relatively high resolution pictures taken

by cameras, the demand on computation, storage, and commu-

nication is prohibitive. As described in [2], in order to cope with

the great amount of information posed by nature, the animate

vision system (AVS) has two areas: fovea area (FA) and periphery

area (PA). The FA, generally a small portion of the entire view,

provides detailed information; whereas the PA, which covers

much wider viewing angles, offers the background information

and incurs little processing load. With these two different areas,

two types of eye movements carry out the routine tasks: catching

and holding. The former, in the form of saccades, are resulted from

a shift of attention; whereas the latter, in the form of smooth

pursuits, are employed to hold an object and follow it when it

moves. The latency of these responding movements is minimized

due to the existence of the foveal and peripheral structures of the

AVS. In this manner, the AVS works efficiently and effectively,

which sheds a light on some tracks for possible digital image and

video representations.
Motivated by the AVS, an ensemble of methods referred to as

variable resolution (VR) techniques have been developed. Three of

them are introduced briefly below. The images before and after the

VR transforms are denoted as retinal and cortical images,

respectively.

1. Log-Polar transforms: This group of transforms is due to
the biological research conducted by Schwartz [13],
where it is concluded that the mapping between the
retinal image and cortical image for human eyes can be
approximated by a logarithmic function. The Log-Polar
transform, one of the most frequently used techniques
[11], [6], is formulated as follows: z0 � log z if jzj > rf ,
otherwise z0 � z. Where z � rei� is the complex variable
corresponding to the representation of a point �x; y� in
the Descartes plane, thus x � r cos � and y � r sin �; rf is
the radius of the fovea in the shape of a circle.

The Log-Polar transform offers a close emulation to the

AVS fovea-peripheral structure. By exploiting the polar

coordinates, it simplifies centric scaling and rotation [22],

because these transformations now become shift opera-

tions in the log r and � dimensions, respectively. As shown

by Sandini and Dario [11], the scaling and centric

rotational invariances of the Log-Polar transform make it

a useful tool for object recognition. In a more recent project,

Sandini et al. [12] successfully developed a videophone

system for elderly and disabled people, where a camera

mounted on a pan-tilt unit with a Log-Polar CMOS sensor

delivered video data in an efficient space-variant manner.

In spite of its advantages, there is however, a major

drawback of the Log-Polar transform. In general, image

patterns of linear structures and translating movements

are distorted into streamlines of log-sine curves [22] which

adversely complicates the analysis of these common

problems in computer vision.

In order to combat the irregular cortical images after the

logarithmic transform and the multiple foveae, Basu and

Wiebe [23], [24] proposed several updated Log-Polar

mappings: The moving fovea, the stretched and Cartesian

variable resolution transforms.
2. Reciprocal wedge transform (RWT): The RWT transform [16]

is defined by the following mappings from a rectangular-
shaped retinal image into a wedge-shaped cortical image:
w ' Tz, where w � �u; v; 1�T and z � �x; y; 1�T are the
corresponding homogeneous coordinates of a point in the
cortical and retinal images, respectively. The 3� 3 matrix
T is the cross-diagonal unit matrix. With this matrix
notation, some commonplace operations such as transla-
tion, rotation, and scaling can be formulated as the
multiplication of corresponding matrices, whereby a
much easier image manipulation is fostered. The RWT
encompasses valuable characteristics such as simplicity
and linear structure preservation. While its shortcoming
includes the irregular shape of the resultant cortical
image and the limited representation powerÐonly the
streak-shaped animate visual systems can be represented.

3. Multiresolution-based transform: The central idea shared
by all multiresolution VR techniques is to represent the
fovea with higher resolution and the periphery with
lower resolution in a pyramidal representation. A
hierarchical architecture for the representation and
multiprocessing of foveal images, referred to as foveal
polygon, has been developed in [1]. The merits of this
type of techniques are that: 1) The mappings involved
are linear; 2) the shape of the cortical image is regular,
and 3) it is easy to implement. However, the major
problem is its inability to emulate the AVS due to the
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presence of the resolution discontinuity across neighbor-
ing acuity levels, which also complicates the visual
processing across those levels. Based on multiple spatial
resolution representation, Klarquist and Bovik [8]
developed a foveated vergent stereo active vision
system FOVEA for the purpose of recovering 3D scenes.
Chang and Yap [3] achieved foveation by manipulating
wavelet coefficients in the context of visualization.
Without consideration of the perfect reconstruction of
the FA and smooth resolution transition, this scheme is
still an implementation of the multiresolution scheme.

In this paper, the Foveate Wavelet transform (FWT), a novel

wavelet-based VR technique to represent an image with spatially

variable resolution, is proposed. The FWT provides various merits

such as its linearity preservation, orientation selectivity, and high

flexibility while exhibiting desirable visual effects reflecting the

VR result. The linearity preservation of the FWT is due to the fact

that only low and/or high-pass filterings are carried out in

different regions of an image during the transform. The orientation

selectivity indicates the fact that details along the horizontal,

vertical, and diagonal directions are readily available in the

FWT representation. The flexibility of this new representation

technique is witnessed by the readiness of its extensions to

represent foveae of different number, shape, and locations.

Two applications of the FWT are presented in this paper. First, by

analogy to the eye movements of the AVS, we develop a scheme

carrying out active camera control based on the FWT, which is the

essential task of exploratory and purposive vision. As a second

important application of the FWT, a method to recover pan/tilt/

zoom camera motion from videos is introduced, wherein a motion

detection algorithm is first applied to FWT-based frames to acquire

dense motion fields. Next, pan/tilt/zoom camera motions and their

combinations are recovered by inspecting the behaviors of the

motion fields.

These two applications are in the research areas of object

tracking and motion detection which have received extensive

attentions in computer vision and image processing communities.

State-of-the-art object tracking methods usually exploit prior high-

level knowledge [5] and a multitude of visual cues in order to track

objects of interest, e.g., salient image features by Smith and Brady

in ASSET [14] and moving corner cluster by Reid and Murray [10].

Some of the existing motion detection techniques include:

1. MRF-MAP framework: The Markov Random Field (MRF)
is used to model the visual constraints and the Maximum a
Posteriori (MAP) is searched to obtain the most likely
configuration [25].

2. Simultaneous multiple motion detection: Regions of
different motion are obtained simultaneously through a
clustering process [17].

3. Dominant motion detection: Within each iteration a single
region of dominant motion is segmented out. This process
is then iterated after the previous region of dominant
motion is removed [7].

Object tracking and motion detection can find a broad spectrum of

civil and military applications in areas such as intelligent video

surveillance, robot control, video processing, and moving object

extraction.

2 FOVEATE WAVELET TRANSFORM

2.1 Discrete Wavelet Transform

Localization in both frequency and time/space domains is the

greatest advantage of the discrete wavelet transform (DWT) over

Fourier transform-based methods, e.g., Discrete Fourier Transform,

which are only localized in the frequency domain. The spatial

localization indicates that after the wavelet transform the coefficients

in a certain position at the wavelet subimages correspond to the

details of different frequencies in the corresponding spatial location.

Whereas the frequency localization indicates the fact that each

subimage of the wavelet transform corresponds to the information of

a single frequency and orientation for the original image.

The core of the DWT is two filters, one is of low-pass or

averaging nature, denoted as h, the other is of high-pass or

differential nature, denoted as g. To obtain the DWT, first one

applies h and g, respectively, in the vertical direction and

decimates the results by a factor of two. Wvl and Wvh are obtained.

Next, h and g are applied to Wvl and Wvh in the horizontal

direction. After decimation, four subimages, Wll, Wlh, Whl, and

Whh, are derived. They are denoted as S2, W 1
2 , W 2

2 , and W 3
2 , which

represents a coarser version, the vertical details, the horizontal

details, and the diagonal details of the original image respectively.

This process can be further repeated on S2. In Fig. 1, a three-level

DWT is depicted. To reconstruct the image from the DWT, the

reconstruction filters are used, which are h and g or the duals h�

and g� for orthonormal and biorthonormal wavelets, respectively.

Wavelets whose h and g filters are of the length m and n,

respectively, are denoted as m/n wavelets. Biorthonormal wave-

lets are usually used in image processing because there is no

nontrivial orthonormal linear phase filters with the perfect

reconstruction property [9].

2.2 The Foveate Wavelet Transform

Following the notation of Fig. 1, the FWT is introduced using an

FWT mask $ which is the union of subimages $i
js (with the same

size as Wi
j s) and $8 which corresponds to S8.
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Fig. 1. (a) Discrete wavelet transform. (b) FWT mask $: brick-patterned area±preserved S8, deeply shaded area±OFA, lightly shaded area±PPA, and blank areaÐDPA.

(c) Original image I . (d) FWT F�I�. (e) Reconstructed image.



Definition. For image I , its FWT F�I� is $ �DWT �I�, where
DWT �I� is the DWT of I , 00 � 00 is the pixel wise multiplication of
corresponding images.

Assuming that m/n wavelets are applied, the FA is a square of
the size s, which is one-fourth of the side of the original image
located at the center. Assume the origin of the coordinate system of
each subimage is at its center and M �Maxfm;ng. The OFA,
Original FA, corresponds to the spatial area of the original FA. The
PPA, Preserved PA, refers to the part of PA whose coefficients in the
detail wavelet subimages are preserved. The DPA, Discarded PA,
indicates the part of PA whose detail coefficients are discarded.

�x; y� 2
OFA if both jxj and jyj 2 �0; s2j�;
PPA if both jxj and jyj 2 �0; s2j� 3

4M� and �x; y� 62 OFA;
DPA otherwise:

8><>: �1�

The values of the components of the FWT mask $ are then
assigned as follows: 1) $8�x; y� � 1, for all �x; y� in S8 and 2) within
$i
j: $

i
j�x; y� is 1 if �x; y� 2 OFASPPA, 0 otherwise.

The reconstructed image of the FWT is the inverse wavelet
transform starting from F�I�. The above definition of the FWT
indicates that all the detail information in the OFA and PPA in the
DWT representation of a given image is preserved, while those in
the DPA are discarded. The proposed FWT and the reconstructed
image for Lenna is depicted in Fig. 1. Due to the preceding
formulation of the FWT, the following advantages are present:

1. Direct image analysis in the transform domain: This is due
to localization of the wavelet transform in both the spatial
and frequency domains. Because of the frequency localiza-
tion, details in the FA of a certain frequency can be
extracted from the corresponding detail subimages. For
instance, if the information with low frequencies is of
utmost interest, then our detection algorithm needs only be
conducted on the detail subimages of higher levels, such as
Wi

8s and Wi
4s as depicted in Fig. 1. Due to the spatial

localization, the feature detection algorithms which use
spatially localized operators can be applied directly on the
portions of the FWT. Therefore, the most important image
analysis operations such as feature detection and feature
match can be applied directly in the transform domain,
which is impossible for most VR techniques. In [20],
various direct image analyses have been applied to the
FWT successfully.

2. Orientation selectivity: As described previously, for the
discrete wavelet transform, detail subimages W 1

j s, W 2
j s,

and W 3
j 's correspond to the vertical, horizontal, and

diagonal details, respectively. This type of orientation
selectivity is unique to the DWT and is preserved in the
PPA/OFA's. Hence information with respect to these three
directions in PPA/OFA's is readily available in the
FWT representation and can lend themselves to an efficient
information retrieval. In [19], for the purpose of detecting
stereo disparities, where of major concern is the vertical
edges, the disparity search can be conducted only on the
PPA/OFAs in W 1

j 's, a mere one-third of the original
FWT representations, thus resulting in a significant
computational economy.

Apparently, other VR techniques provide their own

ªorientation selectivity.º For example, for Log-Polar trans-

form, this occurs along the polar dimensions of r and �.

While this kind of ªorientation selectivityº is beneficial to

certain object-centered operations such as looming/zoom-

ing [12], it is less applicable to most common operations

and movements which can be best captured and described

in the Cartesian image space where the orientation

selectivity of the FWT applies as shown in the preceding

stereo example [19].
3. Smooth transition across FA and PA: In general, the closer

the position of a pixel is from the FA, the higher resolution
is exhibited there. This is achieved by the following two
factors:

a. The presence of the PPAs in the detail subimages. In the
FWT, the PPAs at all levels are of the same width.
Recall that more decimations occurred at higher levels
of the wavelet subimages representing less details,
thus the effective coverage of the PPA's increases
when going up the wavelet subimage hierarchy. This
is similar to what is in the multiresolution scheme,
except the PPA masks are now used and defined in
the wavelet transform domain. As a result, the lower
frequency coefficients in the PPAs at higher levels
have their impact on larger spatial areas in the
reconstructed images.

b. The shape and nature of the reconstruction filters.
Generally, the magnitudes of the nonzero items
h��k� and g��k� decrease as the magnitude of the
index k increases. In addition, since the lengths of the
two filters generally employed in image processing
tasks are larger than two, their application thus
overlaps, which indicates that the value of one
wavelet coefficient makes contributions to the recon-
structed values of those positions which are neighbors
of its corresponding spatial area.

The presence of the PPAs can also ensure the perfect
reconstruction of the FA. Due to the overlapness of the reconstruc-
tion filters as previously described, in order to render the FA as a
perfect reconstruction area, the preserved area in detail subimages
should have extra areas around the OFA which spatially
corresponds to the FA. Because for the inverse wavelet filters g�

and h� the magnitude � of the nonzero items with the largest index
number is extremely small, the contribution of the coefficients with
distance greater than dM=2e in the inverse wavelet transform,
which is a sequence of convolutions, is negligible. Therefore, the
minimal value of w to achieve a perfect reconstruction of FA is M

2 .
For the m=n wavelets used in the image processing community,
the values of m and n are usually less than 10. If one sticks to the
M=2, the width of the transition area is too narrow and sharp to
simulate the AVS. Hence, we adopt w � 0:75M as the width of the
PPAs in the FWT representation in order to result in a wider and
smoother transition area.

From the above definition of the FWT, it bears some
resemblance with other multiresolution schemes in achieving the
spatially variable resolution. However, the major difference
between these two techniques lies in the fact that the FWT
manipulates the frequency/spatial details and the VR is achieved
by the intentional removal of frequency/spatial details. Whereas,
most multiresolution techniques realize variable resolution by
working entirely in the spatial domains. In [18], we show that, in
addition to the reduced space consumption and inherent powers of
wavelet transform such as the space and frequency localization
and orientation selectivity, the FWT has the valuable feature of
emulating the AVS more closely than its multiresolution counter-
parts, i.e., the resolution realized from the reconstructed image of
the FWT representation exhibits smoother transition from the
foveal area to the peripheral area than that of the multiresolution
representation.

With the FWT, unlike other VR techniques, no disparity exists
with different shape, number, and positions of the FA. The
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multiple foveae [24] and streak-shaped fovea [16] can be achieved
with ease under the framework of the FWT, i.e., by employing
more OFAs/PPAs and a streak-shaped FA, respectively. As
described in [24], there are cases where more than one FA is
present for animate vision systems. It is the same case for images
or videos, where more than one portion may be of utmost interest.
It is rather unwieldy for other VR techniques to cope with these
cases. Wiebe and Basu discovered two elegant yet tricky strategies,
namely, cooperative and competitive methods, to attain a
representation of multiple foveae [24]. An image with two-FAs is
shown in Fig. 2, where the two FAs are around the heads of the
two birds. Therefore, the flexibility of the FWT is clearly
demonstrated.

3 ACTIVE CAMERA CONTROL

3.1 FWT-Based Active Control Algorithm

Equipped with the concepts of FA and PA, the FWT can be
employed to actively govern the imaging parameters of a camera,
which is referred to as gaze control in [15]. The catching movements
now indicate a rapid panning/tilting of the camera (saccade) in
order to capture certain object of significant motion in the
periphery (DPA or PPA). The holding movements, in the form of
minor panning/tilting or zoom, are meant to better track moving
objects inside the FA. The previous two camera movements are
denoted as gaze change and gaze stabilization, respectively, which are
two primary categories of gaze control [15]. In our implementation,
the camera control scheme is based solely on the motion of
surrounding objects in the FWT representation, which can be
approximated by the Foveate Potential Moving Area (FPMA). The
process of creating the FPMA is indeed the difference method
carried out on the FWT representation. It is obtained by the
following three steps: 1) differencing and thresholding adjacent
FWT representations in the highest level, 2) propagating the
nonzero areas in the upper level to lower levels according to the
inter-band spatial relationships of the DWT, and 3) conducting
component labeling based on 8-connectivity, components whose
area is smaller than a given threshold are deleted. The resulting
FPMA is a collection of blobs of considerable size. Therefore, the
centroid of each FPMA blob can be viewed roughly as the center of
a moving object, thereby sophisticated motion detection process is
bypassed to effect a real-time response. Based on the FWT, the
following algorithm purporting to control the camera motion
actively is proposed, where C is the centroid of one or many
FPMA blobs, fopt is the object to be employed to draw the attention
of the camera centered at Onew.

PROCEDURE FPMA-FWT

1. Preprocessing:

Compute the area A of each FPMA blob f in terms of the

original resolution;

2. Pan/tilt control:

IF there exist f's whose area A(f) is greater than �1

set Onew to C�fopt� where fopt � argMaxffA�f�g;

ELSE IF there exist f's whose A(f) s larger than �2

set Onew to C�fopt�, where fopt �
P

F f

and F � ff : A�f� > �2g;
ELSE no change is made to Onew and set fopt to the

area with the largest area;

fopt � argMaxffA�f� : f
T
OFA 6� ;g;

point the center of the camera to Onew through pan/tilt;

3. Zoom control:

IF Onew is inside OFA: zoom-out if A�fopt� � �3,

zoom-in if A�fopt� 2 ��4; �5�
END FPMA-FWT

The �s (�1 > �2; �4 > �5) are prescribed thresholds. In Step 2, if
there exists an FPMA blob whose area exceeds �1, the centroid of
the one with the most area is opted as Onew; in cases where no
FPMA has an area greater than �1, the one-object constraint is
assumed, because of this the FPMA's with area larger than �2 are
viewed as from the same object, thus the centroid of the ensemble
of these blobs claims Onew; otherwise, Onew remains unchanged. In
Step 3, the zoom is only issued if the Onew lies in the OFA. When
the corresponding area is greater than �3, a zoom-out is to be
issued; while if the area lies in between �4 and �5, a zoom-in is
invoked. In our implementation, by trial and error, the values
opted for �1, �2, �3, �4, �5 are A0=32, A0=128, A0=64, A0=128, A0=200,
respectively, A0 is the area of the original frame.

3.2 Experimental Results

The proposed active camera control scheme FPMA-FWT has been
implemented and tested extensively using a pan-tilt-zoom camera
on a NOMAD mobile robot. All computations are performed by
the on-board computer. Due to the FWT representation, where the
PA undergoes a low-pass process, the camera is more discrimina-
tive to motions inside the FA while minor motions and noises
outside the FA are ignored. To illustrate, if a motion of small
magnitude, say seven, is present in the PA of the current frame,
then in its FWT representation, no difference from the FWT of the
reference frame can be found, thereby no FPMA is labeled for this
motion. On the other hand, the camera is also set to be alert to
relatively significant apparent motions in the periphery so as to
invoke saccadic movements for gaze change.

As for the efficiency of the FPMA-FWT, two factors are
involved: 1) The new VR technique FWT reduces the search space
to about one-eighth of the original size, and 2) the camera motion is
determined by the FPMA, which is generated through a process of
masking and component labeling. In our experiments, the average
time for determining each camera movement is 0.47 second.

In order to have a comparison between the presence and
absence of the FWT as the representation, an algorithm based on
the PMA of the original frame is also implemented, denoted as
PMA-ORIGINAL. Another algorithm is implemented using the
PMA based on the whole wavelet transform of the original frame,
denoted as PMA-WAVELET. Notice that for these two schemes,
except without the OFA, PPA and DPA concepts, the PMA

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 23, NO. 8, AUGUST 2001 899

Fig. 2. Illustration of multiple FAs.



labeling processes are also conducted, and the criteria for camera

pan/tilt and zooms are the same as those of the FPMA-FWT.
For the FPMA-FWT, only if a drastic motion occurs outside

OFA can the saccade be issued. Conversely, for the other two

methods many more unnecessary saccades are issued because

these two methods are sensitive to motions in any position within

the view. For the same reason, the other two methods have a

difficult time to hold the object in the view, while the FPMA-FWT

performs well in holding the object in OFA in the form of minor

pan/tilt and zoom due to its variable allocation of attention to the

FA and PA. Consequently, a much more satisfactory tracking

behavior similar to the AVS is resulted from the FPMA-FWT.
To better illustrate the strength of the FPMA-FWT, a scenario is

presented below as a comparison among these three different

motion control schemes. The results are used to measure its

success in simulating eye movements of the AVS. In this scenario,

first only one man is in the view, then a second man is present and

talks. Indeed the presented scenario, including gaze change and

stabilization, is a typical scenario commonly encountered by any

active systems. The responses of all three algorithms are illustrated

in Fig. 3 and explained below.
The image sequences shot by the FPMA-FWT scheme in the

given scenario is illustrated in the first row of Fig. 3. In the

presence of the second man (Column 2), it responds in the right

wayÐa saccade is issued and the newly appearing man is located

on the central part of the view (Column 3). Next, due to the fact

that the second man who has some head and shoulder motion

stands far away from the camera, a zoom-in is issued by the

FPMA-FWT since the moving area is around the OFA and qualifies

the condition of the FPMA-FWT for zoom-in (Column 4), which is

in agreement with the response of the AVS. Finally, because the

second man is talking, which indicates only minor facial motions

are involved, the holding motion of the camera should apply. Here

the FPMA-FWT behaves as we desired: It locates the man on the

center of each frame with only some minor pan/tilt motions

(Column 5). This saccade±zoom±hold scenario emulates the

response of the AVS well. Although, only one episode is presented

in this paper, the active camera control has been autonomously

and reliably working in our lab.
The image sequences shot by PMA-ORIGINAL and PMA-

WAVELET are shown in the second and third row of Fig. 3

respectively. When the second man presents, both methods fail to

issue a correct saccade since they are sensitive to the minor motion

of the body of the first man, which contributes a large PMA, hence

only a minor pan/tilt motion is issued to hold the first man. In the

ensuing images, as results of the competition for the attention of

the camera between the two men, some jerky saccades are

provoked by these two schemes since they are alert to motions
in any position in the view, no matter how small its magnitude is.

4 RECOVERING CAMERA MOVEMENTS FROM

FWT-BASED VIDEO

We shall demonstrate that pan/tilt/zoom camera movements can
be effectively recovered from FWT-based videos under the
assumption that the translating motion of the camera and object
motion are too small compared with the pan/tilt/zoom velocity of
the camera to be taken into account. Based on the formulas of the
pin-hole camera image formation and the general 3D motion field,
two properties can be derived for FWT-based representation.

1. Zooming characteristic: If the quotient q of the magnitude of
the motion vector of any position over its distance from c is
a constant, a camera zoom is detected. The zoom-out and
zoom-in are determined by the occurrence of the Focus of
Concentration (FOC) and Focus of Expansion (FOE).

2. Pan/tilt characteristic: The magnitudes of motion vectors
~v � �vx; vy� caused by camera pan/tilt movements are
not of constant values across the entire image. For a
pinhole camera, the errors �x and �y from a constant
motion vector throughout the frame are of the value
jvxj sin2 'x and jvyj sin2 'y, respectively, where 'x and 'y
are the corresponding viewing angles projected along
the X and Y axes. An FWT-based approach reduces the
impact of these errors greatly, thus, resulting in nearly
constant motion vectors in the FWT-based frame.

To recover the motion field, a two-pass algorithm (TPA) based
on Mean Field Theory under the Markov Random Field framework
was proposed in [21], where two MRF's are used to model the
motion vectors and unpredictable blocks. The configuration of
motion vectors minimizing the energy functions is obtained as the
detection results. More details about this algorithm can be found in
[21]. The corresponding TPA based on the FWT representation,
denoted by FWT-TPA, is then as follows: 1) First, perform the
pixel-based TPA in S8. 2) Propagate and refine motion vectors in
the OFA and PPA of lower subbands in the FWT representation,
now for each iteration the energy function to be minimized is
formulated by considering the frequency information of the sibling
locations in the three subbands. The motion vector field for level i
obtained by carrying out the FWT-TPA is denoted as Vi.

4.1 Pan/Tilt/Zoom Camera Movements Recovery

Motion fields V8 and V1 as detected by the FWT-TPA are the
foundations upon which our camera motion recovery scheme is
built. Since V8 has coarse motion vectors for each block, it thus
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Fig. 3. Videos shot by the computer controlled camera in the same scenario with three different methods. Row 1: FPMA-FWT. Row 2: PMA-ORIGINAL.

Row 3: PMA-WAVELET.



encompasses the global information. Whereas V1 has those

corresponding to the FA of the highest possible resolution. The

combination of these two fields yields a reliable indication of the

camera motion. The other two intermediate fields, i.e.,V4, V2, are

not employed in the ensuing camera motion recovery. Because S8

is a low-passed version of the original frame by a scale factor of 8,

the errors �x (or �y) in most areas, as described by the pan/tilt

characteristic, are far less than one and can thus be ignored.

However, in those regions close to the boundary this error may

cause problems but these regions are merely very small portion of

the DPA and their impact is ignored effectively by our use of

robust statistical method in obtaining the motion fields. Thus,

velocities in the DPA are also roughly constant. As for the FA, the

viewing angles inside it are extremely small due to the choice of

the FWT, recall that 'x ('y) has small magnitude for neighboring

frames, which induce a vx (or vy) of small magnitude, thereby �x
(or �y) can be ignored and, thus, motion vectors in V8 are

approximately of constant value. Consequently to detect the

camera pan/tilt, one can check the constancy of the motion vectors

in V1 and V8. Our camera motion recovering algorithm, denoted as

FREC, goes through the following three cases to determine

different camera motions.

4.1.1 Pan/Tilt Only

As previously discussed, when only pan/tilt camera motions are

involved, the constancy should be exhibited in both V1 and V8.

Hence, in order to detect the pan/tilt, in V1 we count the number of

different motion vectors. If one motion vector counts overwhel-

mingly more than any others, it is then accepted as the camera

pan/tilt motion vector �p1; t1�. The pan/tilt camera motion vector

�p8; t8� in V8 can be obtained in the same manner. If

jp1 ÿ p8 � 8j � � , where � is a small number (six is selected in our

implementation), then �p1; t1� is accepted as the pan/tilt motion.

The pan/tilt angle can be further obtained if f is given.

4.1.2 Zoom Only

Two steps are employed to detect the zoom motion:

1. According to the zoom characteristic, a camera zoom can
be recovered by checking the ªconstancyº of q for each
block/pixel in both V1 and V8. It is commonplace that in the
results from the vision algorithms, many outliers are
present. An ensemble of powerful tools from robust
statistics can be employed to discount the adverse impacts
of these outliers. To determine the constancy of q from
noisy results of V1 and V8, the order statistics is utilized.
Here, motion vectors are first sorted, then those vectors in
the highest and lowest 20 percent are trimmed out. Next,
the corresponding mean � and standard deviation �, are
computed. If � is extremely small, the motion vectors are
considered to be constant, which is �, and goto 2).
Otherwise, exit from the zoom detection.

2. To distinguish the two cases of zoom, a vote on the
direction of each motion vector ~v on the position m is
incurred on V1 and V8 independently:

a. calculate the angle � 2 �0; �� between ~v and the vector
~mc.

b. If � < �
4 , the vote value valm for ~v on m is 1; if � > 3�

4 ,
valm is -1; otherwise the corresponding valm is 0.

c. Calculate V ote �Pm valm, suppose the number of
pixels/blocks under consideration is N. On both V1

and V8 if V ote > 3N
4 for their own N , a zoom-out is

declared. If V ote > - 3N
4 , the zoom-in is claimed.

Otherwise, no zoom is claimed therein.

4.1.3 The Mixture of Pan/Tilt and Zoom

As a superposition of zoom and pan/tilt, for each pixel/block, the
motion vector v projected on the two planes X and Y vx and vy are
written as vx � zx � p and vy � zy � t, where zx and zy are the
contribution ~z of a camera zoom along x and y axis, respectively.
To recover p, t, and the fact it is a zoom-in or zoom-out, according
to the zoom characteristic, the following steps are employed:

1. For two motion fields V1 and V8 respectively:

a. Add all vx's for each pixel/block together, according
to the zoom characteristic, zx's for all pixels cancel
each other, the mean of this sum can be viewed as the
motion p contributed by pan. Apparently, t can be
obtained in the same manner.

b. From each vx and vy subtract the p and t, then we do
the zoom detection on the remaining motions in the
same manner as the last case.

2. Check the alignment of the zoom conclusion and the pan/
tilt numbers for V1 and V8. If no significant difference is
spotted, the recovered camera motion is declared as that
estimated in V1.

In order for the preceding algorithm to work, motion vectors for
most pixels in V1 and V8 have to be estimated. Sufficient textures
are thus needed in S8 and the FA of the original resolution. Given
that the resolution of S8 is already one-eighth of that of the original
image, and it is not unreasonable to assume that in the fovea area
sufficient texture is always present, most motion vectors in V1 and
V8 are thus computed using the FWT-TPA algorithm. The use of
robust statistical schemes alleviate the negative impact of regions
which lack textures in our decision about pan/tilt/zoom move-
ments. Specifically, because of the use of order statistics, for scenes
whose regions of insufficient texture are less than 20 percent of the
entire view are effectively removed. Even if they are slightly more
than 20 percent, the way for our algorithm to arrive at our
conclusion is also able to alleviate its impact.

4.2 Experimental Results

In this section, to measure the performance of the proposed
scheme for camera motion recovery, we feed videos with known
camera motions into the computer, then camera movements
computed by the recovery program is compared to known ones,
whereby an effective indication of the efficacy of the recovery
algorithm is obtained. Here, two other recovering algorithms are
also implemented to present comparisons. The first is based on
frames of the original resolutions, while the other is based on the
wavelet transform of the whole image. The motion detection
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Fig. 4. The FWT-reconstructed image sequence with known camera motions.



procedure used by both schemes are again TPA, denoted as ORIG
and WAV, respectively.

As an illustration, six frames in a clip with known camera
motions are presented in Fig. 4, which are reconstructed from
their corresponding FWT representations. In this clip, the
camera first underwent a zoom-out, then some pan/tilt
motions, finally a zoom-in with pan/tilt was issued. The
recovered motion with respect to four pairs of frames with
known motions with the three different algorithms are listed in
Table 1, where motion 1, 2, 3, and 4 corresponds to zoom-out
(q � 1:0), pan/tilt (2, 4), pan/tilt (12, 15), and zoom-in (q � 0:5)
with pan/tilt (-3, -4), respectively. Whereby, one can see that
the FREC performs better than the other two methods. Here,
one unit of pan/tilt position is 740 seconds arc (� 0:2�). In
frame 50 and 90, it can be observed that regions of insufficient
texture cover roughly 20 percent to 30 percent of the entire
view, the proposed algorithm FREC still succeeds in arriving at
the correct detection. Indeed, this is so achieved due to our use
of robust statistical techniques in reaching the conclusion about
pan/tilt/zoom movements. Therefore, our algorithm is reason-
ably resilient to regions of insufficient textures. Of course, in
cases where more regions (> 1

3 ) are of insufficient texture the
robust statistical techniques adopted in our algorithm fails to
discount their impact any more and, thus, unable to obtain the
correct detection.

In order to further inspect the performance of the proposed

algorithm, two pairs of outdoor frames with significant depth

differences as shown in Fig. 5 are fed to our program to recover the

camera movements. The pan/tilt camera movement from Fig. 5a)

to Fig. 5b) is (2,3). The movement recovered by ORIG, WAV, and

FREC is (1,2), (2,2), and (2,3). As can be seen that the viewing

angles ' in the DPAs have posed negative impacts on the

recovered movements of the ORIG and WAV; whereas, FREC is

resilient to this problem based on the pan/tilt characteristic. For

the second pair of frames, the camera movement from Fig. 5c) to

Fig. 5d) is a zoom with q � 1
3 . The movement recovered by ORIG,

WAV, and FREC is 0.19, 0.23, and 0.29, respectively. As previously

reasoned the negative effects of those regions of insufficient texture

are reduced due to the usage of the robust statistical techniques in

our algorithm. More experiments along this line provide similar

results as presented here. They further confirm the two character-

istics and the fact that our algorithm is resilient to significant depth

differences in the presence of camera pan/tilt/zoom motions.

Since the ORIG works on the frame of the original resolution, it

can only work for extremely small pan/tilt and zoom because

increasing the size of the search window is not only time

consuming but also error-prone. Therefore, no more experimental

results will be presented for it. More tests are conducted on the

WAV and FREC schemes, both refining the motion vectors

hierarchically. In Table 2, the overall results for pan/tilt, zoom,

and a mixture of them are reported, each set of them contains 50

different frame pairs. Two measures �1 and �2 are defined to

quantitatively compare performances of different methods. The

accumulated error �1 for pan/tilt is defined as
P

i
jvi
rh
ÿvi

kh
j�jvirvÿvikvj
2 ,

where i ranges all frame pairs whose known camera movements

are pan/tilt, and �vikh; vikv� is the known camera pan/tilt movement

for frame pair i, and the corresponding recovered movement is

�virh; virv�. �2 defines the accumulated error for zooming movements

�2 �
P

j cj, where cj is
qjrÿqjk
qj
k

if a zoom is detected and one

otherwise. j ranges over all frame pairs whose known camera

movements are zooms, qjr and qjk are the recovered and known

zooming quotients as defined in the preceding section.

For the mixture case, the corresponding accumulated error

� � �1 � �2. Evidently for all three cases a smaller accumulated

error indicates a better performance. From these tables it can be

observed that the FREC method, as the least time-consuming one,

performs consistently better than the other two recovering

schemes, which further delineates the efficacy of the FWT as the

frame representation.

5 CONCLUSION

In this paper, the Foveate Wavelet Transform (FWT) is proposed as
a new technique to represent images with spatially variable
resolutions (VR), which provides a desirable emulation of the
animate visual systems. Compared with existing VR techniques,
the advantages of the FWT are its linear-feature preservation,
orientation selectivity and flexibility, although a hardware realiza-
tion of the FWT has yet to be studied. As the first application of the
FWT, an FPMA-FWT algorithm is proposed which can give rise to
an efficient and effective active camera control scheme. Prelimin-
ary experimental results with encouraging performances have
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Fig. 5. Effects of pan-tilt-zoom camera movement recovery when there are significant depth differences. (a) and (b) Before and after a pan-tilt movement, (c) and

(d) Before and after a zoom movement.

TABLE 1
Motions Recovered by the Three Different Algorithms

TABLE 2
Complete Results of the Two Different Algorithms



been demonstrated. It is also demonstrated that the FWT can be
used to tackle the reverse problem of the active camera control,
which is the camera pan/tilt/zoom motion recovery from raw
videos, wherein the camera movements can be recovered in an
effective and efficient manner. Information with regard to camera
movements is of primary importance in the ensuing object
segmentation and description, which further demonstrated the
efficacy of the FWT.

In [19], the utility of the FWT in stereo active vision is
examined, where depth information is added in determining
the gaze control with encouraging performance. In the future,
more refined algorithms will be developed to cope with more
complex cases, e.g., relaxing the one-object constraint which
may cause some problems in the interactions with the real
world. More work needs to be done to deal with issues when
vergent camera motion is also involved in order to explore a
scene in a manner similar to that of [8]. Furthermore, it is also
of great interest to devise FWT-based methods to process input
visual data continuously in order to build a model of the scene
under the framework of vision as process as developed by
Crowley and Christensen [4]. In the upcoming video standard
MPEG-7, the interactive manipulation and flexible representa-
tion of videos in terms of objects have a central role to play.
The proposed FWT, as a representation which can facilitate
practical active video acquisition and efficient video content
descriptive schemes, can be of more utility as a candidate for
practical real-time video representation in digital libraries.
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