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Reciprocal-Wedge Transform 
for Space-Variant Sensing 

Frank Tong and Ze-Nian Li 

Abstract-The Reciprocal-Wedge Transform (RWT) is pre- 
sented as an alternative to the log-polar transform which has been 
a popular model for space-variant sensing in computer vision. 
The log-polar transform provides efficient data reduction. It 
simplifies the centric rotational and scaling image transforma- 
tions. However, it adversely complicates the linear features and 
translational transformations. The RWT facilitates an anisotropic 
variable resolution. Unlike the log-polar, its variable resolution is 
predominantly in one dimension. Consequently, the RWT pre- 
serves linearity of lines and translations in the original image. In 
this paper, a concise matrix representation of the RWT is pre- 
sented. Its properties in geometrical transformations and data 
reduction are described. A projective model for the transform and 
a potential hardware RWT camera design are also illustrated. 

As examples of initial applications, the RWT is used for find- 
ing road directions in navigation, and for recovering depth in 
motion stereo. Two types of motion stereo are presented, namely 
the longitudinal and lateral motion stereo. In all cases, the RWT 
images offer much reduced and adequate data owing to the vari- 
able resolution. In road navigation, perspective distortion of the 
road image is readily corrected by the variable resolution of the 
RWT. In cases of the motion stereo, the correspondence problem 
in the RWT domain is reduced to a simpler problem of extracting 
collinear points in the epipolar plane. Preliminary experimental 
results from test images of road-vehicle navigation and moving 
objects on a miniature assembly line are demonstrated. 

Index Terms-active vision, ego motion, motion stereo,  vi- 
gation, reciprocal-wedge transform, space-variant sensing 

I. INTRODUCTION 

C T W  vision has been advocated by many researchers A [ll,  [21, [31, [41, [ 5 ] .  It is argued that perception is not a 
passive, but an active process of exploratory, probing, and 
searching activities. An active visual system differs from a 
passive system in its purposive interaction with the world. 
Some interesting results in active vision include smart sensing 
using multiresolution images in the pyramid [6], fixation for 
3D motion estimation [3], [7], active stereo using focus, ver- 
gence control [8], [9], and purposively adjusting multiple 
views for 3D object recognition [lo], [l I]. 

It has been argued that foveate sensors are central to the 
sensing mechanism of an active vision system because they are 
economical and effective when coupled with active control. 
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Research into anthropomorphic space-variant resolution sen- 
sors now receives much attention. The human visual system 
has a special saccadic behavior for quickly directing the focus 
of attention to different spatial targets [12], [13]. A foveate 
sensor coupled with fast and precise gaze control form the 
distinctive feature of the sensing mechanism of an active agent. 
In nature, human retina has a fovea which is a small region 
(1-2") near the optical axis. The foveal resolution is compared 
to the peripheral resolution by orders of magnitude [13]. A 
design of this kind realizes an economical structure of sensor 
hardware supporting simultaneously a wide visual field and 
high acuity locally. 

The study of Schwartz [ 141 shows that the cortical image of 
the retinal stimulus resembles a log-polar conformal mapping. 
Sandini and Tagliasco [ 151 argues that the retina sensor offers 
a good compromise among large visual field, acceptable reso- 
lution, and data reduction. The log-polar transformation is 
defined as w = (log r, 9 [ 161, where r and 8 are the polar co- 
ordinates of the original image. By exploiting the polar coor- 
dinates, it simplifies centric scaling and rotation [ 161, because 
these transformations now become shift operations in the log r 
and 8 dimensions, respectively. As shown by Sandini and 
Dario [ 171, the scaling and centric rotational invariances of the 
log-polar transform make it a useful tool for 2D object rec- 
ognition. The transform is also shown to be effective for esti- 
mation of time-to-impact from optical flow [ 181. However, 
there is a major drawback with the log-polar transform. In 
general, image patterns of linear structures and translational 
movements are distorted into streamlines of log-sine curves 
[ 161 which adversely complicates the analysis of these com- 
mon problems in computer vision. 

At ICCV '93, we proposed a new transform, which is 
named Reciprocal-Wedge Transform (RWT) [19]. The RWT 
exhibits nice properties in computing geometric transforma- 
tions owing to its concise matrix notation. As the log-polar, the 
RWT supports variable-resolution sensing and thus facilitates 
efficient data reduction. In particular, the variable resolution is 
anisotropic, predominantly in one dimension. Consequently, 
the RWT preserves linear features in the original image. That 
renders the transform especially suitable for vision algorithms 
that rely on linear structures, and vision problems that are 
translational in nature, e.g., line detection, stereo correspon- 
dence, linear motion, etc. For example, it is shown in [20] that 
vision systems for parts inspection in automated manufacturing 
and vehicle navigation in road driving will benefit from the 
anisotropic space-variant RWT representation. 

A projective RWT model is presented in [19] which lends 
itself to a potential hardware implementation of the RWT 
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projection cameras. Unlike the log-polar sensor [21], [22], 
circular and variable sampling is not a requirement of the 
sensing unit. Hence, an ordinary sensor array of rectangular 
tessellation and uniform grid size can be used which is much 
cheaper to fabricate. 

As one of the first applications of the RWT, a simple road 
navigation example is illustrated. It shows the perspective 
distortion of the road image is readily corrected by the variable 
resolution of the RWT, which enables a more efficient search 
of the road direction on the reduced data. 

The RWT is also shown to be applicable to stereo vision for 
depth recovery. One of the difficult problems in stereo vision 
is correspondence [23]. Once corresponding points in the pair 
of images are identified, their disparity values can be calcu- 
lated and used to recover the depth. The last part of this paper 
shows the application of the RWT to the correspondence proc- 
ess in motion stereo [24]. Two types of motion stereo are dis- 
cussed, namely the longitudinal and lateral motion stereo. In 
both cases, the properties of the anisotropic variable resolution 
and linear features in the RWT domain are exploited to yield 
efficient variable-resolution algorithms which work on the 
much reduced image data. The difficult and computationally 
expensive correspondence problem in both motion stereo cases 
is effectively reduced to an easier problem of finding collinear 
points in the epipolar planes, which is later solved by a voting 
algorithm for accumulating multiple evidence. 

Section I1 introduces the transform and its properties. Sec- 
tion I11 delineates the projective model and its potential hard- 
ware implementation. Section IV describes application of the 
RWT in road navigation and some initial result using a syn- 
thetic image. Applications of the RWT in two motion stereo 
cases and preliminary test results using real-world images are 
discussed in Section V. Section VI concludes the paper. 

I. THE RECIPROCAL-WEDGE TRANSFORM 

The Reciprocal-Wedge Transform (RWT) is defined as a 
mapping from x-y to U-v such that 

U =  1 l x ,  v = y l . r  (1) 
In practice, the singularity at x = 0 (the center strip) can be 

excluded from the range of the variable-resolution processing. In 
case that the center strip is included, a shift parameter a can be 
added to x to shift it away from zero. Let us call this variant for- 
mulation the Shifted Reciprocal- Wedge Transform (S-RWT). 

U =  ll(x+a),v=yl(x+a). (2) 
The shift parameter is also included in the log-polar trans- 

form in the similar manner to take care of the singularity of the 
logarithmic function [ 141, [25]. The impact of the parameter a 
is limited to a horizontal shift of the x axis in the Cartesian 
image. In this paper, the formulas in (1) are used for simplicity 
in the analyses. Discussion will be extended to the S-RWT, 
when necessary. 

A. Matrix Representation 

A concise representation for the transformation is derivable 
using the matrix notation. Adopting the homogeneous coordi- 

nates, the RWT defined in (1) can be formulated as a cross- 
diagona1,matrix of 1 s, and the transformation can be computed 
as matrix operations. 

T =  0 1 0 = T - ' ,  (3) [: :I 
w=T.z ,  z=T- ' .w 

where T is the transformation matrix, z = [ x  y 11' and w = [U v 11'. 
To elaborate, 

= y t x  Kx 
The sign "=" means equality within the homogeneous coordi- 
nate representation. 

It is interesting to observe that the inverse of T is T itself, 
i.e., both the forward and backward transformations have the 
same matrix form. 

The lady image in Fig. l(a) is used to illustrate how the 
Cartesian coordinates are mapped to the RWT domain back 
and forth. The transformed image in Fig. l(b) shows a wedge- 
shape in an inside-out fashion because of the scaling effect of 
the x reciprocal. Note the blurring at the periphery of Fig. l(c). 
In Fig. l(d-f), the grid image is used to demonstrate the vari- 
able resolution of the transform. It is the differential magnifi- 
cation ratio across the width of the image that facilitates the 
continuously changing scale of image resolution from the cen- 
ter to the periphery. 

Fig. 1. The Reciprocal-Wedge Transform. (a) The lady image. (b) The RWT 
image shows two inside-out wedges. (c) The image when transformed back to 
the Cartesian domain. (d) A rectangular grid. (e) The RWT image. (0 The 
grid transformed back to illustrate the resolution varying from the center to 
the periphery. 
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The S-RWT from (2) was used in the transformation of Fig. 1 in 
order to cover the whole image including the singularity of the x 
reciprocal in the center region as well. Both the forward and 
backward operators for the S-RWT remain the same cross- 
diagonal matrix (3) except the additional parameter a. 

The concise matrix notation yields an advantage for the 
RWT. Coupling their geometric transformation matrices with 
the RWT matrix, the geometric transformations in the RWT 
domain become rather straightforward. If M is the transforma- 
tion matrix in the x-y space and M’ is the corresponding matrix 
in the U-v space, then 

M’= T .  M . T’ 
Using rotation, translation and scaling as examples, it is 

well-known that the respective matrices M are: 

Since both T and T’ are cross-diagonal matrices of Is (3), 
their effect on M involves only row and column interchange. 
Thus, the respective matrices for the RWT domain can easily 
be derived as: 

0 

B. Transformation on Linear Structures 

Exploiting the polar coordinate representation, the log-polar 
transform gracefully simplifies the computation of centric 
transformations. Rotation and scaling about the origin become 
operations along the log r and 8 axes. However, the polar co- 
ordinate representation adversely obscures other geometric 
patterns. For instance, linear structures get mapped to compli- 
cated patterns of logarithmic sine curves. Since both linear 
features and translations are very common in image analysis, 
this seems to be a major drawback of the log-polar transform. 

RWT, on the contrary, does not employ the polar coordi- 
nates. It loses on computation of centric transformations. 
However, linearity of lines in the x-y domain is preserved over 
the transformation. Furthermore, we argue that the RWT does 
not complicate curves in general. If a curve is represented with a 
polynomial, the degree does not change after the transformation. 

B.l  Preservation of Linear Features 

Lines exhibit interesting properties in the RWT. In fact, the 
following transformation dual (Lrl, and Luy) of a line can be 
derived: 

(4) 

Given L,,, the equation for L,, is readily obtained by substi- 

LA? : y = ni . x  + c , L,, : v = c .  11 + i n .  

tuting x and y in LAY with llu and vlu, respectively. It is obvi- 
ous that the transformed structure LuV is also a line, which 
implies that the linearity of the line is preserved.’ It is interest- 
ing to note that the values for the slope and intercept are inter- 
changed between the transformation dual. Inferring from that, 
parallel lines with the same slope in x-y will be mapped to U-v 
lines concurrent at the same v-intercept. Inversely, lines con- 
current at the same y-intercept will form parallel lines in the 
U-v domain. 

Extension to curves. Let a curve in x-y be denoted as: 
. .  n n-i 

C C a ; , j  xly’ = 0 
i=O j = O  

By substituting Ilu for x and vlu for y ,  and rewriting the indi- 
ces, the polynomial in U-v becomes: 

n n-; x&n-i-j),j u‘vj = 0 . 
i=O j=O 

It shows that the degree of the polynomial is preserved over 
the transformation. The shape of the curve may be different in 
the transform domain as the coefficients have been inter- 
changed. For instance, a circle in x-y would be mapped to an 
ellipse in U-v. (It would be a hyperbola or parabola should the 
circle be transversed by the y-axis.) The significance is that the 
RWT does not complicate curve patterns. In comparison, after 
the log-polar mapping, the resulting curve no longer keeps its 
polynomial form. 

B.2. Line Detection Using the Hough Transform 

The Hough transform [26] provides a powerful tool for 
feature detection. The technique is most effective for line de- 
tection. The preservation of the linearity of lines over the 
RWT implies that line detection using the Hough transform 
would be as simple in the RWT as in the Cartesian domain. 
With the switching between the slope and intercept parameters 
(4), the vote patterns in the Hough space for the Cartesian and 
the RWT images form an interesting dual of reflection about 
the main diagonal of the Hough space. (See Fig. 2(c).) 

C. Anisotropic Space-Variant Resolution 
Like the log-polar transform, the RWT facilitates space- 

variant sensing which enables effective use of variable- 
resolution data and the reduction of total amount of the sen- 
sory data. Nevertheless, its variable resolution is anisotropic. 

The essence of the RWT is the introduction of the reciproc- 
ity. The variable resolution is primarily embedded in the x 
dimension. It yields a grid whose resolution is variable for 
different xs, but uniform along the y dimension for any fixed x. 
The result is an anisotropic space-variant resolution, which is 
evident from the wedge-shaped grid in Fig. l(e). 

The anisotropy can also be inferred from the partial deriva- 
tives of the RWT expressions from (1): 

1 .  Linear features are also preserved in the S-RWT. A line Lq: y = tit + c is 
mapped to a line L,,, : Y = (c - m) U + m. 
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:; m = 0.5 

1 1 3  

”V 0.J 
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m 

(d 

Fig. 2. The duality relationship of linear structures in the RWT. (a) A line in 
the x-y domain with a slope 0.5 and the intercept 1. (b) The dual in the U-v 
domain. The slope is 1 and the intercept is 0.5, inversely. (c) The Hough 
space showing the peaks from (a) and (b), respectively. They form a reflection 
about the main diagonal. 

where 1 1 .  I( denotes the vector norm. Equations ( 5 )  and (6) 
show that the pixel resolution does not vary in the same scale 
for different directions. The grid width in the x direction (for a 
fixed y) is mapped to a size diminishing in reciprocal of x2. In 
the y direction, the grid height is mapped by a function of l l x  
to a uniform size independent of.the y value. Furthermore, 

Hence, the absolute value of the above Jacobian determinant is 

(7) 

which indicates that the area of a pixel is reduced by a factor 
of 1/x3 after the RWT. 

On the contrary, the log-polar transform provides an iso- 
tropic variable resolution. The grid when mapped to the log- 
polar image changes size in the same scale in all directions. 
Sampling along the radial direction, the rate of change of the 
pixel resolution is 

pcu, v) /J(x ,  Y)I = 1/x3 

ll&/dl= I 4 o g  4/dd = l/r 

The area of a pixel thus diminishes isotropically in the rate of 
llr’. The isotropic variable resolution of the log-polar transform 
is related to the conformality of the log-polar mapping [ 161. 

III. A PROJECTIVE MODEL 
AND ITS HARDWARE IMPLEMENTATION 

A. The RWT Projective Model 
Fig. l(d) appears like the view of a picture from a grazing 

angle. In fact, one could regard the RWT as an oblique per- 
spective projection of an image on a plane perpendicular to it. 
Examine the perspective projection in which the three- 
dimensional XYZ space is projected onto the two-dimensional 
Z-Y plane at X = 1 (Fig. 3). Let the three-dimensional point be 
(X, Y, Z) and the projection be (Z‘, Y‘). 

z=z/x, Y ‘ = Y I X .  (8) 
Now, the equations in (1) can be made equivalent to those 

in (8) if the terms x,  y, 1, U, v in (1) are unified with the X, Y, 
Z, Z‘, Y‘ in (8), respectively. In that sense, the RWT described 
by (1) can also be viewed as a perspective reprojection in 
which the original image is now placed on the X-Y plane at 
Z = 1, and it is projected onto the 2 - Y  plane at X = 1 .* 

original 
image 

I Pl * 
P: 

I- X 

I plane 

Fig. 3. A perspective projection model. The original image is placed on the 
X-Y plane at Z = 1 .  It is reprojected onto the 2-Y projection plane at X = 1.  
The pixels p, and p2 are projected to p i  and p; respectively. 

B. A Potential Hardware Implementation 

It is interesting to notice that the RWT can potentially be 
implemented in hardware. Since the RWT image can be con- 
sidered as another perspective projection of the Cartesian im- 
age onto an orthogonal projection plane, we can cascade the 
two processes into one. Fig. 4 illustrates the idea. The sensor is 
fitted directly on the RWT projection plane mounted sideways. 
Thereby, the rays from the imaged objects strike directly onto 
the RWT sensor plane. The sensor plane is installed in two half- 
planes, the left and right ones, respectively, for the convenience 
of taking care of objects on each side of the optical axis. 

2. For simplicity, both focal lengths have been chosen as 1 in the above 
discussion. In general, the two image planes are at Z = f and X = f’. As a 
result, the projective model will yield U = I/x . f . f’ and v = y / x . ,f’, which 
differ from (1) by constant factors. 
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The RWT camera can use a uniform sensor, which is cheap 
to fabricate. Space-variant sensing is realized by the oblique 
projection on the sensor plane. The same sensor area on the 
plane yields variable area coverage of the visual field depend- 
ing on the angle of projection. In fact, one can also alter the 
position, orientation or even the shape of the sensor plane to 
produce different space-variant sensors. 

left 1 RWTulane 
right 

RWT ulane 

Fig. 4. An RWT projection camera. The camera has its sensor placed on the 
left and right horizontal planes. Light (PI, Pz) passing through the lens forms 
a virtual image @I, pz )  on the frontal focal plane which is then further pro- 
jected onto the sideways-positioned RWT sensor planes @;, p i ) .  

The above discussion presents the rudimentary idea of the 
RWT camera design. A prominent problem is the requirement 
of focusing on a deep image plane in parallel to the optical 
axis. In our recent paper [27], a new hardware camera model is 
proposed which overcomes the focus problem by using a lens 
focusing the paraxial image onto an orthogonally placed RWT 
plane. 

IV. APPLICATION OF RWT IN ROAD NAVIGATION 

In the problem of road following, an efficient search for 
road features can be effected with the variable resolution of- 
fered by the RWT. 

Different approaches have been devised for road detection 
in various experiments of autonomous land vehicles. An area- 
based voting scheme based on the Hough transform is applied 
to compute the direction of the road in the CMU Navlab [28]. 
In the VaMoRs project [29], visual features of the road edges 
are detected based on the “Gestalt” hypothesis under adverse 
situations of shadows and absent lane-markings. 

Both methods search over the perspective images for road 
features. The drawback is that the nearby section of the road 
gets overly attended whereas the far side toward the horizon is 

disproportionately under-sampled. Arguably, this differential 
scale of details is not suitable for driving on the road. Nor- 
mally, one would pay more attention to a reasonable distance 
to see the general direction of the road, while at the same time 
be aware of the road segment right in front. 

Lotufo et al. [30] present the plan-view transformation 
method for road navigation. The original perspective road 

a’ V ground 
/ / / / / / / I / / / / / / / / / / / / / / / / / / / / / / /  

8 P 

Fig. 5. Perspective inversion effected by the RWT projection. The image size 
@-q) varies with the position of the segment PQ, whereas the size of the 
RWT image @’- 4‘) does not. 

image is projected to a grid inclined by a pan angle 6, which is 
chosen so that the road edges are nearly parallel to the 
boundaries of the grid. It is also reported that the new images 
are of a reduced size (typically by a factor of 32). 

Effectively, the RWT re-samples the image to a variable 
resolution which counterbalances the differential scale of de- 
tails in the perspective projection. Fig. 5 illustrates the per- 
spective inversion. As the space-variant resolution is defined 
along the x dimension in the RWT model, the vertical axis is 
denoted as the X-axis of the world coordinate system shown in 
Fig. 5. 

With the road segment PQ projected onto a horizontal plane 
in the RWT camera, the projection (p’, 4’) does not change in 
magnification, and the perspective projection is practically 
inverted. 

~ ’ - 4 ’  = f lh . ( P  - Q )  . 
The road in the RWT image appears as though it were from 

an aerial view (Fig. 7(b)). However, an important difference is 
that the RWT camera is pointing toward the front which is 
vital to driving. Moreover, the nearby section is sampled at a 
much reduced resolution. The overall data volume can be 
greatly reduced to achieve a comparable performance. 

In the CMU Navlab project [28], a road is perceived as 
converging at one point on the vanishing line, and is parame- 
terized by P and 8 (Fig. 6). As discussed in Section 11-B.2, the 
detection of converging lines at the vanishing point for finding 
the road direction can be carried out by detecting parallel road 
boundaries in the RWT image. The technique of the Hough 
transform is equally applicable. 

When edge tracking is employed to calculate the geometric 
model of the road in the VaMoRs project, the RWT image benefits 
by eliminating the variable search ranges for road features in the 
near and distant sections of the road. In all cases, the RWT sup- 

- 
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ports an efficient representation of the road image as the data vol- 
ume is greatly reduced by its spatially variable sampling. 

A. Experimental Result for Finding Road Direction 

Fig. 7(a) is a synthetic image of a road scene. The image has 
a resolution of 128 x 256. Fig. 7(b) is its RWT image of the 
size 32 x 128. The remote section of the road has retained its 
resolution whereas the excessive information at the near side is 
suppressed. The total area of the search region is significantly 
reduced. The direction of the road is detected using the Hough 
method described in [28]. In the RWT image, the road direc- 
tion is detected as tan@ = -22, yielding the position of the 
vanishing point P in the original Cartesian image. 

Cartesian Domain RWT Domain 

vani+ing 
:p I vanishing line I /Q p i n t  

> 1 , :  l. 

Fig. 6. The RWT dual of the road image. The vanishing point in the Cartesian 
domain just becomes the direction in the RWT domain and vice versa. 

Fig. 7. The synthetic image of a road scene. (a) The road image of resolution 
128 x 256. (b) The RWT image of size 32 x 128. 

v. APPLICATION OF RW"J? IN MOTION STEREO 

Okutomi and Kanade pointed out in [31], the distance be- 
tween the pair of cameras in stereo vision greatly affects the 
precision and error rate of the correspondence process. A short 
baseline will provide less precision whereas a longer baseline 
will result in higher error rate due to false match. To alleviate 
the dilemma, they proposed the multiple-baseline stereo 
method [31] where different baselines are generated by lateral 
displacements of a camera. 

objects on the belt can be taken in a rapid succession by a sin- 
gle camera. The controlled belt movement provides the neces- 
sary stereo disparity. Moreover, it can guarantee that the dis- 
parity occurs only along the epipolar lines. This method is 
called Motion Stereo [24]. Its greatest advantage is the sim- 
plicity in camera control and calibration. Suppose the cam- 
era is looking down the Z direction, i.e., its optical axis is the 
Z-axis. We call the above moving belt situation lateral motion 
stereo where objects move on a Z = Z, plane, perpendicular to 
the Z-axis. Another type is longitudinal motion stereo in which 
objects move along the Z direction, an autonomous vehicle 
traveling on the highway provides such an example. 

Bolles, Baker, and Marimont [32] proposed a technique of 
epipolar-plane image analysis for determining structure from 
motion. It was pointed out that for straight-line and constant- 
speed camera motions, simple linear structures will be formed 
on the epipolar-planes (Fig. 8), where the slope of these lines 
indicates the depth of the feature points. 

t = to 

Y 

Fig. 8. Epipolar-plane image analysis. (a) A feature point moves along the 
epipolar line in the x-y plane with a constant speed. (b) A linear locus is 
formed on the epipolar (x-1) plane in the xyt space. 

This section presents the adaptation of epipolar-plane analy- 
sis for depth recovery using RWT images from motion stereo 
sequences. The longitudinal motion stereo and lateral motion 
stereo will be examined in Section V-A and Section V-B. In 
Section V-C a voting scheme for searching the collinear 
points on the epipolar plane in both motion stereo cases will 
be discussed. 

A. Longitudinal Motion Stereo 

Depth recovery in autonomous vehicle navigation provides 
an example for the longitudinal motion stereo, in which the 
relative object movement is along the Z direction at a constant 
speed. Fig. 9(a) illustrates a point moving from position 
PO (XO,  YO, Z,) at to to position PI(Xo,  YO, ZI) at t l .  The 
x-coordinates of its projections on the ordinary x-y image 
plane are x o  and xI. The corresponding images on the RWT U-v 
plane are uo and U]. As shown, the focal lengths are f and f', 
respectively. For simplicity (and with the deviation of a con- 
stant factor), it is assumed thatf=f' = 1. 

From similar triangles, 
x x  
1 2  

Consider a manufacturing environment with intelligent ro- 
bots working on assembly lines, where the belts are moving at 

-=- 

a relatively constant speed. Multiple snapshots of the moving since there is no change in x, x = x,, 
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- dr = --- X o  dZ = -- CX, 1 (9) 
dt Z 2  dt Z 2  ccF'  

where C = - is the known constant speed. 

If multiple images of the longitudinal motion stereo are 
used, then x t  , xf , . . . , and x," are a sequence of corresponding 
points for the point at t = to, t = tl,  ..., and r = t ,  in the x-t 
epipolar plane. As shown in Fig. 9(b), their locus is nonlinear 
(a curve), which is implied by (9). 

dZ 
dt 

tt 

This result immediately turns the problem of depth recovery 
in the longitudinal motion stereo into a simpler problem of 
detecting lines in the U-t plane, where t-intercepts are = depth 
of the point p. 
A. I Extension to Ego Motion 

In the following, the longitudinal stereo model is extended 
to a general case of ego motion in which the vehicle is moving 
on the Y-Z plane with an axial velocity 4 and a rotational 
speed 8. Such a general model typifies the road driving motion 
in which the vehicle is curving along the road. Within a short 
time span, the vehicle motion can be satisfactorily approximated 
with a circular course, namely considering changes in both 4 and 
8 over the time span of investigation as negligible. 

I 
I 

Fig. 9. (a) Longitudinal Motion Stereo. (b) The x-t plane from ordinary longi- 
tudinal motion stereo images. (c) The U - t  plane after the RWT. 

Now, it can be shown that the reciprocity of the RWT happens 

u z  - - -  - 
1 x  

It follows, 
du 1 dZ C 
dt X ,  dt X o  ' 
-=---=- 

or 

dt - xo 
du C 

to counterbalance the above nonlinearity. From Fig. 9(a) 

Therefore, u t ,  U:, . . . , and utin the u-t e p i p u r  plane are CO 

linear points, and the slope of their connecting line is the con- 

stant - . Moreover, the line equation is XO 
C 

t = - U + T ,  XO 
C 

where T is the t-intercept. Since at t = to = 0, U = uo; and 

uo = %, it can be derived that 
XO 

" \? " 1 
Fig. 10. Motion of an object in relation to the vehicle. In the world coordi- 
nates, the vehicle is traveling at an axial velocity of i and rotational speed of 
6 ,  describing a circular path of radius .i/6. In the viewer-centered coordi- 
nates of the vehicle driver, the object is moving in the opposite direction with 
the same speed. It also appears to move on a circular trajectory at the same 
center. 

Assuming the vehicle is moving in an otherwise static 
world, the apparent motion of the world in the view of the ve- 
hicle driver is a composite motion of axial translation -S and 
centric rotation -8. Take the vehicle driver as the center of 
reference and align the Z axis with the direction of travel as 
depicted in Fig. 10. At time t, the position of the object is at 
(X, y, z). 

. .  
y = z e ,  

z = - y e - s .  

Solving the differential equations, 

Y =  Rcos(eo -&)+/e ,  (10) 

 sin(^,,-&). (1 1) 
The form of the equations indicates the circular path for the 
object's apparent motion. R is the radius of the circular path 
and the center is at Y = - S/b, Z = 0. At t = to = 0, the object is at 
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Hence, 
ject is initially located. 

is the arc angle on the circular path at which the ob- 

From Fig. 9(a), the mapping from (Y ,  Z) to ( U ,  v) is 
u l f ' = Z / X ,  v l f ' = Y I X .  (12) 

Apply the mapping on (10) - (1 1). The image motion on the 
U-v plane now is 

U =-Rsln(BO f '  . - e t ) ,  
X 
f '  . f ' s  
X X 8  

v = - Rsin(BO -et) --- . 

which results in a complicated movement on the x-y plane. 
A search algorithm can be devised to find the circular tra- 

jectories on the U-v plane as described in (13) - (14). When 
visualized in the 3D uvt space, the circular trajectory becomes 
a helical curve. The search is essentially a problem of fitting 
the helical model to the uvt data. Nevertheless, the search 
space is much restricted by exploiting the constraints due to 
the simple vehicle motion. The helical trajectory in uvt has no 
more than two degrees of freedom even if none of the con- 
stants f ' ,  i, b are known a priori. From (13) - (14), the center 

f '  f '  s 
X x e '  

of the helix is on the v axis. Choose a for the position of the 
center in (14), the radius r and the arc length w for each fea- 

Let r = - R and a = -- the U-c' motion equations can be 

rewritten as ture point (iL.v,t) from the RWT image sequence can be de- 

U = r sin(8, - et) , (13) termined from (13) - (15). The helical trajectory of the point 
(uo, vo) corresponds to a straight line passing through @ in the 

v = rcos(oo -et)  - a  . (14) 

Apparently, the U-v motion is along a circular trajectory with 
the radius r, and the center of curvature is at U = 0 and v = -0 
(see Fig. 1 l(a)). 

for the arc dishnce measured from the =is along the 
circular trajectory as shown in Fig. 1 l(a). The advantage of us- 
ing is that it shows a linear relationship with (see ~ i ~ .  1 I@)). 

(15) 

One useful property of using the m t  line is the readily corn- 
putable extrapolated t-intercept. Putting w = 0 in (13,  the t 
indicates the time in which a point comes to the v axis. This 
time measure yields the time-to-contact. 

mt projection (Fig. 11). Now, choose a value for the line slope 
such that the line passing through would fit to the wf pro- 
jection of the feature points. The best fitted line over different 
values of a yields the best solution to the helical trajectory of 
(uo, vo). By (16), the r-intercept of the w t  indicates the time-to- 
contact. 

The model of the longitudinal motion stereo for linear vehicle 
motion is a special case of this general model for ego motion. 
When b + 0, i /b  approaches M and so do r and a in (13) - 
(14). The circular traJectoV therefore approaches to a line along 
the U direction, and the arc length CO now directly corresponds to 
the coordinate. the general model, the t-intercept in wt (1 6) 
indicates the time-to-contact for an object if the vehicle motion 
were to prevail. In the special case of linear vehicle motion, con- 
veniently, the time-to-contact gives a direct measure of the depth 
of an object as well. 

use 

o = r(eo 4). 

t = e0/e. (16) 

Fig. 11. Image motion in U-v. (a) The image motion is a circular arc centered 
at -U = - f '/X. .;/e and has a radius of r = f '/X R . The initial arc angle 

is for the point position (UO, VO) at t = to = 0. The point is approaching at an 
angular speed b .  (b) When the arc length w is measured against t, it shows a 

linear relationship. The r-intercept is @,/e . 

The x-y uniform resolution image represents the perspective 
projection of the driving scene. The reciprocity of the RWT 
counterbalances the perspective nonlinearity and yields a lin- 
ear mapping of the road surface (12). The linear mapping en- 
ables the preservation of the circular image motion as corre- 
sponding to the original vehicle motion. Such is not the case in 

B. Lateral Motion Stereo 

This section uses the example of the moving assembly line 
mentioned earlier. For simplicity, let's first assume that the 
belt moves in the X dimension in the 3D space. Its projected 
movement on the x-y plane is therefore along the x' direction 
only. For a point xk at y = j ,  xt,x:, ..., and x," are a sequence 

of corresponding points at t = to, t = t l ,  . . ., and t = f, in the x-t 
epipolar plane from the original (ordinary) lateral motion ste- 
reo images, where the epipolar lines are horizontal (Fig. 12(a)). 
When the speed of the belt is constant and images are taken at 
equal intervals, x:, x:, . . ., and x," fall on a single line in the 

x-t plane, and - o= disparity d .  Hence, the correspondence 

problem in the lateral motion stereo is equivalent to a problem 
of finding collinear points in the x - t  epipolar plane. Since the 
disparity is inversely proportional to the actual depth in the 3D 

dx 
dt 
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_ _ ~  ~ 
~ - 

dt 
dz 

scene, it follows that - oc depth of the point 2. 
After the RWT, the epipolar line corresponding to y = y‘ 

remains to be a line in the U-v space, and v = $U. The new 
epipolar line is generally at an angle with the u-axis passing 
through the origin. We denote the distance between the point 
w(u, v) to the origin as w. For a point (x, 4) on y = $, 

(17) 

The epipolar plane for the lateral motion stereo becomes the 
wt plane as shown in Fig. 12(b). Note the new sequence of the 
corresponding points wk, w:, . . . , and wf: do not generally fall 

on a single line in the wr plane. 
t 1 

I 
Y 

Fig. 12. Two sequences of edge points on epipolar planes from motion stereo 
images. (a) The x-t plane from ordinary lateral motion stereo images. (b) The 
7, 

mi plane where w =  d l + ( ~ ’ ) ~ / x .  (c) The m7 plane where 

~ = j l + ( y ’ ) ~ / x .  a n d r = t / x .  

B.1 Creation of a New O-z Epipolar Plane 

To recover the linearity, an additional transformation 

z= t l x  (18) 

can be applied to the variable t which is similar to what is ap- 
plied to y in the RWT. The x-t epipolar plane from lateral mo- 
tion stereo images is now converted into a new w z  epipolar 
plane of the RWT images (Fig. 12(c)). The horizontal epipolar 
lines in the X-t plane become concurrent epipolar lines merging 
toward the origin in the wz plane. The lines that connect the 
corresponding points now remain to be lines as well. 

Suppose L,, is a line in the X-t plane, 

L,, : t = m’ . x + c’ , 
its transformation dual (derivable from (17), (18)) in the wz 
plane is Lm: 

The slope mf of line L.x, becomes the z-intercept of Lor in the 
dt 
dx 

RWT motion st ere^.^ Instead of - K depth, it is now the case 

that the z-intercept of the line that connects the corresponding 
points in the wrplane is 0~ depth of the point d 
B.2 Extension to Any Linear Motion on Z = Zo Plane 

Although it was assumed above that the belt moves along 
the X dimension only, this can be relaxed to any linear move- 
ment on a Z = Z, plane in the 3D scene. The projected locus on 
the x-y plane is the epipolar line L ,  of which the slope m and 
y-intercept c are known parameters. 

As shown by (4), after the RWT the line L, is transformed 
to the new line L,tv. Let 5 be the length of the line segment L,, 
from the y-axis to (x, y ) ,  

(19) 

Apparently, c and x has a linear relationship. A c-t epipolar 
plane (similar to the x-t plane) can thus be constructed for the 
ordinary lateral motion stereo in which corresponding points 
are collinear. Let the line that connects the collinear points in 
the c-t plane be 

L 5i : t = m ’ . c + c f .  (20) 

Now, let w be the length of the line segment L,,, from the 
v-axis to (u,  v), 

Because U = 1 / x, use (19), 

= JomZ)0/1 
If we introduce a new parameter z = t I c, then the line in the 
c-t plane (20) will be converted into a line in the wz plane, 

In this way, the previous method for the lateral motion stereo 
can be extended to handle known linear motions on any Z = Z, 
plane. 

C. Search in the Epipolar Plane 
As described above, the correspondence problem in both 

the longitudinal and lateral motion stereo can be reduced to a 
problem of searching for collinear points in the epipolar planes 
(U-t  plane for the longitudinal, LO-z for the lateral). Similar to 
the procedures for the Hough transform [26], a voting algo- 
rithm for accumulating multiple evidence can be developed. 
Without loss of generality, the search on the U-t plane in the 
longitudinal stereo for linear motion will be used here to illus- 
trate the method. (The extension to circular ego motion re- 

3. This is similar to the transformation dual in (4), except the slope of L, : is 
not c‘ because of the additional transformation on t (1 8). 
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quires a somewhat different search, i.e., search for helical 
curves in the uvt space. By introducing w as the arc length, the 
problem was shown in Section V-A.l to be equivalent to 
finding collinear points on the o x  plane. For efficiency, a 
slightly different search algorithm was suggested earlier in 
Section V-A. 1 .) 

In general, any point at t = t, can be paired with any point at 
t = t, (j > i )  to form a hypothetical line segment. Its intercept on 
the t-axis suggests a possible depth value which is inversely 
proportional to the disparity d. A 3D uvd voting space is cre- 
ated4 and each hypothetical line will cast a vote at the position 
(U, v,  6 )  in the uvd space. Since n + 1 collinear points can form 
O(n2) hypothetical lines and they will vote to the same (U, v, 4, 
a peak will be formed in the uvd space which indicates the 
consensus on the correct disparity value for the point (U, v).  
The line detection problem can thus be solved by this voting 
procedure followed by a peak-detection procedure. 

On each IC - t plane at t = t, there are k, edge points, i.e., 
U,! ,U:, . . . , and uf' . A complete pairing of two possible end 
points at t ,  and t, will produce numerous hypothetical line seg- 
ments and therefore clutter the uvd voting space. The follow- 
ing heuristics are employed to improve the voting process: 

Use relatively long hypothetical voting lines. Due to 
limitation of the image resolution there is always certain 
error in the U-v coordinates, especially at the periphery of 
the RWT images. If the short hypothetical lines were to 
be used for voting, a small amount of error in the U-v co- 
ordinates would result in relatively large errors in the cal- 
culation of the slope and intercept, and consequently the 
disparity values. A minimum length is therefore chosen 
to exclude the short voting lines. 
Specify a reasonable range for depth. A range of con- 
cerned depth can be represented as [T,,,,,, T,,,] to reduce 
the number of candidate pairs. The vertices T,,,,, and T,,,, 
on the t-axis and the lower end point U," form a triangle 
which defines the search region for the possible pairing 
end point U,. 

D. Experimental Results for Motion Stereo 

D.1 Longitudinal Motion Stereo 

A vehicle navigation example is used to illustrate the longi- 
tudinal motion stereo. Fig. 13(a) shows a CMU image sequence 
of a road scene obtained from a driving expedition. Four frames 
of an 8-snapshot sequence (each has a size of 512 x 512 pixels) 
are shown to visualize the forward motion from driving. The 
RWT images of the motion sequence have been generated in 
software. The data reduction factor is over 90%. Fig. 13(b) 
shows the RWT edge images of the x-y sequence. 

Some implementation details should be dealt with when 
generating the RWT images. First, the X-axis in the world co- 
ordinate system is the vertical axis as indicated in Fig. 5 .  Ac- 
cordingly, the x-axis in the x-y images and the u-axis in the 
RWT (U-v)  images are the vertical axes in these images. Sec- 

4. Since the concemed depth in the scene can be very large whereas dispar- 
ity d usually has a small range, it is preferable to use ti for the voting space. 

ond, the model of our longitudinal stereo requires both the 
camera movement and its optical axis be along the Z-axis. Ac- 
cording to this simple model, the FOE (Focus of Expansion) is 
always at the center of the x-y road images. When dealing with 
FOE which is significantly off center because of intentional 
padtilt on the camera orientation, the FOE must be determined 
and used as the origin of the x-y space for the RWT. This is the 

Fig. 13. Depth computation using the RWT in linear motion. (a) A sequence 
of a driving scene, only Image 1, 3, 5, and 8 are shown. (b) Edge images from 
the above RWT images. (c) Gray-level coded depth map computed from all 
eight images. (d) The depth map transformed back to the x-y space (uniform- 
resolution) for visual apprehension. 
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cessfully and good depth recovery results are obtained. Fig. 
13(c) shows the gray-level coded depth map. In Fig. 13(d), the 
RWT depth map is transformed back to the uniform-resolution 
x-y space so that the relationship to the original road image can 
be better apprehended. Note that the depth values of the traffic 
cones, the trash can and the tree trunks are correctly resolved. 

0 . 2  Lateral Motion Stereo 

For obtaining lateral motion stereo images in our lab, a py- 
ramidal wooden block is placed on a conveyor belt that moves 
from left to right. A sequence of eight snapshots (each has a 
size of 5 12 x 5 12 pixels) from a conventional CCD camera is 
used in the experiment (Fig. 14(a)) since the RWT camera is 
not available yet. As before, the RWT images (Fig. 14(b)) are 
generated in software by mapping the original images from x-y 
to U-v. The middle point of the left boundary of the x-y image 
plane is used as the origin for this mapping. The area of the 
resulted RWT images is approximately 1/10 of the original 

Fig. 14. (a) Ordinary lateral motion stereo images of a pyramidal block on a 
moving belt. Images 1, 3, 5, and 8 of the 8-snapshot sequence are shown. 
(b) Software-generated RWT images. (c) Edge map of the first RWT image. 
(d) Gray-level coded depth map for the pyramidal block from variable- 
resolution lateral motion stereo. 

situation in the CMU image sequence which apparently had 
the camera pointing slightly toward the ground. 

Even under the best effort to align the camera orientation 
with the vehicle movement, the FOE could still be off the 
center under slight perturbation. As a result, the epipolar line 
may not align perfectly with the u-axis. To accommodate the 
error so arisen, the search region for collinear points used in 
the Hough method discussed in Section V-C has been relaxed 
accordingly, i.e., instead of searching on an epipolar plane, a 
neighborhood of the plane was employed as the search region. 

In the images in Fig. 13(b), some portions of the trees and 
buildings are not shown, because they are either above the 
FOE or too close to the singularity (x = 0) line to be included. 
The rest of the scene is very well captured in all the RWT im- 
ages. One can also observe the advantage of the variable- 
resolution imaging in this example as the excessive details in 
the near side of the road which are not quite relevant to driving 
are averaged out in the coarse resolution periphery of the 
RWT images. 

The algorithm described in Sections V-A and V-C is im- 
plemented. The correspondence ambiguities are resolved suc- 

images. 
Gradient-based edge detection is first performed on the 

RWT images. Fig. 14(c) shows the edge map from the first 
RWT image. Collinear points in the mrplane are detected and 
their z-intercept yields the depth, and indirectly the disparity. 
The voting in the uvd accumulator space results in clusters 
yielding the correct disparity. Fig. 14(d) displays the depth 
map. The result shows that the disparity changes along the 
edges of the pyramid are mostly computed successfully. 

VI. CONCLUSION 

In this paper, a new transform, the Reciprocal-Wedge 
Transform (RWT), is presented as an alternative model to the 
log-polar transform for space-variant sensing. Exploiting the 
polar coordinate representation, the log-polar does well on 
centric rotational and scaling transformations. It, however, 
complicates linear features and translational transformations. 
Complementary to the log-polar, the RWT preserves linear 
features in the image, and its anisotropic variable resolution is 
suitable for directional space-variant sensing for problems 
which are translational in nature, such as stereo and linear mo- 
tion. For polynomial curves, the RWT retains the form and 
order of the polynomial, and, hence, does not increase the 
complexity. 

A concise matrix representation is presented. Properties of 
the RWT in geometric transformations are described. Moreo- 
ver, the interesting insight of the projective model lends the 
transform to its potential hardware implementation. 
As initial applications, the first simple example of road navi- 
gation shows that the perspective distortion of the road image 
is readily corrected by the variable resolution of the RWT 
which enables a more efficient search of the road direction on the 
reduced data. The next two examples show that the RWT i: 
also suitable for recovering depth in both the longitudinal anc 
lateral motion stereo. 

The advantages of using multiple (>> 2) images in motior 
stereo are the improvements of precision and error rate in thr: 
depth recovery. The obvious disadvantage is the need of proc . 
essing excessive amount of image data. The primary advantagc: 
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of the proposed method of motion stereo using RWT images is 

significantly reduced volume of data. 

20, PP. 66669,1980.  

its efficiency since the variable-resolution RWT images have a [15] G. Sandini and V. Tagliasco, “An anthropomorphic retina-like structure for 
scene analysis,” Computer Graphics and Image Processing, no. 14, pp. 365- 
372, 1980. 

and display,” Computer Graphics uruf Image Processing, vol. 1 1, pp. 197-226, 
1979. 

[I71 G. Sandini and P. Dario, “Active vision based on space-variant sensing,’’ Proc. 
5th Int’l Symp. Robotics Research, pp. 75-83, Tokyo, 1990. 

[ 181 M. Tistarelli and G. Sandini, “On the advantages of polar and log-polar map- 

Puttem Analysis uruf Machine Intelligence, vol. 15, no. 4, pp. 401410, 1993. 

In the longitudinal motion stereo, the reciprocity of the [16] C.F.R. and G. Chaikn, “Logarithmic spiral for image processing 
RWT has its advantage in directly eliminating the nonlinearity 
in the original x-t epipolar plane. In the lateral motion stereo 
the introduction of the RW in both space and time domains 
transforms the x-t epipolar plane in Ordinary motion 
images into an 6~ plane. Nevertheless, in both cases the cor- ping for direct estimation of time-to-impact from optical flow;’ IEEE Trans. 
respondence problem in variable-resolution motion stereo is 
reduced to a simpler problem of extracting collinear points in 
the epipolar plane, which is accomplished by a voting algo- 
rithm for accumulating multiple evidence. 

The variable-resolution motion stereo offers more detail and 
precision in depth recovery at the fovea than at the periphery 
of the RWT images, which seems to be natural. Its implication 
to active sensing appears to be direct and would be further 
explored. 

The work of the longitudinal motion stereo is also extended 
to more general ego motions, especially circular movements 
(rotations). The RWT mapping is shown to better preserve the 
circular image motion as corresponding to the original vehicle 
motion, which indicates that the RWT is applicable to general 
ego motions where viewer-centered coordinates are employed. 
This contrasts with the benefit of handling rotation in an ob- 
ject-centered coordinate system using the log-polar transform. 
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