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Depth Map Construction from Range-Guided 
Multiresolution Stereo Matching 

Kevin Tate and Ze-Nian Li 

Abstract-This paper describes a multiresolution method for the ac- 
quisition of a complete, relatively noise-free, and high-resolution depth 
map from a low-resolution laser range image and a stereo pair of high- 
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resolution intensity images. Depth information from the laser range 
data is used to constrain the initial search in stereo matching. The in- 
ter- and intralevel linkings of edges in the pyramid allow a process 
where the coarse laser depth information drives a multiresolution 
stereo-matching process to construct a high-resolution depth map. The 
motivation for this new approach to multi-sensor integration is to off- 
set the advantages and disadvantages of traditional stereo matching 
and triangulation range finding approaches. 

I. INTRODUCTION 

The acquisition of accurate high-resolution 3-D data is an im- 
portant problem in computer vision. Accurate and complete depth 
information is important for many tasks in computer vision such as 
robot navigation and object modeling and recognition. 

Two of the most common techniques for acquiring 3-D data are 
stereo imagery and laser range finding. Both of these techniques 
have appealing aspects which make them attractive candidates for 
3-D data acquisition. Unfortunately, each also has associated prob- 
lems which make them unattractive as a definitive means of 3-D 
data acquisition. 

There are two main methods for the implementation of laser range 
finding, one based on triangulation, the other on time-of-flight [3]. 
This paper is only concerned with triangulation range finders since 
they are cheaper and more easily constructed, and thus, more com- 
mon. 

The use of laser range finders for the acquisition of 3-D data is 
an increasingly common approach in computer vision research [ 131. 
The primary reason for this is that 3-D data is directly acquired in 
a well-defined and easily understood manner without any negative 
effects due to lighting. 

Triangulation range finding has a number of drawbacks [ 141, es- 
pecially limited range, resolution, and speed. Range is limited by 
the power of the laser and the loss of accuracy in long range. Res- 
olution of these devices is limited by the accuracy of the optical 
mechanism used to sweep the laser across the image. Moreover, 
most triangulation range finders have a built-in image processing 
software for locating the laser scan line, which usually involves 
detecting and thinning laser stripes in an intensity image. Natu- 
rally, the speed and accuracy of the software adversely affect the 
performance of the range finder. 

Triangulation range finding also has the so-called missing par ts  
problem, resulting from either: a) the triangulation geometry of the 
range finder, o r b )  the surface properties of the objects in the scene. 
Triangulation geometry problems occur when there are surfaces that 
either the laser or  the camera cannot “see.” The larger the sepa- 
ration between camera and laser, the more prevalent this problem. 
Surface properties of the objects in a scene can cause problems 
when they reflect or scatter the laser dot or stripe in an irregular 
fashion, such as surfaces with deep or  irregularly shaped holes. 

The primary advantage of stereo imagery is that image intensity 
data can be acquired rapidly (many frames per second) and at high 
resolution (512 X 512 pixels or better). Its main disadvantage is 
the so-called correspondence problem, which results from attempts 
to match features between the two images. Another disadvantage 
with stereo matching, and intensity imagery, in particular, is that 
it is subject to lighting and surface reflectance effects. These can 
lead to homogeneous intensity values across edges, making detec- 
tion of actual edges difficult, and introducing anomalies such as 
false edges due to bright or dull spots. 

Various constraints have been introduced to alleviate the corre- 
spondence problem in stereo matching. The most common are 
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compatibility, uniqueness, and j g u r a l  continuity [ 171, [ 181. These 
constraints have been shown to be important components of stereo 
matching [9]. However, these constraints are occasionally too weak 
to enforce surface smoothness and correctness of correspondence 
completely, since edges may not be present at major surface dis- 
continuities where two adjacent but overlapping objects produce a 
homogeneous intensity, or where surface discontinuities are pres- 
ent [ 101. This problem is most apparent when attempting to deter- 
mine the final depth map. 

Numerous efforts have been made in integrating multiple sen- 
sors; many have involved the use of stereo-intensity imagery or 
lasers. The NAVLAB [22] used intensityhexture low-resolution 
color images and laser range data for its autonomous vehicle nav- 
igation. Krotkov [15] demonstrated active depth recovery by co- 
operative focus and stereo. Ayache [2] developed a formalism for 
the combination of multisensory data, in particular, the combina- 
tion of stereo and motion for dynamic robot vision. A multireso- 
lution approach to integrating stereo, focus, and fixation was pre- 
sented by Das and Ahuja [7]. In their approach, information in the 
peripheral, low-resolution parts of the current image is used for 
obtaining coarse surface estimates in the vicinity of the next fixa- 
tion point. The coarse estimates are refined after the camera is re- 
fixated and images of higher resolutions are processed. Recently, 
Chu and Aggarwal [6] reported the integration of laser range (La- 
dar), intensity, velocity, and thermal data in an automatic image 
interpretation system. 

The research described in this paper is motivated by the analysis 
of the advantages and disadvantages of traditional intensity stereo 
matching and triangulation range finding approaches. It presents an 
efficient range-guided multiresolution stereo method for the acqui- 
sition of a complete, relatively noise-free, and high-resolution depth 
map from a low-resolution laser range image and a stereo pair of 
high-resolution intensity images. The result is a new approach to 
multisensor integration, which uses multiresolution pyramids as a 
framework for a system which incorporates data from stereo and 
laser range, while taking into account their advantages and disad- 
vantages. 

The remainder of this paper is organized as follows. Section I1 
describes the interactions between the laser range and stereo-inten- 
sity data, and introduces the range-guided multiresolution stereo 
matching and depth map construction based on these interactions. 
Section I11 presents the implementation and experimental results. 
Section IV contains future research issues, and Section V is the 
conclusion. 

11. RANGE-GUIDED MULTIRESOLUTION STEREO AND DEPTH 
MAP CONSTRUCTION 

The key components of the approach outlined in subsequent sec- 
tions are multiresolution processing and the complementary aspects 
of stereo-intensity image processing and laser range-finding tech- 
niques. Essentially, a coarse depth map from a laser range finder 
is used to guide a multiresolution stereo matching and depth map 
generation process, resulting in a high-resolution depth map. Coarse 
range data is acquired using an inexpensive triangulation laser range 
finder at a level of resolution sufficiently small to allow rapid data 
acquisition, while the resolution of the resulting fine depth map is 
determined by the resolution of the stereo images. 

The key aspects of the described approach are: 

Multiresolution processing is performed using the constructs 
provided by the intensity pyramid [4]. Using the intensity pyr- 
amid model, a stereo pair of high-resolution intensity images 
are brought to the same level of resolution as a comparatively 
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low-resolution range image. The common edges between the 
range and intensity images at this common level of resolution 
are used to start multiresolution stereo matching and depth 
map construction, progressing level-by-level to the bottom of 
the pyramid. Multiresolution pyramids allow iterative im- 
provement in stereo matching and generated depth maps, while 
at the same time reducing errors due to depth estimation errors 
at low resolution levels. 
Stereo-intensity data is used as a supplementary source of 
depth information, providing smoother depth values at edges 
(where many laser reflectance problems occur) and finer detail 
(since in general, intensity data is capable of providing finer 
detail from an object than laser data). It is also used to provide 
depth information for surfaces or portions of surfaces the laser 
range finder is unable to view due to surface reflectance or 
absorption. 
The weaknesses of the traditional stereo-matching constraints 
are compensated for by the presence of depth information 
gathered without any lighting dependencies. The coarse range 
data is converted to estimated disparity values using known 
camera geometry properties and standard mathematical rela- 
tionships at edges common to the intensity and range data to 
guide the search for a matching edge in stereo matching, thus 
reducing the stereo-correspondence problem. 
The acquisition of coarse range data reduces the time of its 
acquisition. 

Fig. 1 shows the order of the processing. First, image intensity 
pyramids are constructed for the left and right intensity images to 
bring them to the same level of resolution as the range image. Then, 
edge detection is performed in each image in the intensity pyramid 
and in the range image. In both pyramids, bidirectional links de- 
fining a parent-child relationship are set up between corresponding 
edges at different levels of resolution [4], [ll]. Also, edge seg- 
ments are formed by linking each point on the edge with its primary 
and secondary predecessors and successors on the segment. Edge 
correspondences are then found between the range image and the 
top level of the pyramid for the registered intensity image (Le., the 
image acquired by the same camera). The depth information from 
along these edges is then projected to the next level of the pyramid 
using the interlevel edge linking. Stereo matching is performed at 
this pyramid level using the depth values as guides to constrain the 
search for a potential match. Once all edges with associated depth 
have been matched, remaining edges are matched. Stereo matching 
is then followed by boundary improvement at the current level of 
resolution. New depth values are determined using the smoother 
depth values acquired through stereo matching and the depth values 
from the range image. These new depth values are projected to the 
next pyramid level for use as estimated depth values for stereo 
matching at that level. This process of depth projection, stereo 
matching, and boundary improvement is camed out to the bottom 
of the pyramid. 

A .  Intensity Pyramid Construction 

The most important feature of the intensity pyramid for the pur- 
poses of this paper is the hierarchical linking of edges with com- 
mon properties within the pyramid. As described in detail in Sec- 
tion 111-A, two types of edge linking are used. The first, intralevel 
edge linking, is used to form edge segments within an individual 
pyramid level. The second, interlevel edge linking, links edges into 
a parent-child relationship between pyramid levels. Both types of 
linking play important roles in hierarchical stereo matching. 
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1. Intensity Pyramid Construction. 
2. Range Image Edge Detection. 
3. Edge Combination. 
4. Project Depth Values. 
5.  Stereo Matching and Boundary Improvement. 
6. Project Depth Values. 
7. Stereo Matching and Boundary Improvement. 

Fig. 1. Overview of the order of processing. 

B. Hierarchical Stereo Matching 

Stereo matching is performed hierarchically, and proceeds level- 
by-level in two passes. In the first pass, all possible matches using 
depth as a guide are made; these matches constrain the possible 
matches in the second pass. The second pass, which roughly cor- 
responds to traditional stereo matching is used to complete the 
matches. All matches are performed using the epipolar and figural 
continuity constraints. 

Two types of figural continuity are used. The first, intralevel 
figural continuity, applies within a pyramid level, and corresponds 
to the traditional definition of the constraint since it ensures that 
match disparities are smooth along an edge segment. It is enforced 
while searching along an edge segment. The second type, inter- 
level figural continuity, applies between pyramid levels, and en- 
sures that matches along the same edge segment at consecutive lev- 
els of resolution agree with each other. It is enforced using the 
explicit interlevel linking between edge points in the image pyra- 
mid. The main purpose of interlevel figural continuity is to reduce 
the number of initial matching errors at low levels of resolution by 
ensuring that the same match at higher resolution is still possible. 
The use of interlevel figural continuity is an important departure 
from other stereo matching approaches 1171, 11 81, 191, since it not 
only allows matches at low levels of resolution to guide matches 
at higher resolution, but also a greater interaction between levels 
of resolution. 

Fig. 2 shows the steps involved in matching a single point. Es- 
sentially, matching proceeds from the top left to the bottom right 
of the source image. Each unmatched edge point encountered in 
this search is used as a starting point for matching the edge segment 
on which it lies. For each such edge point, a list of potential matches 
is made containing edges with compatible edge direction and mag- 
nitude, and which lie within a given search window as per the epi- 
polar constraint. If the current pass over the image is using depth 
as a guide and the given point has an estimated depth value as 
determined from matching at a lower level of resolution or from 
the range image, then the list of potential matches is ordered by 
increasing difference with the estimated disparity value. (Estimated 
disparity values are derived from the estimated depth values using 
the mathematical relationship between depth and disparity and the 
known camera geometry parameters [ 11 .) 

If, however, matching using depth as a guide is not being used, 
then any ordering of potential matches can be used; in this case, 
matches are ordered by decreasing disparity. Once the potential 
matches list has been ordered, the list is searched in order until a 
match is found with which at least one linked-to child agrees within 
the interlevel figural continuity threshold. The validity of this match 

-1 ..... 11111 ...... 
I depth 

If matching I [-[ value 
with depth Estimate 
as aguide. 1 Match 

Dispari . estimated 

I 
I . . 
I 
I . 
I . . . 

Matches 
potential 
match list 
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Fig. 2. The stereo-matching algorithm. Shown are the processing steps in- 
volved in attempting to match an individual edge point. The only difference 
between matching in the two passes is in the order in which the potential 
match list is sorted. If it is the first pass (matching with depth as a guide), 
the list is sorted by the difference in disparity between an element and the 
estimated disparity determined from previous stereo matching or the range 
image, depending on the current location in the image pyramid. Each po- 
tential match must first be approved by its children in the pyramid with 
respect to the interlevel figural continuity constraint, and then must be ap- 
proved by its neighbors and their children on its edge segment with respect 
to intra- and interlevel figural continuity. 

is tested by ensuring that a sufficient percentage of the edge points 
along the edge and their children agree with the match. 

A match is evaluated sequentially along an edge segment using 
the primary predecessors and successors of the start point (the first 
edge point encountered in the image scan). As the edge is tra- 
versed, a current disparity measure is kept, recording the disparity 
of the last matched point on the edge. For each new neighbor, the 
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match with disparity closest to the current disparity is found with 
which at least one linked-to child agrees. A child is said to agree 
with a match if it is capable of making a match to the equivalent 
target-edge point within the interlevel figural continuity threshold 
(currently set at three plus two times the disparity from the candi- 
date match at the previous level). If at least one linked-to child 
agrees with the match at the current disparity and the difference 
between the disparity of this match and the current disparity is less 
than the intralevel figural continuity threshold (currently set at 3), 
the edge point is said to agree with the match and the current dis- 
parity is set to the disparity of the current match. Then, the next 
neighbor is tested using this new disparity. If the new disparity 
does not agree, then the next neighbor is tested using the same 
current disparity. If some percentage (currently 60%) of the edge 
points (and their children) in an edge segment, agree with a match, 
then it is accepted and all edges in the segment and the edges 
matched to in the target pyramid are marked as matched. Edge 
points on the same edge segment which were unable to agree with 
the match are now marked as matched, and a disparity is calculated 
for them based on the average disparity of their primary and sec- 
ondary predecessor and successor edge points. If an insufficient 
percentage of points on the edge agree with a match, then a new 
match is attempted, resulting in the same process of attempting to 
reach consensus along the edge at a new disparity. If there are no 
more potential edges, the edge segment remains unmatched and the 
image search for unmatched edges continues. 

Once all possible matches using depth as a guide have been made, 
the image is searched again in order to match remaining edges us- 
ing a nonguided matching process. This matching is performed in 
exactly the same fashion as matching by depth, except that the size 
of the potential match lists for individual edge points is constrained 
by the matches made in the first pass. 

Two examples have been derived from actual data to illustrate 
the effectiveness of the hierarchical approach to stereo matching. 
Note that matching is performed from the left to the right image in 
both examples. 

The first example, shown in Fig. 3, illustrates how the algorithm 
is capable of dealing with ambiguity and also how it can set the 
disparity of edge points after the edge segment has been matched. 
Matching begins at (96,72), where it has an associated depth of 62, 
producing an estimated disparity of 4. Its left neighbor (95,71) is 
unable to match since it has no compatible edges. To its right 
(97,73) matches at disparity 4 ,  and (98,73) and (99,72) at disparity 
5. For each of the next six edges (100,71) to (105,67), matches are 
made at disparity 4 or 5 since the current disparity measure and the 
figural continuity threshold do not allow matches to the other edge 
segment. (106,67) and (108,66) remain unmatched since they have 
no compatible edges, and the rest successfully match using the cur- 
rent disparity. Once matching is complete on this edge, three edge 
points are unmatched: (95,71), (106,67), and (108,66). These are 
all assigned disparity measures based on the average disparity of 
their predecessors and successors on the edge segment, which in 
this case gives them all disparity 4. These assigned disparity mea- 
sures are important since they increase the density of the disparity 
map, thus providing more information to later processing steps 
which use the disparity map. This example can also be used to 
illustrate how matching would fail if it were to start at (100,71) 
with disparity 15. Although all its successors on the edge segment 
(101,71) to (107,66) can match at this disparity, the fact that the 
rest of the edge cannot will cause the match to be rejected, since 
in this case only 7 out 17 edge points on the segment successfully 
matched. Given that this match would be rejected, the second 
match, at disparity 4 would be attempted and would succeed. This 
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Fig. 3 .  Stereo matching, example 1 .  An illustration of dealing with am- 
biguity and in setting disparity values for unmatched edge points. 

illustrates the point that the figural continuity constraint and the use 
of a current disparity measure along an edge segment ensure that 
the same match should be reached regardless of the starting point 
for matching. 

The second example, shown in Fig. 4, illustrates the role played 
by interlevel figural continuity in stereo matching. The figure shows 
edge points present at two levels of the pyramid: Levels 6 and 7. 
The overlapped child sets for the edges in the left image at Level 
6 are shown by arrows leading to 4 x 4 boxes at Level 7.  The 
edges appearing within these boxes at Level 7 are all linked to by 
the edge points at Level 6. When matching the edge segment at 
Level 6 ,  the depth estimate for (20,46) is large, indicating that a 
match should be performed to (20,40) in the right image even 
though (20,43) is the correct match. However, the match to (20,40) 
is rejected by the children, since none of them can match within 
the interlevel figural continuity threshold at this disparity. The 
threshold is violated since the proposed match at disparity 6 means 
that at least one of the children must be able to match at a disparity 
within 12 + 3. (As outlined above, the interlevel figural continuity 
threshold is determined by doubling the disparity from the previous 
level and ensuring that the difference between this disparity and a 
child’s match disparity is at most 3.) In this case, none of (40,91), 
(41,92), or (42,93) can make such a match so it is rejected. The 
other match for (20,46) to (20,43) is then attempted, and accepted 
by all of its children. This match at disparity 3 is then tested among 
all the successors of (20,46) along the edge segment at pyramid 
Level 6. In this case, all of the edges on this segment and their 
children agree with this match. 

These examples illustrate many of the important features of this 
approach to range-guided stereo matching. As demonstrated, this 
approach is capable of dealing with poor depth estimates from the 
range data, allows matching of nearly horizontal line segments, 
and is not restricted to matching of straight edge segments. Also, 
the method of enforcing intralevel figural continuity along edge 
segments allows the disparity to gradually increase, decrease, or 
modulate along the edge. This intralevel figural continuity is en- 
hanced by the interlevel figural continuity constraint, which en- 
sures that matches are compatible with their linked-to children’s. 

C. Hierarchical Dense Depth Map Generation 

There are two primary components for depth map generation. 
The first component is based on hierarchical averaging of depth 
values from the original laser range map with depth values result- 
ing from stereo matching. The primary motivation behind this tech- 
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Fig. 4. Stereo matching, example 2. An illustration of the role of inter- 
level figural continuity. 

nique is that the laser range depth values are generally reliable on 
the interior of regions and not reliable on region boundaries. There- 
fore, the averaging technique relies heavily on stereo-matching 
depth values at boundaries and laser range depth values in surface 
interiors. The second component of depth map generation is a sur- 
face interpolation method used to create depth values for surfaces 
or portions of surfaces missing from the laser range map yet present 
in the stereo-intensity data. This method is only capable of inter- 
polating planar or simply curved surfaces. 

I )  Hierarchical Dense Depth Map Generation with Boundary 
Improvement: After the completion of stereo matching at a pyra- 
mid level, a depth map is generated. Depth maps are generated 
using an averaging technique with boundary improvement, which 
is the process of ensuring that object boundaries are reliably fol- 
lowed. This method of depth map generation is also hierarchical in 
nature, since it combines depth information from the previous pyr- 
amid level with the depth values obtained at the current pyramid 
level from stereo matching. 

The primary problem in hierarchical depth map generation is de- 
termining the best method for combining the various sources of 
depth information. One source of depth is the laser range depth 
map, which is coarse and cannot be relied upon for a complete 
surface description, not only due to its resolution, but also due to 
noise in the range image, especially at the edges. The other source 
of depth information are the disparity measures produced from 
stereo matching. These values are smoother than along the edges 
of the range image due to the enforcement of figural continuity, but 
unfortunately are sparse since they correspond only to the edge 
locations. 

At each pyramid level, a depth map is generated from two depth 
maps. The first depth map is the depth map from the previous pyr- 
amid level, called the estimated depth map.  These are the same 
depth values used to drive stereo matching at this pyramid level. 
The estimated depth map is constructed using the nonoverlapped 
pyramid scheme, where each of a parent’s 2 x 2 children are as- 
signed to the same depth value. Note that at the first pyramid level 
where stereo matching takes place, the estimated depth map is con- 
structed from the coarse laser range data. On all subsequent pyra- 
mid levels, it is constructed from the previous level’s generated 
depth map. The second depth map is the stereo-depth map,  which 
is the sparse map of depth values resulting from stereo matching. 

Depth map construction by averaging is performed on a point- 
by-point basis on a single pyramid level. For each point, k-nearest 
averaging is used within a 3 X 3 neighborhood centered on the 

1 high resolution I 

I 2 . 1 0 ~  resolution I 
intensity image object 

Fig. 5 .  Proposed camera geometry. This camera system consists of a tra- 
ditional triangulation range finder and an additional camera orthogonal to 
this system. The bottom camera collects both laser range and intensity data, 
while the added camera collects intensity data only. 

point. For each neighbor within this neighborhood, there are two 
possible depth values-an estimated depth value and a stereo-depth 
value. If a neighbor has only one of these, then this value is used 
for the k-nearest averaging. If it has both, then the stereo-depth 
value is used. The k-closest values chosen in this manner are av- 
eraged together and assigned to the given point. 

Boundary improvement is performed by thresholding the calcu- 
lated depth values. At each pyramid level, a threshold value is cho- 
sen and all depth values less than this threshold are zeroed. This 
enforces object boundaries by clearly defining outer boundaries and 
by removing “noisy” depth values created by averaging. 

2)  Depth Map Generation f o r  Missing Parts: Attempting to de- 
rive depth information for missing parts is a difficult problem. Other 
researchers have found single-camera intensity data useful for the 
recovery of missing parts [ 5 ] .  The major purpose of the method 
presented in this paper is to show how the availability of stereo- 
intensity data makes it possible to develop a simple approach for 
depth map generation of missing parts. The novel technique pre- 
sented in this paper combines various existing algorithms for this 
purpose. This technique performs reasonably well when the miss- 
ing part meets the following criteria: a sufficiently large portion of 
the surface is visible, and it is simply curved or planar. As de- 
scribed below, missing parts are discovered at a low level of res- 
olution, then labeled as a missing part at the highest resolution 
using the hierarchical edge linking. 

The camera geometry shown in Fig. 5 is sufficient to detect miss- 
ing parts lying above and to the left of the region visible from the 
traditional laser range finding system. Missing parts in this system 
are those visible in both intensity cameras, but not visible from the 
position of the laser. These surfaces are discovered by finding edge 
segments enclosing regions with no corresponding laser range data. 
Such regions are found after stereo matching and boundary im- 
provement on a pyramid level using the compact object extraction 
algorithm of Hong and Shneier [12]. The hierarchical nature of 
their algorithm and the interlevel linking at edge boundaries of these 
regions, allows missing part region detection at low resolution and 
labeling at the highest level of resolution, the bottom of the pyra- 
mid. 

Given a region labeled as a missing part, the depth for that region 
is filled in using a linear Coons surface model [20]. In this tech- 
nique, four edge segments and four comer points on opposing sides 
of the region are chosen (currently randomly) as representative of 
the region boundary. A spline curve is fit to each chosen edge seg- 
ment. Depth points internal to the region are generated using the 
linear blending function for Coons surfaces. This method works 
reasonably well for surfaces which have no radical changes in 
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Fig. 6 .  Missing part extraction example. This example shows a synthetic 
image containing a single cube. The range image in (c) shows that the top 
surface of the cube is a missing part. The synthetic intensity images in (a) 
and (b) are the top and bottom images, respectively, for this cube. The 
final range map, shown in (d), shows the result after surface interpolation. 

shape, since the accuracy of the resulting surface is dependent on 
the accuracy of the B-splines fit to the boundary segments, and 
which have only minor disparity errors, since if large disparity er- 
rors are present, the derived surface will not conform to the desired 
surface and thus not match surrounding surface regions (i.e., it 
may appear to have been peeled away from or indented into a sur- 
rounding region). The selection of the edge segments and comer 
points is also crucial to the resulting surface; poor choices will 
result in inaccurate surfaces. 

The missing part algorithm has been tested on a synthetic image 
of a cube with one missing part. Fig. 6 shows the range image, the 
corresponding intensity images, and the resulting depth map after 
stereo matching, boundary improvement, and missing part extrac- 
tion. 

111. IMPLEMENTATION A N D  EXPERIMENTAL RESULTS 

Test data were created from registered range and intensity im- 
ages obtained from the Pattern Recognition and Image Processing 
Lab at Michigan State University. Coarse range images were gen- 
erated using a tailor-made program, which uses the same method 
of image reduction as in pyramid construction. These coarse im- 
ages were then used to test the range-guided stereo matching. The 
second image in the stereo pair were created from the original in- 
tensity image and the original range image using the “stereo” pro- 
gram from the University of British Columbia’s IFF (Image File 
Format) Library. The original coarse range data and stereo-inten- 
sity data used to generate the results shown in the remainder of this 
section are shown in Fig. 7 .  

A .  Pyramid Construction and Edge Linking for  Stereo Images 

Pyramid construction is performed using a noniterative, non- 
overlapped scheme, where four gray-level values reduce to one 
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value in the next higher pyramid level. Gray-level reduction is per- 
formed using the best image-preserving technique described by Li 
and Hu [16], where the four values are sorted, and the average of 
the middle two is assigned as the gray-level value to the parent of 
the four elements. Once the gray-level pyramid is established, edge 
detection is performed on all pyramid levels independently, using 
the Sobel operator. Edges are thinned using nonmaximum suppres- 
sion, where two neighbors along the direction of the edge gradient 
are chosen for each edge point. If the point’s edge magnitude is 
less than either of these two neighbors having similar gradient di- 
rection, then it is removed. 

Intralevel edge linking is used to form edge segments at each 
pyramid level. Each edge point records its primary and secondary 
predecessors and successors on the segment, thus allowing forks 
[19]. For each edge point in the image, six neighbors from the 
surrounding eight are chosen, based on its edge gradient, three as 
candidates for the predecessor and three for the successor, as in 
Fig. 8.  For both candidate predecessors and successors, neighbors 
are assumed compatible if the difference between the direction of 
their edge gradient and the center point’s is within 90”. If there is 
only one compatible candidate, then it is listed as the primary pred- 
ecessor or successor (as appropriate). If there are two or more com- 
patible candidates, the candidate whose edge gradient is closest to 
the center point’s is kept as the primary predecessor or successor, 
and the candidate with the next closest edge gradient is kept as the 
secondary predecessor or successor. 

Interlevel edge linking is based on the Pyramid Linking concept 
where an overlapped pyramid is employed [4], [ll].  In this ap- 
proach, each edge point has up to four parents and sixteen children. 
Interlevel linking begins at the top of the pyramid. Each edge 
checks its sixteen potential children for compatible edges, where 
an edge is compatible if the difference between their edge gradients 
is within 45” .  For efficiency, bidirectional edge linking is used, 
where each edge element records its compatible parents and chil- 
dren. Afterwards, pyramid relinking is performed iteratively to en- 
sure the best possible hierarchical linking. This relinking is made 
necessary by the fact that edge gradients are different between con- 
secutive levels of resolution in the pyramid due to a decrease in 
edge gradient accuracy, where the edge gradients may be suffi- 
ciently different to create a situation where edges which should link 
to each other do not. 

An example intensity image pyramid for the toy image is shown 
in Fig. 10. A binary edge map for the left image pyramid for this 
image is shown in Fig. 11. Since the right image pyramids are very 
similar, they are not shown. 

B. Range Image Edge Detection 

In order to perform range image edge detection, a traditional, 
yet novel approach, is used to reduce the number of passes over 
the image. In the first pass, jump edges are detected using the Sobel 
intensity edge detection operator, and the first-order surface de- 
rivates fr  and f ,  are calculated from the Sobel operator and used to 
compute the surface normal for each point. In the second pass, 
roof-edge detection is performed by comparing the angular differ- 
ences between the surface normal of a single point with the surface 
normals of its eight surrounding points [24]: 

M~~~~ = max {cos-’ ( i i ( x ,  y )  

. n‘ (X + k,  y + l ) ) ,  - 1 5 k ,  1 5 I }  

In the third and final pass, jump and roof edges are thinned using 
nonmaximum suppression with respect to two neighbors chosen for 
each edge point based on its edge gradient. 
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(d) (e) 
Fig. 7 .  Original data. (a) The laser range depth map for the “toy” image. (b, 
images. (d) The laser range depth map for the “wyel” image. (e) and ( f )  ’I 
Both depth maps are 64 X 64 pixels: all intensity data is 256 X 256 pixels 
white indicates a region closer to the viewer. 

RI 
s s  

( f )  

) and (c) The corresponding stereo pair of intensity 
’he corresponding stereo pair of intensity images. 
, Depth is shown as a gray-level intensity, where 

C. Edge Combination 

The goal of edge combination is to find edges in the same relative 
positions in the registered range and intensity image pair. The 
overall success of this process is vital to stereo matching, since the 
depth value from the equivalent edge is used to find a stereo-match 
disparity estimate when matching is attempted at that edge point. 

The method used is based on the local AND method [8]. In this 
method. a 3 x 3 neighborhood in the range image is searched for 

Fig. 8. Intralevel edge linking. Three potential predecessors and succes- 
sors are chosen for the center point based on its edge gradient whose di- 

lowed by linking to, at most, two compatible predecessors and successors. 

a roof or,ump edge, ;here the center of the neighborhood is in the 

tation, Jump edges are considered to correspond to an intensity edge 
only if the difference between their orientations lies within a thresh- 

rection is indicated by the in the figure, Forks i n  segment are a l -  Same ‘Ow and column as i n  the intensity map‘ In this implemen- 

old (currently set at 30”). Roof edges are considered to correspond 
to an intensity edge when they lie within the corresponding neigh- 
borhood of an intensity edge. 

The use of orientation for finding common jump and intensity 
edges leads to a critical observation about the choice of edge de- 
tection methods for the range and intensity images. Namely, dif- 
ferent methods place edges differently and give varying degrees of 
accuracy in their estimate of orientation. This observation also ap- 
plies to edge thinning, since a simple difference in method between 
that used for range and intensity images can reduce the number of 
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(e) ( f )  (8) (h) 
Fig. IO.  Intensity pyramids for the "toy" image. (a) to (d) The left image pyramid. (e) to (h) The right image pyramid. Image 
resolution at the top of the pyramid is 32 x 32 pixels, and at the bottom 256 x 256 pixels. The images at the bottom of the 
pyramid correspond to the original intensity images. 

(a) (b) (c) (d) 
Fig. 11. Intensity pyramid edges. (a) to (d) The left image edge pyramid for the "toy" image. Image resolution at the top of 

the pyramid is 32 x 32 pixels, and at the bottom 256 X 256 pixels. 

One problem with the original local AND method [8] for this 
implementation, is that no order of search is specified for the neigh- 
borhood of a point. This is a problem when more than one possible 
correspondence lies within the neighborhood. For this implemen- 
tation, where the best possible correspondence (and thus depth es- 
timate) must be found, it is necessary to use a prioritized local 
AND. The order of search in the neighborhood is determined by 
the section of the intensity edge orientation, as shown in Fig. 9.  
The first nonzero depth encountered in this ordered search is used 
as the initial depth estimate for that point. 

Fig. 12 shows the jump and common edges for two sample im- 
ages. Jump edges are shown in binary, and common edges are 
shown as the depth found at that point in the range image as a gray- 
level intensity value. 

D. Stereo Matching and Depth Map Generation 

To show the effectiveness of matching by depth, the disparity 
maps between the first pass (matching by depth) and the second 
pass (matching remaining edges) were written out. The results of 
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TABLE I 
STEREO-MATCHING RESULTS 

Number Matched Number Matched 
Pyramid Total by Without Total Processing 

Depth ( % )  Depth (%)  Matched (%) Time (s) Image Level Number of Edges 

toy 7: I137 983 (91.78) 88 (8.22) 1071 (94.2) 
8: 3018 2230 (78.47) 612 (21.53) 2842 (94.17) 

wyel 7: 986 806 (90.7) 81 (9.13) 887 (89.96) 
8: 4096 2392 (65.48) 1261 (34.52) 3653 (89.18) 

totals: 4155 3213 (82.11) 700 (17.89) 3913 (94.18) 12.02 

totals: 5082 3198 (70.44) 1342 (29.56) 4540 (89.33) 13.01 

Fig. 14. Final depth maps. (a) 128 X 128 hierarchically constructed depth map for the “toy” image. (b) Final 256 x 256 depth 
map. (c) Final 256 x 256 depth map for the “wyel” image. 

stereo matching are shown in Fig. 13. Related results are shown in 
tabular form in Table I. The table illustrates the results of hierar- 
chical matching, showing the total number of edges and number of 
edges matched with and without depth (i.e., on the second match- 
ing pass) for each pyramid level. Also shown is the total processing 
time measured on a SPARCstation 1. Note that the percentage of 
edges matched by depth on subsequent pyramid levels, is lower 
than that matched at upper levels, which is a negative effect of 
performing averaging to obtain depth values. 

The final depth maps resulting from hierarchical boundary im- 
provement are shown in Fig. 14. 

IV.  FUTURE RESEARCH ISSUES 

The viability of the proposed approach as an alternative for the 
rapid acquisition of high-resolution range data is an issue requiring 
further exploration. Clearly, fast, and perhaps custom hardware is 
required. Parallel implementations, in particular, seem to provide 
great promise, especially given the efforts towards parallelizing 
pyramid implementations [ 2 3 ] .  

The largest issue open to further research is that of deriving more 
complete surface descriptions, especially for missing parts. Clearly, 
some method not totally dependent on the range data is required to 
deal with surfaces and finer details on existing surfaces introduced 
by the stereo-intensity data. Linear Coons surfaces produce ac- 
ceptable results for planar or simple curved surfaces. However, 
they require good choices for bounding edge segments and comer 
points and can produce results inconsistent with the desired sur- 
face. It might also be desirable to use a multiresolution approach 
to surface interpolation, where a surface fit is progressively refined 
to the bottom of the pyramid instead of using a single resolution 
similar to Terzopoulos’ method for stereo-intensity images [2 I ] .  

V .  CONCLUSIONS 

This paper presented a unique approach to the combined pro- 
cessing of laser range data and stereo-intensity data. Stereo match- 
ing serves as a complementary source of depth information, at- 
tempting to deal with the noise inherent in laser range data, 
especially along the edges of an object. Laser range data is used to 
guide a stereo-matching process where known depth values from 
the laser range map are converted to estimated disparity values to 
reduce the search space for candidate matches, thus reducing the 
correspondence problem. The hierarchical nature of this approach 
allows the creation of a high-resolution depth map from a low- 
resolution range image and a stereo pair of high-resolution intensity 
images. 

Arguably the most important feature of this research is the mul- 
tiresolution approach to stereo matching and depth map construc- 
tion. This paper has presented a method where edge relationships 
between different levels of resolution of the edge map are explicitly 
represented using interlevel edge linking in an image pyramid data 
structure. Furthermore, the image pyramid is used to provide in- 
tralevel edge linking to form edge segments. These edge segments 
form the basis of stereo matching and are not restricted to being a 
straight line or any particular orientation. Edge segments also pro- 
vide an effective means of enforcing the traditional figural conti- 
nuity constraint. The interlevel edge linking along edge segments 
allows the enforcement of the interlevel figural continuity con- 
straint. This constraint, not present in other approaches, provides 
a powerful method of enforcing surface similarity between levels 
of resolution of the image, thus reducing the chances of an incor- 
rect match made at low resolution propagating to the bottom of the 
pyramid. 
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Depth maps can be constructed for missing parts which are planar 
or simply curved surfaces. Missing parts are discovered in a hier- 
archical fashion, and interpolated using the linear Coons surface 
model blending function at the bottom of the pyramid. 

This paper has also explored the range and intensity edge cor- 
respondence issue further than previous researchers. In particular, 
it was found that the most reliable edge correspondences are 
achieved when the same edge detection and thinning method is used 
for all edges. Also, a more general-purpose method of finding edge 
correspondences has been presented which records the actual re- 
gion of equivalence. 
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Stereo Correspondence Based on Line Matching in 
Hough Space Using Dynamic Programming 

Ze-Nian Li 

Abstract-This paper presents a method of using Hough space for 
solving the correspondence problem in stereo vision. It is shown that 
the line-matching problem in image space can readily be converted into 
a point-matching problem in Hough (p-8) space. Dynamic program- 
ming can be used for searching the optimal matching, now in Hough 
space. The combination of multiple constraints, especially the natural 
embedding of the constraint of figural continuity, ensures the accuracy 
of the matching. The time complexity for searching in dynamic pro- 
gramming is O(pmn) ,  where m and n are the numbers of the lines for 
each 8 in the pair of stereo images, respectively, and p is the number 
of all possible line orientations. Since m and n are usually fairly small, 
the matching process is very efficient. Experimental results from both 
binocular and trinocular matchings are presented and analyzed. 

I .  INTRODUCTION 

The recovery of depth information is important for 3-D image 
analysis. One method for depth recovery is stereo vision, in which 
pairs of images from horizontally and/or vertically displaced cam- 
eras are used. One of the most difficult problems in stereo vision 
is correspondence [l]. Once corresponding points in the pair of 
images are identified, their disparity values can be calculated and 
used to recover the depth. 

We are developing a vision system for mobile robots. The pro- 
posed domain is an office environment. The robot is planned to 
walk in corridors and rooms to fetch and deliver simple objects. 
Both stereo and laser range data will be used. Since most of the 
objects of interest will be man-made, it is natural to think of straight 
lines as the main feature for stereo matching. The stereo algorithm 
described in this paper, can quickly render a nondense depth map 
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