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Abstract—We develop an algorithm for structured prediction with nondecomposable performance measures. The algorithm learns

parameters of Markov Random Fields (MRFs) and can be applied to multivariate performance measures. Examples include

performance measures such as F� score (natural language processing), intersection over union (object category segmentation),

Precision/Recall at k (search engines), and ROC area (binary classifiers). We attack this optimization problem by approximating the

loss function with a piecewise linear function. The loss augmented inference forms a Quadratic Program (QP), which we solve using

LP relaxation. We apply this approach to two tasks: object class-specific segmentation and human action retrieval from videos. We

show significant improvement over baseline approaches that either use simple loss functions or simple scoring functions on the

PASCAL VOC and H3D Segmentation datasets, and a nursing home action recognition dataset.

Index Terms—Optimization, large-margin, structural SVM

Ç

1 INTRODUCTION

WE develop an algorithm for learning the parameters of
structured Markov Random Field (MRFs) models

against nondecomposable performance measures. Solving
challenging vision problems such as image understanding,
object category segmentation, and video retrieval arguably
requires the use of structured models—those incorporating
relationships between multiple input and output entities.
Evidence for this comes from state-of-the-art approaches to
the aforementioned problems. For example, Hoiem et al. [1]
formulate image understanding models that tie together
object locations, camera parameters, and surfaces. Blaschko
and Lampert [2] localize objects using an efficient solution
to a structured output regression model. Desai et al. [3]
learn models for simultaneously detecting all objects in an
image. Nonmax suppression and contextual object co-
occurrence statistics are learned in a discriminative fashion.
Object category segmentation is a canonical example of a
structured labeling problem—individual pixel labels are not
obtained independently, but by considering structured
relationships over groups of pixels (e.g., [4], [5], [6]).

For many of these problems the natural performance
measures are also “nondecomposable”—ones that do not
decompose into a simple sum of individual terms measured

over each output entity. Examples of such measures are
object detection scores that penalize for multiple detections
on a single true positive (e.g PASCAL VOC [7]) and region
labeling or object segmentation scores that penalize for over
and under labeling or segmentation (e.g., intersection/
union score). Typical methods for solving these problems
learn parameters against other performance measures,
e.g., Hamming loss for segmentation, and then apply
postprocessing techniques (e.g., nonmaximum suppression
in object detection) to address the structure in the
performance measure. However, these methods fail to take
into account structural properties such as connectivity of
the variables or counts of the variables with a certain value
(e.g., they do not correctly handle multiple detections or
tradeoffs in over/under segmentation). We argue that
directly optimizing against the nondecomposable loss is
superior to these postprocessing approaches. Hence, in this
paper, we develop an algorithm for linking these two
together and formulate learning as jointly considering the
complex, structured relationships between output variables
in the model and in the learning objective.

The main contribution of this paper is developing a
general algorithm for addressing this type of learning
problem with nondecomposable models and those non-
decomposable loss functions which are a function of false
positive and false negative counts. We specifically apply it
to two problems, object category segmentation and human
action retrieval, but note that the algorithm can be applied
more broadly. We experiment with Markov Random Field
models. For segmentation, this is a standard model that
contains both unary terms for labeling pixels and pairwise
terms on the labels of adjacent pixels. For action retrieval,
we formulate a novel MRF that can capture contextual
relationships between the actions of the people in a scene. In
both cases, we show that learning the parameters to the
model under an objective directly tied to the performance
measure significantly improves performance relative to
baseline algorithms.

This paper builds on our preliminary work [8]. In this
paper, we formulate a multilabel version of the method,
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with a different inference scheme, and new experiments on
object category segmentation and action retrieval.

2 PREVIOUS WORK

A wide range of learning algorithms exist. Despite
technical differences, all of these approaches rely on a
performance measure to define what is a “good” result.
Based on the complexity of the performance measure, two
general approaches to optimize it are imaginable: formu-
late the learning problem to directly optimize this measure,
or approximate this measure with a simpler one and try to
optimize it, aiming to indirectly optimize the original
nondecomposable performance measure. We will call the
former “direct optimization” and the latter “indirect
optimization.”

Due to the complexity of some performance measures,
e.g., average precision and intersection over union, many
state-of-the-art approaches in different challenges exploit an
indirect optimization. Looking at the PASCAL VOC
challenge 2010 [7], for example, average precision and
intersection over union are defined as performance mea-
sures for detection and segmentation tasks respectively, but
methods for both tasks use indirect optimizations for
solving these problems.

Structured models are arguably a requirement for robust
solutions to learning problems in a variety of application
domains. Tasks such as machine translation, object category
segmentation, and scene understanding involve reasoning
about relationships between words in a document, pixels in
an image, and objects in a scene, respectively. In addition,
the performance measures for these applications often are
nondecomposable and are not a simple sum of terms
measured over individual output entities. Instead, they
measure performance as a function of the entire, structured
output. The focus of this paper is developing a learning
approach that can handle these together, handling struc-
tured prediction while optimizing against certain nonde-
composable performance measures.

Modeling dependences between outputs while optimiz-
ing against a loss function has been a research topic for
many years. Optimizing the expected loss in this scenario is
a nonconvex problem. However, Taskar et al. [9] and
Tsochantaridis et al. [10] have proposed rather to optimize a
convex relaxation of the expected loss. The cutting-plane
algorithm has been shown to be efficient for solving this
optimization [10]. Teo et al. [11] presented a bundle method,
which is basically the cutting-plane method stabilized with
Moreau-Yosida regularizer, and prove a tighter bound on
the duality gap. Taskar et al. [12] solve the same problem
using the extragradient method. Extragradient consists of a
gradient descent followed by a projection to the feasible set.
Shalev-Shwartz et al. [13] proposed Pegasos, which works
solely in the primal space. Similar to [12], Pegasos consists
of a gradient descent step followed by a projection step. The
computational difficulty in all the aforementioned struc-
tured prediction approaches is finding the subgradient,
which requires solving the “most violated constraint” [10]
or “loss augmented inference” [14]. It is shown that for
decomposable performance measures learning is tractable
when the model is a submodular MRF or a matching [9],

[10], [12]. In contrast, in this paper, we focus on non-
decomposable performance measures.

Joachims [15] proposed an approach to efficiently
compute the most violated constraint for a large class of
nondecomposable loss functions, a subset of those we
consider in this paper. However, the underlying models
were limited, and do not permit pairwise interactions
between output labels. The method of Yue et al. [16] takes a
similar approach to optimize against Mean Average
Precision. Khanna et al. [17] present an algorithm in the
same framework to optimize against Normalized Dis-
counted Cumulative Gain (NDCG). Rather than solving a
convex relaxation of the expected loss, McAllester et al. [18]
proposed a perceptron-like training approach to directly
optimize the original loss function, but still need to solve
the loss augmented inference. For the problems in which
the inference procedure is not tractable, Finley and
Joachims [19] compare undergenerating and overgenerating
algorithms in structured prediction and conclude that
“overgenerating methods [LP and graph cut] have theoretic
advantages over undergenerating [LBP, greedy] methods.”

In this paper, we provide an algorithm for structured
prediction with a nondecomposable scoring function that
optimizes against nondecomposable performance mea-
sures, those which are a function of false positive and false
negative counts.

3 BACKGROUND

To create a foundation for the proposed approach, we start
with an overview of our learning formulation. Next, we
discuss the two common approaches, one based on decom-
posable loss functions with nondecomposable scoring func-
tions and the others with nondecomposable loss functions
and decomposable scoring functions. We call a loss function
simple if it can be decomposed into loss on individual
training samples. Likewise, a scoring function is called
simple if it only depends on a single sample point and its
ground-truth label. Finally, we propose a framework to
incorporate certain nondecomposable loss functions and
nondecomposable scoring functions in structured prediction.

For notational convenience, we write matrices with bold
upper case letters (e.g., XXXX), vectors with bold lower case
letters (e.g., xxxx), and scalars with normal lower case letters
(e.g., x). In our notation, xxxxi represents the ith column of
matrix XXXX and xj represents the jth element of vector xxxx. We
use superscripts to denote variables or vectors that do not
belong to a vector or a matrix (xi, xxxxi).

3.1 Problem Formulation

The goal of our learning problem is defined as finding a
function h 2 H from the hypothesis space H given training
samples S ¼ ððxxxx1; y1Þ; . . . ; ðxxxxN; yNÞÞ that optimizes the ex-
pected prediction performance on the new samples S0 of
size N 0.

R�ðhÞ ¼
Z

�ð½hðxxxx01Þ; hðxxxx02Þ; . . . ; hðxxxx0N 0 Þ
�
;

½y01; y02; . . . ; y0N
0 �ÞdPrðS0Þ:

ð1Þ

In general, the loss function � cannot be decomposed into a
linear combination of a loss function � over individual
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samples. But, for simplicity, most discriminative learning

algorithms (e.g., SVM) assume decomposibility and i.i.d.

samples, which allows for rewriting (1) as

R�ðhÞ ¼ R�ðhÞ ¼
Z
�ðhðxxxx0Þ; y0ÞdPrðxxxx0; y0Þ: ð2Þ

Instead of solving the estimated risk in (2), learning

algorithms approximate that with empirical risk R̂�,

defined as

R̂�ðhÞ ¼ 1

N

XN
i¼1

�ðhðxxxxiÞ; yiÞ: ð3Þ

For nondecomposable loss functions, such as F1 score or
intersection over union, optimizing (2) does not provide the

desired answer. Rather, we are interested in finding an
algorithm that can directly optimize the empirical risk

based on the sample loss:

R̂�
S ðhÞ ¼ �ððhðxxxx1Þ; . . . ; hðxxxxNÞÞ; ðy1; . . . ; yNÞÞ: ð4Þ

Note that finding an h 2 H that optimizes (4) for an arbitrary

loss function � can be computationally challenging.

3.2 Structured Prediction Learning

For nondecomposable loss functions, one can reformulate

the SVM based on the idea of multivariate prediction [15].

Instead of having a mapping function h : X ! Y from a

single example xxxx to its label y, where xxxx 2 X and y 2 f�1;þ1g,
we look at all examples at once and try to learn a mapping

function �h : X � � � � � X ! �Y, where �Y ¼ f�1;þ1gN . We

define XXXX ¼ ½xxxx1; . . . ; xxxxN �, and yyyy ¼ ½y1; . . . ; yN �.
We can define the best labeling using a linear discrimi-

nant function (scoring function)

�hðXXXXÞ ¼ arg max
yyyy02�Y

wwwwT�ðXXXX; yyyy0Þ: ð5Þ

Here, function � measures the compatibility of the data

points and their assigned labels. If we define the � function

as a simple form

�ðXXXX; yyyy0Þ ¼
XN
i¼1

y0ixxxxi ð6Þ

that only depends on individual training points and their

labels, the optimal labeling sequence would be

arg max
yyyy02�Y

wwwwT�ðXXXX; yyyy0Þ ¼ arg max
yyyy02�Y

XN
i¼1

y0iwwww
Txxxxi ð7Þ

¼ hðxxxx1Þ; . . . ; hðxxxxNÞ
� �

; ð8Þ

which is exactly the same as the optimal labeling in SVM.
One way of incorporating a loss function � in SVM

formulation is Margin Rescaling [9]:

min
wwww;��0

kwwwwk2 þ C� ð9Þ

s:t: 8yyyy0 2 �Ynyyyy; wwwwT �ðXXXX; yyyyÞ ��ðXXXX; yyyy0Þ½ � � �ðyyyy; yyyy0Þ � �:

Similar to the original SVM formulation, � in (9) is an upper
bound on �ð�hðXXXXÞ; yyyyÞ [15].

The guarantee for convergence in polynomial time, the
potential for incorporating complex loss functions in the
objective and good performance in practice are the most
important reasons why structured prediction has garnered
much attention in computer vision recently.

In the standard approaches for solving (9), the output
vector, ~yyyy, corresponding to the most violated constraint
should be found repeatedly [20]:

~yyyy ¼ arg max
yyyy02�Y

�ðyyyy; yyyy0Þ þ wwwwT�ðXXXX; yyyy0Þ: ð10Þ

Finding ~yyyy is computationally challenging given an
arbitrary loss function, �ðyyyy; yyyy0Þ, and compatibility function,
�ðXXXX; yyyy0Þ. However, solving (10) in two special cases has
been shown to be efficient. We categorize these approaches
based on the simplicity of their � and � functions. We call a
loss function simple if it can be decomposed into individual
training samples. Likewise, a compatibility function is
called simple if it decomposes over single sample points
and their ground-truth labels.

3.3 Decomposable �, Complex �

Optimizing the parameters of an MRF structure when the
loss function can be decomposed into the loss of individual
samples falls into this category [9]. One popular application
in this category is foreground-background segmentation
with Hamming loss, which is defined as

�H ¼
X
i

11½yi 6¼y0i�; ð11Þ

where, 11½� is the indicator function. Szummer et al. [6] have
employed this formulation and reported promising results
for interactive segmentation.

Decomposability of the loss function results in an MRF
form for (10) because the loss function can be treated as
another unary term that adds up to the unary terms of the
compatibility function. Assuming binary labels, this MRF
can be solved efficiently using graphcut.

The advantage of this approach is to exploit pairwise
connections, but it is only tractable for decomposable loss
functions.

3.4 Nondecomposable �, Simple �

The other special case presented by Joachims [15] is when
the � function has a simple form of

�ðXXXX; yyyy0Þ ¼
XN
i¼1

y0ixxxxi: ð12Þ

If the loss function, �, is just a function of true positive
(TP ), false positive (FP ), and false negative (FN), then
there are at most Np �Nn distinct loss values, where Np and
Nn represent the number of positive and negative training
examples, respectively. Hence, (10) can be solved by
iterating over all loss values and maximizing wwwwT�ðXXXX; yyyy0Þ
subject to the value of TP , FP , and FN [15].

Unlike the approach of Taskar et al. [9], many standard
accuracy measures that lead to nondecomposable loss
functions, such as F� score (natural language processing),
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intersection over union (object category segmentation),
Precision/Recall at k (web search engines), and ROC area
(binary classifiers), can be directly optimized by this
approach. However, this method cannot benefit from the
pairwise interactions of training samples, which are shown
to be advantageous in many applications such as object
detection [3] and scene interpretation [1].

4 PROPOSED APPROACH: SOLVING

NONDECOMPOSABLE �, COMPLEX �

Discussing the advantages and shortcomings of the
previous methods, we now propose an approach to directly
optimize certain complex loss functions in an MRF. Here,
we can optimize nondecomposable accuracy measures,
such as F� and intersection over union and still be able to
benefit from pairwise interactions between training points.
So far, we have considered only binary output problems for
simplicity, but for the rest of the paper the output is
assumed to be multilabel. For notational convenience, we
encode the output label, yyyy in one-of-M format, where M ¼
jLj and L is the set of all possible labels. In this encoding,
the assigned label of yi is represented using a binary vector
of size M such that its jth element is 1, when the jth label is
assigned to this output, and the rest of its elements are 0.

We choose to follow the general framework of
StructuralSVM [20], shown in (9). Solving (9) requires finding
the most violated constraint (10) at each iteration and
modifying the parameter vector wwww accordingly. We propose
a novel method to efficiently solve for an approximate most
violated constraint for certain nondecomposable loss func-
tions in the presence of pairwise terms in the compatibility
function, �.

We can summarize the proposed approach as follows:

1. Replacing the original nondecomposable loss func-
tion with a piecewise linear approximation.

2. Writing the problem of finding the most violated
constraint as a Quadratic Program (QP).

3. Converting the quadratic program to a linear
program and solve the relaxed problem.

4.1 Piecewise Linear Approximation

Many standard accuracy measures, including the one
presented in the previous section, share the property that
they can be computed from the contingency table.1 Given
the number of positive and negative examples, Np and Nn,
the loss function corresponding to these accuracy measures
is just a function of FP and FN . Using piecewise linear
approximation, we can write

�ðFP; FNÞ ’ ~�ðFP; FNÞ

¼
XQ
r¼1

11½ðFP;FNÞ2<r � �rFP þ �rFN þ �rf g;
ð13Þ

where Q is the number of subregions (pieces), �r, �r, and �r
represent the rth plane coefficients, and Rrs are the
subregions that partition the space spanned by FP and FN .

As an example, Fig. 1 illustrates the intersection over
union loss function:

�\
[
ðFP; FNÞ ¼ FN þ FP

Np þ FP
; ð14Þ

along with its piecewise linear approximations using 15
and 40 pieces.

Given the subregion Rr, the original nonlinear loss
function is a linear function of FP and FN . The next step is
to substitute the approximated loss function, ~�, into (10)
and solve for the most violated constraint.

4.2 Forming the Quadratic Program

Capturing the structure of the output requires a model that is
rich enough to absorb the dependences between the outputs.
At the same time, a preferred model candidate offers tractable
inference procedure. A choice that satisfies both require-
ments is MRFs, which are commonly used for modeling
interdependent inputs and outputs in many applications.

We assume that we are given an MRF represented by a
graph G ¼ ðV ;EÞ, where V is the set of nodes with N ¼ jV j,
and E is the set of edges. The output label takes value from
the set L, which has M members. We define our � with
unary and pairwise terms as

�ðXXXX;YYYY Þ ¼
XN
i¼1

XM
k¼1

yik�uðxxxxiÞ

þ
XN
i¼1

X
j2N i

XM
k¼1

XM
l¼1

yikyjl�pðxxxxi; xxxxjÞ:
ð15Þ

Here, N i is the set of neighbors of node i. We later explain
how we define the unary and pairwise features (�u and �p)
in our experiments. We rewrite (10) with approximated loss
function, ~�, as

~YYYY � ¼ arg max
YYYY 0

~�ðYYYY ; YYYY 0Þ þ wwwwT�ðXXXX;YYYY 0Þ ð16Þ

¼ arg max
YYYY 0

~�ðYYYY ; YYYY 0Þ þ wwu
T XN
i¼1

XM
k¼1

y0ik�uðxxxxiÞ

þ wwp
T XN
i¼1

X
j2N i

XM
k¼1

XM
l¼1

y0iky
0
jl�pðxxxxi; xxxxjÞ;

ð17Þ
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Fig. 1. Intersection over union loss surface in FP and FN space. (a) Exact surface, (b) a piecewise linear approximation with 40 subregions, and (c)
a piecewise linear approximation with 15 subregions.

1. Are just a function of TP , FP , TN , and FN .



where wwww ¼ ½wwwwu;wwwwp� (weights of the unary features wwwwu

concatenated with the weights of the pairwise features wwwwp).
The group of nondecomposable loss functions that are

considered in the proposed approach is a function of false
positive and false negative counts. Although the definitions
of false positive and false negative counts are straightfor-
ward in binary output problems, for multilabel problems
such definitions are task-dependent. In this paper, we
assume that the loss is defined for one label (label p) versus
the rest and therefore define the false positive and false
negative counts as

FPYYYY ;YYYY 0 ¼
XN
i¼1

y0ip
X

k2f1;...;Mgnp
yik; ð18Þ

FNYYYY ;YYYY 0 ¼
XN
i¼1

yip
X

k2f1;...;Mgnp
y0ik: ð19Þ

Assuming that the loss values fall in subregion Rr, we can
write (17) as

~YYYY � ¼ arg max
YYYY 0

�r
XN
i¼1

y0ip
X

k2f1;...;Mgnp
yik þ �r

XN
i¼1

yip

0
@

X
k2f1;...;Mgnp

y0ik þ �r þ wwww
u TXN

i¼1

XM
k¼1

y0ik�uðxxxxiÞ

þ wwwwp
TXN
i¼1

X
j2N i

XM
k¼1

XM
l¼1

y0iky
0
jl�pðxxxxi; xxxxjÞ

1
A:

ð20Þ

Note that (20) only includes the predicted label y0 in linear
and quadratic forms. Hence, we can write a quadratic
program based on (20) subject to the loss values being in
subregion Rr:

�XN
i¼1

y0ip
X

k2f1;...;Mgnp
yik

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{FP

;
XN
i¼1

yip
X

k2f1;...;Mgnp
y0ik

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{FN �
2 Rr: ð21Þ

In order to have linear constraints in (21), the boundary of
all subregions should be definable as a linear function of yyyy0.
One way is to separate the subregions by straight lines. If,
for example, we partition the space spanned by FP and FN
into triangles (Figs. 1b and 1c), then (21) will be substituted
by three linear constraints corresponding to the three sides
of the triangle.

4.3 Converting Quadratic Program to Linear
Program

The quadratic function in (20) is potentially nonconvex
since there is no constraint on the coefficients of this
function. So, instead of looking for a local optima of this
nonconvex function, we relax the problem (MAP-MRF LP
relaxation [21]) by introducing some variables that sub-
stitute the quadratic terms in the this function and form a
linear program, which is convex. In detail, we introduce
y0ijkl ¼ y0iky0jl. To relate these new variables to the output
variables yy0, we augment some linear inequality constraints
in the form y0ijkl � y0ik, y0ijkl � y0jl, and

P
k;l y

0ij
kl ¼ 1. The final

linear program that needs to be solved for subregion Rr is

Maximize :

�r
XN
i¼1

y0ip
X

k2f1;...;Mgnp
yik þ �r

XN
i¼1

yip
X

k2f1;...;Mgnp
y0ik þ �r

þ wwwwu
TXN
i¼1

XM
k¼1

y0ik�uðxxxxiÞ

þ wwwwp
TXN
i¼1

X
j2N i

XM
k¼1

XM
l¼1

y0
ij
kl�pðxxxxi; xxxxjÞ

Subject to :

XN
i¼1

y0ip
X

k2f1;...;Mgnp
yik ;

XN
i¼1

yip
X

k2f1;...;Mgnp
y0ik

0
@

1
A 2 Rr

y0
ij
kl � y0ik; y0

ij
kl � y0jl

X
k;l

y0
ij
kl ¼ 1;

X
k

y0ik ¼ 1

y0ij;y
0ij
kl 2 f0; 1g; i 2 f1; . . . ; Ng; j 2 N i; k; l 2 L:

ð22Þ

Solving this LP for thousands of binary variables (labels) is
not computationally tractable. So instead we relax the label
values to real numbers between zero and one and solve for
optimal labeling. Later, we map the optimal labels to
integer values, if necessary, by rounding the results. We
solve (22) for each subregion separately, and return the
labeling of the one with the maximum objective value as
the most violated constraint.

4.4 Inference

The inference procedure concerns about maximizing the
assignment score wwwwT�ðXXXX;YYYY Þ over different assignments
and is an MAP-MRF problem. For general multilabel
problems this task is shown to be NP hard (see [5]), but
many approximate inference approaches have been pro-
posed to solve this problem [21], [22]. However, for a
supermodular binary problem, efficient min-cut/max-flow
algorithms exist that can solve the inference exactly [23].

For many applications, not only the maximizing assign-
ment, but also the confidence score associated to each
element’s assignment is required. Given the confidence
scores, compromising FP versus FN or vice versa is possible.

One way of computing a confidence score for the
ith element of the output is by looking at the difference in
the scores, when the ith output is assigned to the positive
label p comparing to when it is assigned to any other label,
while the rest of the output elements get their best
assignments [3]. Formally,

si ¼ max
YYYY ;yip¼1

wwwwT�ðXXXX;YYYY Þ � max
YYYY ;yip 6¼1

wwwwT�ðXXXX;YYYY Þ: ð23Þ

Each maximization in (23) is a MAP estimate in the MRF.
For our segmentation experiments, we only require the best
labeling, but for our action retrieval experiment the score is
needed to compare different approaches.

5 EXPERIMENTS

To highlight the superiority of the proposed approach over
two existing alternatives—keeping the model nondecom-
posable, but optimizing against a decomposable loss
function, or keeping the loss function nondecomposable,
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but forgetting about the dependence between outputs and
employing decomposable models—we design a set of
experiments. We compare the methods on two applica-
tions—object category segmentation and action retrieval.

5.1 Learning Method

We utilize NRBM [24]—an instance of a bundle method—as
the core of our learning and solve the loss augmented
inference based on the proposed approach. NRBM solves
the unconstrained form of (9):

min
wwww

�

2
kwwwwk2 þmax

YYYY 0
wwT�ðXXXX;YYYY 0Þ þ�ðYYYY 0; YYYY Þ
� �

� wwwwT�ðXXXX;YYYY Þ:

ð24Þ

Note that other structured prediction formulations such as
Pegasos [13] or the formulation proposed by Meshi et al.
[25] could easily replace the bundle method. We chose
NRBM due to implementation simplicity, knowing that it
has the same bound of Oð1=	Þ, like the aforementioned
alternatives, to obtain a solution of accuracy 	. We do cross
validation to set the � parameter in (24). To be able to solve
the inference as well as the loss augmented inference
exactly, for the first set of experiments involving binary
output labelings, we add wwwwp 	 0 constraints, similarly to
Szummer et al. [6], to make the function supermodular.

5.2 Mesh Creation

The main idea of this paper is to approximate the loss
function with a piecewise planar function in false positive
and false negative space, in which the loss function is
assumed to live. The process of computing the piecewise
planar approximation is offline and could be performed
using many approaches. We choose to start with a dense
mesh in false positive and false negative space and employ
mesh simplification methods to reduce the number of
pieces to the desired number. To keep the domain of the
loss function intact, the boundary of the original mesh and
the simplified version should be the same. The minimum
number of pieces that a mesh can be simplified to before
violating this property is dictated by the simplification
method and the primitive shapes that create the mesh.

The other alternative for creating the approximate mesh
is to fix the number of vertices and initialize the approx-
imate surface, e.g., on a grid. Then, try to minimize the
distance between the original and approximated meshes.
The distance function is nonconvex in most cases and it is
hard to find its global minimum. Instead, general techni-
ques such as gradient descent could be employed to find a
local minimum of this function.

In our experiments, we use MeshLab [26] and set the
number of pieces to 15, which is the lowest that respects
the boundary condition for all of the loss surfaces in the
experiments. We tried higher numbers of pieces, but did not
notice significant improvement in the overall accuracy. An
example of an original densely created loss function, along
with its approximated versions, is shown in Fig. 1. We use the
“quadric edge collapse” technique in MeshLab, which
simplifies the mesh based on the method of Gerland and
Heckbert [27]. The approximated surface resembles
the original loss surface quite accurately. For example, the
average absolute distance and the maximum absolute

distance between the approximated surface and the original
surface are 0.0011 and 0.031, respectively, in the Pascal VOC
2009 dataset when the loss value varies between zero and one.

5.3 Baseline Methods

We implement two baseline approaches to compare against,
each including one aspect of our proposed method. The first
baseline, which we name “Hamming,” consists of our
model, but optimized against Hamming loss, a decom-
posable loss function that is used widely for structured
prediction [9], [10], [6]. Hamming loss is defined as

�Hamming ¼ 
1FP þ 
2FN; ð25Þ

where, 
1 and 
2 adjust the contribution of FP and FN in the
overall loss. We set 
2 ¼ 1=2Np and cross validate the ratio

2=
1 on the set f1; 2; 5; 10; 50; 100; Nn=Npg (which is a time-
consuming process). Here, Np and Nn represent the number
of positive and negative examples in the training set.
Solving the loss augmented inference given this loss
function is as hard as solving the inference problem because
the loss is augmented to each node in the graph as a unary
term. Comparison to this baseline reveals the importance of
the proposed learning framework, which lets us optimize
against nondecomposable loss functions.

To show the importance of the structure in the model
(smoothing in segmentation and intraframe and interframe
interactions in action retrieval), we implement the approach
of Joachims [15]. This approach can exactly optimize against
multivariate nondecomposable performance measures, the
ones that can be approximately optimized using the
proposed approach, but only for decomposable models.
We remove the pairwise interactions from the model and
train the model parameters using only the unary features.
We call this approach “Unary” in the results.

5.4 Object Category Segmentation

We employ object category segmentation as an example of a
structured output problem with binary outputs. The task is
to label the pixels of an image as being part of a known
object (foreground) or not (background). We set the label of
foreground to one and the label of background to zero.
Intersection over union, measured over the entire dataset of
images, is used to compare object category segmentation
accuracies on the Pascal VOC challenge [7]. It is defined as

Acc\
[
ðFP; FNÞ ¼ Np � FN

Np þ FP

() �\
[
ðFP; FNÞ ¼ FP þ FN

Np þ FP
:

ð26Þ

We optimize against this loss function and compare to the
baselines on three datasets—Pascal VOC 2009, Pascal VOC
2010, and H3D. Solving the MAP inference and the loss
augmented inference exactly requires a supermodular
scoring function. So, for this experiment, we guarantee
supermodularity by forcing the weights corresponding to
pairwise features to be negative, knowing that the pairwise
features are always positive.

5.5 Pixels versus Superpixels

If we decide to perform segmentation on the pixel level,
meaning that the input is the set of all features extracted
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from all pixels in the dataset and the output is the binary
label of each pixel, then for the Pascal VOC 2009 dataset we
would have 133,567,772 pixels and the same number of
nodes in our MRF. On average, each node in our graph has
about four neighbors, which would create around 535� 106

edges in the graph. Learning the parameters of this huge
graph is intractable both for the baseline methods and the
proposed approach. Moreover, the features extracted from a
group of nearby similar pixels are perhaps more robust
comparing to the features extracted from single pixels. As
an alternative, nearby pixels that share similar appearance
features could form a group (superpixel) and share the
same label. The down side of moving from pixel to
superpixel is the possibility that the pixel of a superpixel
comes from both foreground and background. In this case,
the maximum achievable accuracy drops.

In our experiments, we employ the superpixel extractor
of Felzenszwalb and Huttenlocher [28] and set its para-
meters to MinArea ¼ 2000; k ¼ 200; � ¼ 0:01. This setting of
parameters result in an average of 50 superpixels per image
of size 300� 500 pixels. Using these parameters, the
number of nodes in the graph decreases from about 134�
106 to approximately 27� 103 nodes in the Pascal VOC 2009
dataset and from about 190� 106 to approximately 24� 103

nodes. However, as explained before, the maximum
possible accuracy drops from 100 percent to the numbers
reported in Table 1.

The second baseline assumes that all positive examples
(superpixels of the foreground) contribute equally in the
loss function, which is not true if the area of the superpixels
are different.2 On the other hand, this approach has OðN2Þ
complexity when N is the number of nodes in the graph
and clearly is not tractable if working on pixels. Assuming
the same features for each pixel of a superpixel, we have
modified Joachims [15] algorithm to work on superpixels as
follows: Instead of sorting the superpixels based on their
scores, we sort superpixels by their scores divided by their
areas. We also adjust the value of the loss function based on
the area of the superpixels. This approach is guaranteed to
produce correct labelings for all superpixels except possibly
one foreground and one background superpixel.3

5.5.1 Features

We define an MRF segmentation model with unary and
pairwise features, for which the exact inference is per-
formed using min-cut/max-flow algorithm [23].

In the MRF, there is an edge between each pair of
adjacent superpixels i and j. This is a standard method to
model label smoothness in each image. We define a set of
pairwise features that represent �pðxxxxi; xxxxjÞ in (22). We first
convert the image from RGB to La�b� color space. We
define Li, ai, and bi to be the average L, a, and b values
inside superpixel i, respectively, and assign the length of
the common boundary between superpixel i and j to Pij.
We then compute the pairwise features as

��pðxxxxi; xxxxjÞ

¼ Pij: exp ��1ðLi � LjÞ2;��2ðai � ajÞ2;��2ðbi � bjÞ2
h i

:

ð27Þ

In our experiments, the values of �1 and �2 are set to 2�
10�2 and 5� 10�3, respectively.

To represent each superpixel, we use a set of bottom-up
and top-down features, which form the unary features
�uðxxxxiÞ for superpixel i in (22). To create the bottom-up
features, we compute Color SIFT features [29] on a dense
grid with 6 pixel spacing in horizontal and vertical
directions. We then turn this into a bag-of-words represen-
tation using a codebook of 1,000 visual words.

For top-down features, we take a similar approach to
the implicit shape model [30]. We first learn two appearance
models for each of the six object categories using the
detector of Felzenszwalb et al. [31]. The result includes two
root filters and 6� 2 part filters, where each root filter and
six corresponding part filters model the object appearance
in one pose. We run this detector on the training set and
collect all bounding boxes that have positive scores. We
then crop the ground-truth images on the bounding box
locations and compute the average shape for the roots and
parts, Fig. 2.

We explain the rest of the process for one part, but the
same process is applied to all parts and both roots. We
find the potential part locations and their confidences by
running the detector on the image in different scales. We
call the result at each scale a confidence map, Fig. 3b.
Each potential part location casts its vote for the shape of
that part proportional to its confidence. We implement
this by convolving the confidence maps (different scales)
with the average shape for that particular part. We call the

RANJBAR ET AL.: OPTIMIZING NONDECOMPOSABLE LOSS FUNCTIONS IN STRUCTURED PREDICTION 917

TABLE 1
Maximum Achievable Accuracy Percentage in the VOC 2009,

VOC 2010, and H3D Datasets Due to Superpixelization

2. The other alternative is to force the superpixels to have the same size,
but then large flat regions such as sky would be broken into many small
superpixels and regions of small objects could be grouped with background
regions.

3. To find the optimal assignment if all positive examples contribute
equally in the loss function and so do all negative examples has been
proven in [15, Algorithm]. Based on [15, Algorithm 2], the first a positive
examples get value 1 and the rest get value 0 at the optimal v. Knowing that
the pixels of a superpixel are sorted sequentially, the only superpixel that
may have inconsistent labels is the one where its pixel is located at position
a. The same argument holds for background superpixels. So, all pixels of
other superpixels get the same labels as they would get if we could afford to
run the algorithm on pixels.

Fig. 2. Visualization of the average root and part shapes in the person
category. Each row corresponds to shape models obtained from the root
and part appearance models of one object pose.



convolution result in each scale a potential mask, Fig. 3c.
To merge the potential masks, we rescale them to the
original image size and get the maximum of the masks,
Fig. 3d. We accumulate the mask values inside each
superpixel to form the top-down feature corresponding to
the part. Fig. 3 depicts the entire process for one part.

5.5.2 Pascal VOC 2009 and 2010 Segmentation

Datasets

The Pascal VOC 2009 dataset includes 749 pixel-level
labeled training images and 750 validation images. The
Pascal VOC 2010 dataset includes 964 training and
964 validation images. We decided to train our method on
the training set and test on the validation set because the
ground-truth for the test set is not publicly available and
our focus is on comparison to baseline methods using a
different model or learning criterion. We present the results
on six object categories: Aeroplane, Bus, Car, Horse, Person,
and TV/Monitor. We selected these categories because the
top-down unary features obtained from the Felzenszwalb
et al. object detector [31] provide reasonable detection on
them. Without the top-down features, the overall accuracy
would be so low as to make the comparison between
different learning methods uninformative. Note that we
perform the experiments on these objects independently.
For example, when we segment object class car, any other
object is taken as background. This is different from the
VOC segmentation challenge in which the segmentation
result should contain all object classes simultaneously. One
of the most challenging aspects of these datasets is the ratio
of foreground to background pixels for all categories
(Table 2). Moreover, the images in these datasets are not
taken in a controlled environment and include severe
illumination and occlusion. We compare the proposed
approach to the baselines on the six object categories in
Fig. 4. As illustrated, the proposed approach significantly
outperforms the baselines on this dataset. Listings of state of
the art results are available from [32], [33]. Note that the

main contribution of this paper is a general learning method
for setting parameters. It could be used in conjunction with
other segmentation methods that achieve excellent results
on these datasets.

Moreover, the results of “Unary” in most cases except
for the “aeroplane” class are superior to “Hamming,”
which suggests optimizing against the right performance
measure is more important than smoothing the assign-
ments in this dataset.

We compare the effect of optimizing against adjusted
Hamming loss versus intersection over union in Fig. 5.
Adjusted Hamming loss tends to return fewer false
positives, but with the cost of missing many true positives.
In fact, it often marks all pixels as background, while
intersection over union actually produces segmentations.
That is because when the entire image is labeled as
background the adjusted Hamming loss results 1=2 loss
while intersection over union loss results 1. Fig. 9 illustrates
some segmentation results on the VOC 2009 dataset.

5.5.3 H3D Dataset

We also compare the results on the H3D dataset [34]. This
dataset includes 273 training and 107 testing images along
with three types of annotations—keypoint annotations, 3D
pose annotation, and region annotation. The keypoint
annotation includes the location of joints and other keypoints
such as eyes, nose, elbows, etc. The 3D pose annotation has
been inferred from the keypoints. The region annotation
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Fig. 3. The process of computing top-down features for the head part. Instead of showing the center of the detected parts, we depict the bounding
box for visualization purposes in the second stage.

TABLE 2
Background to Foreground Pixel Ratio

in Pascal VOC 2009 and 2010

Fig. 4. Intersection over union performance (percent) comparison on the
VOC 2009 and 2010 datasets.



which we use in this paper provides detailed annotation of
people, such as face, neck, lower and upper cloth, etc. For our
experiments, we compute the union of all region annotations
that are part of a person (bags, occluder, and hat are not
considered as parts of a person) as foreground and the rest as
background. The ratio of background to foreground pixels in
this dataset is 3.9, which is significantly lower than the ratio
in the Pascal VOC datasets. The reason is that all images in
the H3D dataset include at least some foreground pixels,
which is not the case in the Pascal VOC datasets. The
comparison result in Fig. 6 shows that the proposed
approach outperforms the baselines significantly on this
dataset. We also show some segmentation results on the
H3D dataset in Fig. 10.

5.6 Action Retrieval

The second application that we consider in this paper is
action retrieval. The task is to find actions that are similar to
the query action in video frames. In this experiment, we are
interested in detection and localization of the query action.
Action retrieval is an important problem with numerous
real-world applications such as multimedia content analysis
and surveillance and security systems. In the experiments,
we explore a surveillance application, automated analysis
of nursing home video footage. We would like to find
actions of interest—for instance residents falling down,
sitting, or standing up. The offline batch processing setting
is of interest to clinicians studying the behaviors of nursing
home residents. For instance, this setting is useful for
gathering data on the circumstances of injurious falls by
residents or mobility measures for residents.

The choice of loss function is arbitrary in our learning
framework as long as it remains a function of false positive
and false negative counts. A widely used performance
measure for retrieval tasks is precision on the first
K retrieved elements, termed precision at K. This measure
represents what we care about when performing retrieval in
many applications—one wants to maximize the number of

relevant events of interest in a fixed number of retrieved
videos. The loss associated with the precision is defined as

�Prec ¼ 1� Precision ¼ FP

Np þ FP � FN
; ð28Þ

Here, Np is the number of positive examples (people with
ground-truth label equal to the query label). In our action
retrieval task, all detections that have the same label as the
query action are considered positive and all other detections
are negative. So, false positive and false negative counts are
computed using (18) and (19), respectively.

5.6.1 Model

We describe our model for action retrieval in a sequence of
video frames. We assume that a set of person locations in
each video frame has been provided via a human detection
algorithm. The goal is to automatically retrieve the people
in a video who perform a query action. We believe there
are correlations between the actions of different people in
a scene and try to capture these interactions in our action
retrieval model.

The model we develop is depicted in Fig. 7. Our model is
a Markov Random Field where each detection corresponds
to a node (site) in the graph (shown in blue). There are three
types of edges in the graph, shown in red, green, and
yellow. Red edges denote the relationship between assign-
ing different labels to each node given the video features
describing the corresponding detection. These edges form
the unary potentials in our MRF.

The other two edge types model intraframe and
interframe correlations between actions. The types of
interaction between people in one frame and people in
consecutive frames are different. Intraframe interactions are
about which actions are likely to co-occur. On the other
hand, interframe interactions model the smoothness of
people’s actions over time. To differentiate the two types of
interactions, two groups of pairwise interactions are
included in the model, intraframe interactions and inter-
frame interactions, shown in green and yellow, respectively.
An edge between two nodes holds a vector of scores
corresponding to every possible combination of action
labels for its nodes.

Let �ðxxxxiÞ be the feature vector for ith detection and L be
the set of all possible action labels, with M elements. For
notational convenience, we encode the action label in a one-
of-M format.

Action appearance potential 
. The appearance score for
the ith node in the graph is formulated as


ðxxxxi; yyyyi; wwwwuÞ ¼
XM
k¼1

wwwwuTyip�ðxxxxiÞ: ð29Þ

Later, in Section 5.6.2, we describe how we compute the
appearance features �ðxxxxÞ.

Intraframe action potential �. The pairwise action-action
scores are only a function of the action labels at two
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Fig. 5. Segmentation for person category. Optimizing adjusted Hamming
loss (“Hamming”) against our proposed method. (a) Input image,
(b) segmentation considering adjusted Hamming loss (“Hamming”),
and (c) our proposed method employing intersection over union.
Intersection over union provides more true positives by possibly creating
some false positives. Adjusted Hamming loss decreases false positive
by sacrificing some true positives.

Fig. 6. Intersection over union performance (percent) comparison on the
H3D dataset.



neighbouring nodes with no ordering (symmetric). Under

these assumptions, there will be MðM þ 1Þ=2 parameters.

The intraframe interaction scores between nodes i and j can

be written as

�ðyyyyi; yyyyj; wwwwp1Þ ¼
XM
k¼1

XM
l¼k

w
p1

kþðl�kÞMyikyjl: ð30Þ

Essentially, wwwwp1 parameters encode which actions are likely

to appear together in a frame.
Interframe action potential �. Similarly, interframe

interaction scores can be formulated as

�ðyyyyi; yyyyj; wwwwp2Þ ¼
XM
k¼1

XM
l¼1

w
p2

kþlMyipyjq; ð31Þ

with a different set of parameters wwww� scoring pairs of action

labels in consecutive video frames. Note that the transition

between actions of a person is not symmetric (walking to

falling versus falling to walking), which results in

M2 parameters for interframe potentials in our model.
The overall model score aggregates these cues over a

video sequence, defined as

SðXXXX;YYYY ;wwwwÞ ¼
XN
i¼1


ðxxxxi; yyyyi; wwww
u Þ þ

XN
i¼1

X
j2N i

1

�ðyyyyi; yyyyj; wwww
p1Þ

þ
XN
i¼1

X
j2N i

2

�ðyyyyi; yyyyj; wwww
p2Þ;

ð32Þ

where N is the number of nodes in the model (number of
detections), N 1 and N 2 are the set of pairs of neighboring
nodes in intraframe and interframe connections, respectively.

5.6.2 Person Detection and Description

We implement a simple method for person detection that
proves to be reasonably effective for our dataset. We
extract moving regions from the videos using the OpenCV
implementation of the standard Gaussian Mixture Model
(GMM) [35]. Moving regions with area less than a thresh-
old (500 pixels in our experiments) are deemed unreliable
and therefore ignored. In the training set we manually label
the output of the detection process from the set of possible
actions, which includes the “unknown” action to label
the false positives. At test time, we detect people using the
same process, extract their features, and then recognize
their actions.

In our surveillance dataset, widely used features such
as optical flow or HOG [36] are typically not reliable due
to low video quality. Instead, we use the Local Spatio-
temporal (LST) descriptor [37], which has been shown to
be reliable for low spatial and temporal resolution videos.
The feature descriptor is computed as follows: We first
divide the bounding box of a detected person into
N blocks. In the experiments, we use a 10� 10 grid to
obtain 100 blocks for each detection. Foreground pixels are
detected using background subtraction. Each foreground
pixel is classified as either static or moving by frame
differencing. Each block is represented as a vector
composed of two components: u ¼ ½u1; . . . ; ut; . . . ; u� � and
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TABLE 3
Number of Detected People

in the Training and Test Sets for Each Action

TABLE 4
Precision Percentage at K ¼ Np Fig. 8. Visualization for some of the learned intraframe (left) and

interframe (right) interactions. Vertical labels are the query actions (walk
(W), Stand(St), Sit(Si), Bend(B), and Fall(F)). The interframe interac-
tions are asymmetric, which is shown as two weights, one from the
query action to the other actions (left half) and from the other actions to
the query action (right half).

Fig. 7. Illustration of our model. A Markov random field with unary (red), intraframe (green), and interframe (yellow) connections is used.



v ¼ ½v1; . . . ; vt; . . . ; v� �, where ut and vt are the percentage
of static and moving foreground pixels at time t,
respectively. � is the temporal extent used to represent
each moving person, which has been set to five frames in
our experiments.

5.6.3 Nursing Home Data Set

We have collected a dataset of 13 video clips from a

surveillance camera in a nursing home recorded at 3 frames

per second and spatial resolution of 640� 480 pixels [38].

The size of the clips in the dataset varies from 94 to

234 frames. The action label set includes six actions:

unknown, walk, stand, sit, bend, and fall. We use seven

clips for training and the remaining six clips for testing.

After running the detector on all video clips, we manually

label all detected bounding boxes. These bounding boxes
are employed for training and testing. The summary of the
number of detections for each action in the dataset is

presented in Table 3. Note that the actions are highly
imbalanced and there are only a few detected people with
fall, bend actions. We choose the action query label from a
subset of these actions—walk, stand, sit, bend, and fall.

We fix the value of K to Np in the experiments and

compare three approaches based on precision at K retrieved
items. The results are shown in Table 4. The proposed
approach outperforms the other approaches for all the
actions except bending, which has the fewest instances in the

test set.
We visualize the intraframe and interframe interaction

weights in Fig. 8. One interesting observation is the positive
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Fig. 9. Some segmentation results on Pascal VOC 2009 dataset. Each row corresponds to one object category.



intraframe weight between bending and walking while
looking for the walking action. The bending action usually
happens in the nursing home dataset when a nurse is
helping an elderly resident who has fallen. In this scenario
another nurse is very likely to come to help who performs
the walking action. As another example, a person is very
unlikely to switch his action from walking to sitting and vice
versa (Fig. 8, right). Also, repeatedly performing the same
action over time is likely for all actions except abrupt
actions like falling.

5.7 Significance Test

As suggested by Demsar [39], nonparametric statistical tests
such as the Friedman test are more suitable for comparing
two or more classifiers over multiple datasets. We follow
the approach in [39] (Friedman test + a posthoc test), and
verified that the improved performances w.r.t. the baselines
(unary and hamming loss) over all of the datasets in our
experiments are significant at � ¼ 0:05: The average rank
differences between our method and the baselines (1.31 and
1.19) are both larger than the critical difference (0.78).

6 CONCLUSION

In this paper, we developed a general algorithm for
addressing learning problems with complex models and
complex loss functions, those which are a function of false
positive and false negative counts. We replace the original
nondecomposable loss function with a piecewise linear
approximation, and solve it using a linear programming
relaxation of the original quadratic program.

In future work it would be interesting to analyze the
quality of these approximations. However, in this work, we
have provided experimental evidence of their effectiveness.
In particular we apply this method to learning an object
category segmentation model that contains both unary
terms for labeling pixels and pairwise terms on the labels of
adjacent superpixels. We show that learning the parameters
to this model under an objective directly tied to the
performance measure significantly improves performance

relative to baseline algorithms on the PASCAL VOC
Segmentation Challenges and H3D datasets. Moreover,
we proposed a new model for action retrieval that can
capture three sources of information: body motion, intra-
frame action interaction, and interframe action interaction.
We showed empirically that the proposed approach can
significantly improve on two strong baselines, one includ-
ing our structured model of all actions in a scene but
optimizing decomposable Hamming loss, and the other one
optimizing the desired loss function but without any
interaction between different people’s actions. Together,
these experiments provide evidence that our learning
approach can be used to improve the performance of
systems using other features and structured models for
complex problems.
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