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An Efficient Two-Pass MAP-MRF Algorithm for
Motion Estimation Based on Mean Field Theory

Jie Wei and Ze-Nian Li

Abstract—This paper presents a two-pass algorithm for esti- computationally intensive. In order to cut the computational
mating motion vectors from image sequences. In the proposed gverhead of the BMA, several effective enhancements have

algorithm, the motion estimation is formulated as a problem of been developed, such as the logarithmic search [17], three-
obtaining the maximum a posteriori in the Markov random field ' '

(MAP-MRF). An optimization method based on the mean field SteP search [19], and conjugate direction search [29], which

theory (MFT) is opted to conduct the MAP search. The estimation render the BMA practical in real-time video compression.
of motion vectors is modeled by only two MRF’s, namely, the ~ Nevertheless, the BMA can only work efficiently at the price

motion vector field and unpredictable field. Instead of utilizing of the precision of the estimation. In order to obtain more
the line field, a truncation function is introduced to handle the refined motion vectors, a more complex scheme must be taken

discontinuity between the motion vectors on neighboring sites. In . . .
this algorithm, a “double threshold” preprocessing pass is first than that used in the BMA. The refined motion vectors should

employed to partition the sites into three regions, whereby the en- reflect some natural interactions existing between contiguous
suing MFT-based pass for each MRF is conducted on one or two vectors, i.e., motion vectors generally manifest themselves
of the three regions. With this algorithm, no significant difference  wjth smooth change except on the boundaries of those objects
exists between the block-based and pixel-based MAP searches any,qergoing motion. With these refined motion vectors, in
more. Consequently, a good compromise between precision andth f vid . th trobi fth fi
efficiency can be struck with ease. To render our algorithm more e Ca‘?’e Of video compression, the en roD'?S of the maotion
resilient against noises, themean absolute differencenstead of Map will be reduced and a better compression result can be
mean square errois selected as the measure of difference, which is accomplished. In cases of object segmentation, an improved
more reliable according to the knowledge of robust statistics. This opject contour can be obtained. Apparently, the block-based
is supported by our experimental results from both synthetic and |a45t MSE criteria, giving no consideration to contextual
real-world image sequences. The proposed two-pass algorithm is traints in th ’ tial and t Id . t t
much faster than any other MAP-MRF motion estimation method Cor?s raints in the spatial and temporal domain, cannot generate
reported in the literature so far. satisfactory results due to the so-callukrture problerhand
noise existing in those frames, such as object segmentation
based on motion in computer vision.

In order to take the contextual constraints into account,
the Markov random field (MRF) has been widely employed.

. INTRODUCTION Generally speaking, in the MRF the impact posed to the

HE importance of motion estimation can hardly be oveitalue of the random variable on one site, the pixel in the
estimated in the processing of image sequences. T¢RSE of images, by those on other sites is restricted to its
motion estimation is essential for video compression, objedse neighbors, where the “closeness” is determined by the
segmentation, object recognition, and a plethora of compufg&finition of the neighborhood systenA description of the
vision applications. Indeed, even stereo images can be vieWdBF Wwill be given in the next section. The maximuen
as a special case of image sequences [33]. posteriori (MAP) probability is utilized most commonly as
In the video compression community, the block matching Statistical criterion for optimality and thus often chosen
algorithm (BMA) is generally employed [17]. With the BMA, in conjunction with the MRF in vision modeling [22]. The
eachk x k block of the current video frame is compared to &sulting framework, referred to as MAP-MREF, is obtained.
block of the same size in the previous (reference) frame in the the settings of motion estimation, with the MRF as the
vicinity of its corresponding position. The one with the leaghodel, the estimation of the motion vectors is translated into
mean square error (MSE) or mean absolute difference (MAB)Problem of optimization, i.e., to locate the configuration of
is considered as a match, and the difference of their positionghg MAP of the MRF, which is the MAP-MRF problem.
saved in the corresponding position on thetion mapas the ~ There are mainly two schools of techniques in conducting
motion vector of the block in the current frame. It is eviderfhe optimization process. One is of deterministic nature, or
that thebrute-forcesearch for the least MSE/MAD match isreferred to asocal methodsthe other is of stochastic nature, or
referred to agllobal method$22]. The local methods include:
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2) dynamic programming (DP) [2]: an optimization techeurrent frame are partitioned into three regions of different
nigue for problems where only a part of all variables hasharacteristics. The second pass, which is the MAP-search

interactions simultaneously; procedure, is only conducted on some portions of the whole
3) neural networks (NN's) [34]: an alternative to Bayesiafites, thereby further improving the efficiency in the MFT
classifiers in deriving the MAP. procedure. In order to render our algorithm less sensitive to

0ss errors, or “outliers” in the terminology of robust statistics

The NN method does not always need to know the pri . .
probabilities. Instead, it can learn the stochastic properties F]’ 'the MAD instead OT th? MSE is selegted as the energy
function where the contributions of the outliers are much less

the specific problem from the training set. On the other ha an those in the MSE
simulated annealing (SA) and graduated nonconvexity (GN '

; . > . “"This paper is organized as follows. Section Il begins with
belong to the domain of global methods. The brief descnptmr{glsbrief introduction to the concepts of the MRF and MFT
for them are as follows.

i ) ) ) and their application to the motion estimation. The proposed
1) SA [18]: a simulation of the physical annealing prop;ap_MRF model of the motion estimation is discussed in
cedure. In order to avoid the local minima, instead Gfection |11, The two-pass MAP-MRF algorithm based on MFT
a simple gradient descent method, a stochastic searghgelineated in Section IV. Experiments conducted based
such as a Metropolis algorithm [25], which is of thg the proposed algorithm are presented in Section V. We
nature of random fluctuations, is employed to find thgyncjude in Section VI with some remarks and discussions

next configuration. _ ~ about the proposed scheme.
2) GNC [5]: a method that approximates the global minima

through locating the minimum of a convex approxima-
tion of the nonconvex function.

It is a successful effort to ease the computational burden of ) )
SA. The common feature shared by all local methods is that!" this section, fundamental concepts of the MRF and
the computation converges quickly, but they are susceptible't aPplications are briefly introduced. We then proceed to
getting stuck to local minima. For global methods, the glob&f€sent the MFT, which plays a crucial role in the MAP
minima can be attained, however, often with extremely higifa'ch procedure of the proposed algorithm. Next, the motion
computational cost. estlmatlon in the parad_lgm of MAP-M_RF is presented. The
For the purpose of estimating motion vectors in the framgl0iceé Of energy functions to make its value more robust
work of MAP-MRF, many methods have been develope%ga'nSt the gross errors is discussed in the last subsection.
with various degrees of success [1], [14], [20], [30], [33]. In
these existing methods, either global methods or local methddsMarkov Random Field and its Application
are used to search for the MAP configuration of the MRIE Image Processing
based on their respective prior beliefs. Thereby the strongin what follows, the basic concepts of the MRF are re-
and weak points of the two different schools of MAP-seardliewed. For rigorous expositions, one may refer to [22] and
schemes are all inherited. In order to strike a compromifeg]. Let S, , = {(i, j): 1 < m, 1 < n} be anm x n integer
between efficiency and performance in the estimation Bfttice; thenF = {F; ;, (¢, j) € S, »} denotes a family
motion vectors, a method based on mean field theory (MF&) random variables, i.e., a random field, defined %y ...
was proposed in [35] and [36]. There the MFT, originallEvidently each imagg can be viewed as a discrete sample
an approximation scheme in dealing with phase transitionsrigalization of I, with f; ; assuming the intensity value on
statistical mechanics [7], is utilized to approach the globahch pixel sitef = {f1 1, f1,2, ..., fm n}isreferredto as a
minima with rapid convergence rate. It is claimed that result®nfigurationof F'; the complete set of all the configurations
nearly as good as SA and convergence rate comparable toitheenoted as'.
ICM can be achieved with this method [36]. In order to introduce the MRF and its utility, a neighborhood
In this paper, after careful investigation of the motiosystemXN on S, ,, and the corresponding conceptaigues
estimation in the framework of MAP-MRF, we develop ar” should also be introducedy is defined as
efficient two-pass algorithm (TPA) using the MAP-MRF par- o
adigm where fewer MRF's in formulating the problem are N = {Nij; (&, J) € S, n} 1)
involved and a smaller number of sites are peeded in the M%ﬁereNm is the set of sites on the neighborhood (&f ),
search procedure. _As_ a _result, a subst_antlall_y reduce_d _COSWose formal definition is as follows:
the MFT-based optimization procedure is achieved. Within our
formulation, we will argue that the line field (LF), which was N; ; ={(¢', j)I(7', j') € Sp.n, (7', §') # (4, §), (i —')?
first introduced in [10] and has been employed extensively in G a2
) : . : + (-4 <d} 2
the literature ever since, can be discarded in the process of
estimating motion vectors. Instead, the discontinuity problemwhere d is a positive integer. AnV is called annth order
is taken care of by @runcation function.As such, only two neighborhood system if assumes the value ef For instance,
MRF's are involved in our MAP-search process, namely, ththe first-order neighborhood system is the four-connection
motion vector field and the unpredictable field. With the TPAsystem in the glossary of computer vision, while the second-
after a “double threshold” preprocessing pass, the sites of threler neighborhood system is the eight-connection system.

Il. MARKOV RANDOM FIELD AND MEAN
FIELD THEORY FOR MOTION ESTIMATION
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Fig. 1. The first-order neighborhood system and the corresponding cliques.

Based on(S,, », V), a cliquec is defined as a subset ofof the cliquec

sites inS,, », and each site is a neighbor of the other sites

in ¢ in the sense ofV. As an illustration, for the first-order Z = Z exp[—BU(f)] (8)

neighborhood system, can be of single site or double sites; f

whereas for the second-order neighborhood systeran be

of single, double, and triple sites. The possible cliques in tlie the partition functionfor f, which acts as a normalization

first-order neighborhood system are depicted in Fig. 1. If tiiactor in (6).

collection of single site cliques is denoted@s while that of ~ Equation (6) has a crucial role to play in all the applications

double sites is denoted &, etc., then the collection of all of the MRF. Its importance lies in the fact that the joint

the cliques for thekth-order neighborhood system &, ,, is ~ probability of the configurationf is fully determined by
the nature of its local characteristics, i.e., the choice of

C=0CUC U C. (3) the neighborhood system and the values assigned to those

, ... corresponding cliqgue potentials. Thereby, out of the prior
Now we are ready to define the MRF. For ease of eXposmOtglélief, one can define a neighborhood system and assign
let P(f) denoteP(F = f) = P(F171 = f171, F172 =

- . - . values to those corresponding clique potentials to reflect the
i‘fuln207t|ons7 lzglc’ifrfs)_offtrﬁén)évfahn?t ()Ifs’trfgecgr:ggl?rballltligﬁ dNerej)s(;ty contextual constraints. The most possible result obtained from

denote the pdf's of one random variatiie ;: P(F} ; = f; ;) this prior is the MAP, which, according to (6), turns out to

as P(f;. ;). F' is called an MRF if the following properties be the one thgt has _the minimal enegy,). Thereby_ a ”Ch
are satisfied: arsenal of optimization methods developed in various fields

such as statistics and statistical mechanics can be employed in
P(fy>0, VYfeF (4) the search of the minimal energy.

P(fi7j|f5m7n,(i7j)) = P(fi7j|fN7.1j). (5) B. Mean Field Theory

As mentioned earlier, the MFT has the promise of cutting
a nice tradeoff between efficiency and effectiveness, i.e.,
only affected by those sites iV; ;. In other words, the approximating the global minim_a_ at a cost compa_lrable_to_ the
Markovianity means a local interaction on the random fielcj.l‘,)Cal me_thods. The MFT was originally develo_ped N statlst|ca_l
which can be substantiated by most real-world images. mechanics [7], [26], [27] for systems undergoing phase transi-

The MRF lends us a powerful tool in modeling the IOCatlions. As pointed out in [21], problems in statistical mechanics
property for images. However, for the purpose of ima nd image processing bear much resemblance to each other:
processing, the computation b,ased on the pdfs for ea overall property, the macro state for statistical mechanics
site is prohibitively intensive. Due to the equivalence ozimd image for image processing, is determined by the local

the MRF to Gibbs random field [10], [12], a method tdnteractions of local properties, i.e., micro states in statisti-

characterize the global feature of a random field from the Ioc(lé}‘ill mefche:]nlcs and p|>r<]elds '2 |mz|age gr_ocess]ng, ﬁespeﬁtwgly.
features is provided. With this equivalence, the ptff) for enceforth, many methods developed In statistical mechanics,

a configurationf, which is a joint event, has the followingSUch a@s SA [10], [18], MFT, and the renormalization group
close-form expression: theory [11], have been exploited extensively in dealing with

image processing applications.

Equation (5) is the so-calleMarkovianity, which indicates
that the behavior of the random variable on sfiej) is

P(f) = exp[-pU()]/Z (6) The basic idea of MFT is, as described in [7], to assume
that the effect to one particle imposed by its neighboring
where particles through interactions is approximated by an average
. magneticfield formed by these particles. Therefore, instead of
U(f) = Z Ve(£) () computing the interactions with all its neighboring particles,

e one can obtain the mean field generated by its neighboring

is the energy functiorfor f. V.(-) is the clique potentialfor particles and then compute the impact posedptby this
a cliquec, and its value depends on the local configuratioiield. The MFT reduces the many-body statistical mechanics
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problem into a one-body problem. The resultant proceduresTherefore, the optimization procedure under the MFT strat-

can be very accurate and useful [7], [27]. egy is to compute the mean fiel)f; ;)’'s based on (11)
By analogy of MFT in statistical mechanics, for imagéteratively until the difference between the results of two

processing tasks, in order to search for the minimal energgntiguous iterations is less than a certain small number, which

of (6), one should first calculate the mean field for each pixehdicates that equilibrium is attained.

Denote the mean field fof; ; as (f; ;). By definition, one

has the following: C. Motion Estimation as an MAP-MRF Problem
i) Zfz (9) As in [15], in the application of motion estimations, the
- Py - intensity constancgonstraint is generally assumed
1 ~
SubstituteP(f) by use of (6) and (9) becomes f (ti—:—u,j+'v) ~f (ti,j) (17)
wheref’ is the intensity value of sité, j) in the frame at
i i 3U 10

(fis) -z fz: fi.g expl=AU(L)] (10) timet andu( , 7) andwv(i, j) are the projections of the motion

vector on(i, j) along the horizontal and vertical direction,
Provided that the first-order neighborhood system is adoptesspectively. For simplicity, denote(i, j), v(i, 7)) asd;;
for the MRF £, the following approximation of the mean fieldg 4 the set of thedt 's on all sites asdt. The mot7|0n
is obtained:

<fi71

estimation in the settlngs of MAP-MRF can be stated as the
Z fivs exp [—BUPK(fi ;)] (11) Process of maximizing the conditional pefd?| f+!, f1),i.e.,
me %) %,

Y fi dt = arg max P(aﬁ|ft+1, ft) (18)
where the new partition function is defined as &
which reads: in the presence #ft! and f* locate thed! that

mf mf
235 =2 exp [-AUI(fi5)] (12 maximizes the conditional pdf.
Fii As described in [20] and [36], sincE(ft+1|Jit) is not a
and the new energy function is defined as function ofd’, it can be ignored in maximizing?(d*| f*+1, f*)

- with respect tal'. Therefore, after the application of Bayesian
UPi(fi) =Velf)+ Y. Velfigs (i, 7). (13)  theorem, (18) turns out to be

(i, J)EN: 5 7 = arg max [P(fth ft+1) .P(Cﬁ|ft+l):|. (19)
g

In the right-hand side of (19), the first term assumes the role of
measuring the “likelihood” betweefit™* and f* undergoing
a motion represented bg7 while the second term addresses
the contextual constraints between neighboring motion vectors,
e.g., the smoothness of them in case they are of the same
object.
From (14), the joint pdf for a configuratiofi under the MFT JUnder the MRF model, the first-order neighborhood system
is approximated as follows: is chosen throughout the following presentation. As discussed
1 - before, (19) amounts to minimizing the corresponding energy
P(f) = H Zmi P (=AU (£, )] (15)  functions. For instance, foP(f!|d', f'*1), the function for
R the likelihood energy, which can be viewed as the collection
Based on the MFT approximation of the pdf for a configuratio®f the clique potentials for single sites, is usually formulated as
f as defined in (15), the estimation of the MAP fpamounts (A el o \ 2
to minimizing the energy function&™(f; ;). With the MFT U(F|d, FH = (f(i+u7j+,v) - f(i,,j)) : (20)
procedure, one need only to compute the joint fixed points of ¥
those(f;, ;)'s to achieve the approximated MAP. Suppose the As far as the robustness is concerned, as described in the

mean field off;, ; computed in iteratiort is denoted agfi, ;)*  next subsection, the proposed two-pass algorithm will employ

and a prescribed small numberdsThe joint fixed points of g improved energy function in order to be more resilient
(fi j)'s are said to be achieved if the following condition '%galnst gross errors.

satisfied:

For rigorous expositions of this approximation formula, one
may refer to [36F

Henceforth, the marginal pdP(f; ;) has the following
approximation formula:

P(fi ;) ~ exp [-BUPH(fi,1)]- (14)

1
me

Z 1 T = ()PP < e (16) D. MAD Energy Function to Measure the Likelihood

As described in [13], the least squares function for (20) is
extremely sensitive to outliers. The problem is that, for those
outliers, their squares contribute “too much” to the overall
value of the MSE. Various functions have been proposed in
2Chandler [7] provided another formula under the Ising model. [13] and [16] in order to discount the contribution of those

the resulting (f; ;)**'’s are the estimation of the MFT
process.
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outliers; MAD is one of them, which is more robust than the
MSE. In this paper, due to its simplicity and robust feature,
the MAD is opted for as the energy function. Therefore,
the function measuring the likelihood of neighboring frames
becomes

U(fd, 7 =3y

2%

t4+1 t
Jivu o~ Tan|- @D

For P(d!| f**1), one can define the following function, which
can be treated as the collection of the clique potentials for
double sites:

U(Cﬁ|ft+l)zz Z ‘Jg,j_@,j' :

4,3 (i,5)EN:,;

¢ X & X & X @& X & X @
® X @& X @ X e X e X o
® X @ X @ X @& X e X @
® X & X @ X e X & X @
¢ X ® X @ X & X e X @
® X & X e X e X o X e

(22)

Fig. 2. The line field (cross) is the dual of the original field (dot).
Due to the option of the first-order neighborhood system, the

fort_agoing two energy functions totally determine the prio\F\/here ~v is a prescribed threshold. It is evident that the
bhellef for .the MdAP]:Mr?F pSrobI_em. ":j the proposed T'?Avalue of ; ; indicates the presence or absence of an “edge
r'kel'lxlA% |r\1/f/tea ”o ht eMMRFE IS SSF ha; almeasgr?fo tI%‘1Eement.” Thus it is set to “1” when a discontinuity exists.
Ikelihood. We call this model thasimple model for \yih the introduction of the LF, the prior models for the

motion estimationln reality, the definition formulated in this MRF are so formed that, for any two neighboring sites on
way, similar to the case when using the MSE, imposesSaT\n ., only if the corresponding, ; on the LF is of the

univgrsal §mooth factqr to the resulting m‘?“O“ Vectors Qi e «0” will the interaction between them be counted in the
all sites since the motion vector on each site has the Sag}’?ergy formulation. In this way no oversmoothing artifacts will

amount of interaction with its first-order neighbors. As Suc%rise in the resulting MAP. As a result, the LF is employed

the resulting estimations of the motion vectors from the MAPe'xtensiver in the applications of the MRF in image processing

MRF will exhibit the artifact of oversmoothness. Efforts toand computer vision [8].

attack it will be explicated in the next section to render the In order to attack the oversmoothness effect in motion
estimation more naturally. estimation, based on (11), Zhaegal. [36] employed the line
fields andunpredictable fieldswherein an impressive result
lll. THE PROPOSEDMAP-MRF MODEL was accomplished. The unpredictable fields are exploited to
USING MFT FOR MOTION ESTIMATION account for the situation where no correspondence of some

In this section, first the modeling of the interactions ofites inf**' can be made inf* because of the occlusions or
neighboring motion vectors is discussed, then a model for th@me uncovered areas, which is employed in most literature
MFT estimation of motion vectors that reflects the prior beliggddressing the MRF-based motion estimation, e.g., [20] and
is proposed. [33].

As mentioned briefly before, without introducing other The LFis of interest in its power to enforce the interactions
techniques, the simple model for motion estimation introducégsed on the contents of ti# it finds its usefulness in a wide
in the previous section imposes a universal smooth factor ¥8ectra of applications. However, we will argue below that it
the random variables on every site, and the resultant motinnot appropriate to exploit the LF literally in formulating
estimations will be oversmooth or often a total failure. In #he interactions of motion vectors on neighboring sites or
pioneering work by Geman and Geman [10], tivee field blocks (an ensemble of sites). Instead, a function whose value
(LF) is introduced to enforce the discontinuities for some sitedepends on the difference of the magnitude of motion vectors
thereby the effect of oversmoothness can be avoided elegarfyneighboring sites or blocks will be employed to enforce

In essence, as described in [10], the sites of LF are tHicontinuity in an appropriate manner.
dual of those of the original lattices,,, ,,, namely, the sites There are two observations justifying the removal of the LF
of the LF are in the middle of each horizontal or vertical paif the process of motion estimation.
of sites. Therefore, between every two neighboring sites ine For image sequences, if one employs the LF in the formu-
S, n, there exists exactly one site on the LF correspondingly, lation of the prior models to estimate motion vectors, the
as depicted in Fig. 2. The random variablgg on each site continuities of motion vectors are only enforced for neigh-
(i, j) of the LF are of Boolean nature, i.e., of the value “0”  boring sites of similar intensity values, which indicates
or “1,” which relies on the difference of the corresponding that objects of interest are of smooth intensity changes.

values off on S, ,,. Suppose the two neighbors @f j) on Unfortunately, on the surface of an object, the intensity
the LF are(iy, j1) and(iz, j2) on S, .. l; ; takes its value can undergo dramatic changes. Moreover, although the
according to the following rules: boundaries of objects often cause intensity discontinuities,
LAt — > intgnsity di;continuities .themselves d(_) not necessarily
li :{ ! E 2521 = (23) indicate object boundaries. Thereby, in the process of

0, otherwise motion estimation, discontinuities of neighboring motion
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vectors incurred solely out of the LF will be inclined tobelong to the unpredictable area. Mathematically, for a site
generate “overscattered” motion vectors as the estimati@n 5), the MAD is defined as
results.
. S . . . Ut = | ot 25

« When using the LF, difficulties are witnessed if motion don = i = (25)
vectors of macro sites (i.e., blocks) are to be estimataghere (¢, ;) + d; ;, denoted agi1, j;), are the sites deter-
which is of more interest as far as efficiency is concerneghined by all possible motion vectors. If the maximum value of
One solution is to resort to the hierarchical method whetge magnitude of motion vectorsis then the set ofi;. j;)'s,

a pyramidal representation of the original frames shoulfbnoted ag); ;, is the square of sizek+1 centered orfs, j)
first be given as mentioned in [36]. This “top-down’iy ¢t penote

strategy can be expected to generate some enhancement to
the original method as far as the efficiency is concerned. Eé(i 0=, min
However, the LF is not well preserved on the sites 7 (e
of subimages of lower frequencies, since the low-passif EAfi(i , s very large,(i, j) is considered unpredictable.
filtering would blur the image across the boundaries for instance, if we are concerned with compression, the cost of
the blocks. transmitting/saving the site or macro siig 5) will consume
The efficiency of the removal of the LF has been discussézbss bandwidth/space than that of the estimated motion vectors
in [5], where the minimization is first conducted over thend the corresponding displaced residual site or block. For
LF by use of a truncation function. In [4], the LF and theegmentation-by-motion tasks, evidently singling this out will
robust statistical techniques are elegantly unified, in which tifecilitate more meaningful object segmentation results.
LF is formulated in terms of the outlier process. As such, a In the literature, e.g., [36], an unpredictable fiékl whose
general framework is provided by using the existing robusites are the same &%, ,, and the value on each site is of
statistical methods. In this paper the LF is removed to reduttee Boolean nature, is proposed to account for the existence of
the computation involved in the MAP search through thgome unpredictable sites. For a site or macro site, if the value
introduction of a so-callettuncation functiory(-, -). Suppose of the corresponding random variallg; of the unpredictable
~4 1S a threshold vxhose vglue can change dynamically in thield O is 1, a constant value instead of a certﬂg(ijj)
MFT process andl; and d, are the motion vectors of two will be the penalty. In [36],0 is also estimated for every
neighboring sites. The definition gfis as follows: site in the MAP-search procedure. From our observation,
L L in the process of MAP-MRF motion estimation, in order
9(671, J;) _ { |y — dal|, if ||d1 - da|| < v (24) to address_the unpredictable cases efficiently, we propose a
n(n < va), oOtherwise. preprocessing pass, called “double-threshold” preprocessing,
which assumes the role of partitioning those sites or blocks

The difference of the truncation function defined here frofato three groups based on two predefined threshgjdsand
the one in [5] is that a smaller penalty, e.g.4/2, will be vp2, Wherey,, > ypo, i€,

levied if the value of||#; — ¥2|| exceeds the threshold in our

A

ui, |- (26)

truncation function to encourage a disconnection. In Blake affapredict = {(é; )I(i; J) € Sm.n, Eg, ) = 1} (27)
Zisserman's def|n|.t|on [5], a penalty equal tq is applied Suncertain = 1@, |4, J) € Sm.n, Yp2 < Efl(z_ 5 < vp1} (28)
in case the prescribed threshold is surpassed. Our truncation o . ’

function is defined on the same track as the scheme proposedpredict = 1@, DIE, J) € Simns By, < Vp2}- (29)

by Horn in [24] to cope with the discontinuities in optical flow.g 556 on this partition, there are three cases correspondingly.
In our implementationy, can alter its value over the iterations. . The sites inS _are excluded from the MAP search
By trial and error,y, is found to bemax{8ec~"/8, 4}, wherei oroce durel unpredict xcid

is the number of the current iteration. The rationale behind this
definition is: if the magnitude of the difference of the motion * FOr Sites iNSp.cqict, NO unpredictable random variables
vectors on two neighboring sites is too large, the two sites will are defined.
not be considered in the same object and a small penalty i For sites inSuncertain, POth the motion vector field and
levied for the appearance of this discontinuity. the unpredictable field are defined.

By substituting the LF with the truncation function, which Thereby, in the proposed model, there are two MRF's,
is a check on the difference of neighboring motion vectors, th@ymely, motion vector field and unpredictable fiel®. The
line field is totally removgd in the process of the MAP seqrcgites ford entailed to compute aredict U Suncertain, While
Therefore, the computational load is eased greatly, which g Sunpredict the correspondingl; ;'s are always set to 0.
one of the reasons for the efficiency of the proposed algorithifhe sites forO to be estimated consist only Sfucertain, fOF
Plus, through using the proposed truncation function, it dogs .. andS,.q: the corresponding; ;'s are always set
not matter whether the estimation of motion vectors is based @11 and 0, respectively. In the next section the corresponding

each individual pixel or a block of pixels. A tradeoff betweegnergy function for either MRF will be given and the resulting
efficiency and effectiveness can be cut with ease by changiigorithm will be proposed.

the block sizes and controlling parameters. 3 ) .
Iti t | that for some site block th thei In the case of blocks, one can use the coordinate of its left upper corner to
IS not unusua Ites or blocksyi €' indicate one block. Then the corresponding MAD can be defined in a manner

correspondence cannot be foundfindue to the fact that they similar to the pixel case.
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VALUES ASSIGNED TO EACH PARAMETER IN THE EXPERIMENT

TABLE |

parameter ] chosen value H parameter ‘ chosen value H parameter ] chosen value

3 1.0 Y 5 Y 12.8
)‘p 1.0 Yol 40 ’YPQ 10

Yd max{8~"/% 4} 7 Y4/2 Cy 16

€ 0.01

IV. THE PROPOSEDTWO-PASS Essentially, in (32), the first term is of the nature of the
ALGORITHM FOR MOTION ESTIMATION clique energy for the single-site clique, whereas the second
In the preceding section the MAP-MRF model for théerm is _for the cI.ique o_f dogble sites, which ta.kes care of the
estimation of motion vectors was discussed, where two MRA§Eraction of neighboring sites on the unpredictable field.
are employed in the estimation: the motion vector and the!n summary, the TPA is as follows.

unpredictable fields. For the motion vector field S5 cdic U 1) The first pass—*“double threshold” preprocessing. Com-
Suncertain, the energy function is pute theE as defined in (26) for each site, whereby the

- three partiti0n§1)redict7 Suncertairn and Sunpredict of §
Uz‘ljlgf(di:i) =(1=0i,;)Ua; 5 + Aa Z are acquired.
(@, 3ENG. 2) The second pass—MAP search.
-g(d(i,j), <d(i’,j’)>) (30) a) Use (30) and (11) to compute the mean fieldof

where),,, and\q are two control parameters generally of small b) Use (32) and (11) to compute the mean fieldbf
positive values. Notice here that the truncation functads a c) Similar to [36], the normalized differeneg. for the
bit different from the one defined in the previous section with two mean fields on the current iteratidncan be
one more tenor formally defined as follows:

g(cﬁm), <Jii’,j’)>) =0 if <Oi7j> =1or <0i’,j’> =1.

(31)

The rationale behind this is: if either of the two sites is : .

unpredictable based on the value of the corresponding value I .ef“ IS gregter than a prescribed thresheldhen

on the unpredictable random fiedd, no penalty should apply. exit; othervwse,.go to stefa). ]

With this definition, only if the two neighboring sites are botht ¢@n be observed that in the proposed algorithm, due to the
predictable and the difference of the corresponding motigistence of the two passes, not only the number of Markov
vectors in the current iteration is sufficiently small will thefi€lds but also the number of sites to be computed on is
interactions between them be counted in. reduced, and as such the efficiency is improved greatly.

For the unpredictable field 08\y,ceriain, the energy function
is V. EXPERIMENTAL RESULTS

l/viljljf(Oi,j) =05 [Co - Apl](‘i(ivj))} T Z

L L ‘ . 1/2
Gk = [ll<d<k>>_ (dED)|2 + Jo® — ok 1>||2} /1IS]I-
(35)

In this section, experiments using the proposed TPA are
L= reported. All the image sequences consist of 256 gray-level
(#,3)ENG, 5 L. h L.

(o 5, (o ) (32) b!ack and white |mages._W|th s_ynthetlc image sequences _the
01 »J displacements and moving objects can be controlled with
whereC, is a constant, i.e., the penalty is always levied whegase; hence our first group of experiments is conducted on
an unpredictable site makes its appearangeand A, are two two synthetic image sequences. One consists of one moving
control parameters. The functid-, -) is formally defined as object, while the other contains two objects undergoing certain
follows: motions. Next, experimental results conducted on two real-
h(os. 5, (on 1)) = world image sequences are presented.
AT o The controlling parameters adopted throughout the exper-
loi,j = <0i’:j’ B _ if (¢, 7) € Suncertain jments are listed in Table I. The following parameters are
(1 —sgn(lldi, j — dir, j:|| — 7a)) used.
(1= 28(0;,; — (o 7)), otherwise 1) _/3: Assumes the same role as that of _the temperature
(33) in simulated annealing. As discussed in [36], to ease
the computation burden, instead of making it change
dynamically, it is chosen to be held fixed, i.e., 1.0.

2) Mg Used to enforce the smoothness of the motion
vectors of neighboring blocks.

(34) 3) vp1, Vp2: Meant to determine the range of uncertain
blocks. Whether or not those blocks with average

where the functioré(-) is theKronecker functioni.e., it is of
the value 1 if the input is 0, and 0 otherwise; and the function
sgn-) is the sign function, i.e.,

sgr(z) = 1, ifx>0
9 ~ 10, otherwise.
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difference in betweeny,; and v,» are unpredictable
is to be determined by the following MAP search pass.

4) C,, Ay, Ay Control parameters for the uncertain blocks.
The first two are the singleton clique energy, while
the last one is used to enforce the “smoothness” o
neighboring blocks with regard to their unpredictability.

Since there are many parameters and equalities to deal wit
it is very difficult, if not impossible, to estimate them au-
tomatically. The parameters given here are thus obtained b
trial and error. Except fory,;, which is a hard threshold
labeling all those blocks with MAD larger than it to be
unpredictable, minor alterations to all other parameters will
not induce drastically different estimation results.

The searching window is always set tox55.

As mentioned before, no significant difference exists be-
tween block-based motion estimation and single-pixel-based. 3. The synthetic image sequence with one moving object and the cor-
estimation with the proposed TPA thus the proposed agoritgerydre erbars L o e ek imaes as oo
is conducted on 4 4, 2 x 2, and 1x 1 blocks. The last one i vector is of magnitude zero. ' '
is actually the pixel-based estimation. They are denoted as 4

x 4 TPA, 2 x 2 TPA, and pixel TPA, respectively. A. Synthetic Image Sequences

The needlegram, a visualization of the estimated motion |, yhis part, experiments conducted on two types of synthetic
vectors for each site or block as defined in [36], is used {3,556 sequences are reported. One contains a single moving
show the performance of different schem_es. _ object while the other has two moving objects.

In order to evaluate the proposed algorithm, several crltenal) Single Moving ObjectThe sequence of two 128 128
are employed. synthetic images is obtained in the following way: an imd@ge

the frame after motion

4 x4 BMA MRF 4 x4 TPA

* Displacement field erroof the following form [36]: is generated through a realization of an identically independent
distributed Gaussian random process with mean value
er= ||J;)_Ji|§l/||51|| (36) 100 and standard deviatiom = 60. Then the 32x 32

block in the center off is moved with a motion vector (3,
3). The uncovered area was filled with samples from the
2ame Gaussian random process as that generdtinphe

rkemoved,||f_1|| IS thte nurEb_edr oftisltet; I8, ar_idd_o s the Iresulting image is denoted aE. Last, a white Gaussian
nown motion vectors. Evidently, these criteria are only ieo" i o — 5 is added to bothl and I. They are

applicable to the synthetic image cases where the mo“\?féwed as the reference and current frame, respectively, in

map is known beforehand. the ensuing motion estimation process. The two frames and
* Entropy of motion fielddefined as follows [31]: the corresponding needlegrams for the 4 BMA, the MRF,
and the 4x 4 TPA are depicted in Fig. 3.
H=- Z P(u) logy P(u) — Z P(v) log, P(v) (37) It can be seen that the motion vectors and unpredictable
u v sites estimated by the BMA are the worst among all the three
methods. As to the MRF, the estimation is quite acceptable,
where P(v) and P(v) denote the relative frequency ofbut not as good as the one generated by TPA; in addition, the
occurrence of the horizontal and vertical components tifne consumption is much more than thec4 TPA (16 versus
the motion vectod. H is used to reflect the randomnesgl). The reason for the worse results of the MRF is twofold.
of the results of the motion estimation process. Usually, 1) The existence of line fieldn this synthetic image se-
a lower H indicates a more consistent motion estimation. guence, the intensity values of neighboring pixeisi which
For the same image sequence, a lowralso means are sampled from an i.i.d., are no longer smooth, accord-
that less space/bandwidth is required to store/transmit the ing to the definition of the LF. Many positions will be

motion map. Together with the needlegram, it offers an  |abeled as line elements. The “overscattered” effects, as
indication as to the performance of the evaluated methods.  discussed in the last section, will have some negative

» Number of iterationshe proposed algorithm takes before effects on the final estimation results.
the converging point is attained. The first pass of TPA, 2) The use of MSE energy functiowhich is more sen-

where S, is the image lattice with the unpredictable site

a brute-force BMA to compute, is counted as one sitive to noise than MAD. Detailed test results are
iteration. listed in Table Il. It can be seen from Table Il that

Detailed comparisons are presented with the block matching fewer iterations are needed for the TPA to generate
algorithm with the MAD as the energy function and the MRF- comparable estimation results than for the MRF. This

based method proposed in [36], which are denoted as BMA  efficiency manifests itself consistently in the other two
and MRF later. experiments.
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TABLE I
TEST RESULTS FOR THEFIRST SIMULATED IMAGE SEQUENCE

Method | Displacement field error [ Entropy of motion field | Number of iterations

4 x 4 BMA 0.355 10.63
8 x 8 BMA 0.372 9.043

MRF | 0.180 | 9.691 ] 16
4 x4 TPA 0.025 8.211 4
2 x 2 TPA 0.029 9.701 6
pixel TPA 0.104 10.817 10

observed that the smoothness and discontinuity are taken better
care of by the TPA than by the BMA and the MRF.

B. Real-World Image Sequences

Extensive experiments have been made on many real-world
clips, such aiss America, Susie, Tennistc. In this section,
the test results of two different real-world image sequences are
Fig. 4. The needlegrams for % 4 block after adding some pepper-like prese_nted to show the pgrformance of _the proposed algorithm.
sparse noises into the reference frame of the single-object synthetic seque¥ae is the “Toronto tourism commercial” clip and the other
is the “Moonwalk” clip. Some of the image frames are shown
in Fig. 6.

1) The “Toronto Tourism Commercial” Clip:The images
are acquired from the “Toronto tourism commercial.” By
examining Fig. 6 one can find that initially two persons
are moving in the clip, then a third person steps in. The
needlegrams of the BMA, the MRFand the proposed scheme
based on a 4« 4 block, e.g., for frames 24 and 25, are depicted
in Fig. 7. It is observed that the result from the TPA reflects
the scenario much better than that of the BMA. It is of interest
to note that based on the result of the TPA, the three persons
can be separated by use of the consistency of the motion
vectors. The result generated from thex44 TPA can be
employed to obtain a quick object segmentation, while from
the result generated by BMA, it is impossible to obtain any
object segmentation. The time consumed is merely three times

MSE

the frame after motion

4 x4 BMA MRE 4x471PA that of the BMA, which is superior to any other MAP-MRF
Fig. 5. The synthetic image sequence with two moving objects and tﬁ@ethOd .repo'rted so far. For the MRF method, dee to the use
corresponding needlegrams. of the line field and MSE, some incorrect motion vectors

make their appearances around those areas with noise or busy
textures. The overall estimation result of the MRF is quite
In order to show the difference between the MAD and thgood, though with a long processing time.
MSE, some high-intensity (150 in our experiment) pepper-like The complete results from experiments conducted on this
sparse noises are added to the reference frame. The resultiigge sequence are given in Fig. 8 and Table IV. It can be
needlegrams with the two versions are demonstrated in Fig.s¢en that the entropy of the motion field increases in the later
It can be observed that more robust estimation can be achiegépe, which is in accordance with the fact that a third person
with the MAD. This is further confirmed by all of our extensiveentered in the view.
experiments. 2) The “Moonwalk” Clip: Our last test is conducted on the
2) Two Moving Objects:The reference image in this testmage sequence of NASA's “Moonwalk” clip, as shown in
is generated in the same manner as in the last experimdng. 6, where the astronaut is jumping and the background
Instead of moving only one block, this time two neighborings static. It should be pointed out that here the quality of
32 x 32 blocks around the central portion undergo motion)e images is far worse than that of the “Toronto tourism
one with the vector of (0, 3) and the other with (93). They commercial” sequence—Iots of noises make their appearance.
are shown in Fig. 5. Moreover, the background lacks textures and thereby the mere
The corresponding needlegrams based arn 4 blocks of minimal MAD criterion employed by BMA can hardly find the
BMA, the MRF, and the TPA are illustrated in Fig. 5. Table 1lI 4In the two real-world clips, the results of the MRF are always generated
lists more test results conducted on this sequence. It canwie 30 iterations.
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TABLE I
TEST RESULTS FOR THE SECOND SIMULATED |IMAGE SEQUENCE

Method ’ Displacement field error [ Entropy of motion field l Number of iterations

4 x4 BMA 0.562 8.622
8 x 8 BMA 0.642 8.921

MRF | 0.325 | 8.578 [ 21
4 x4 TPA 0.245 8.539 4
2 x 2 TPA 0.317 8.960 4
pixel TPA 0.382 9.775 9

S

Tourism 0 Tourism 8 Tourism 16 Tourism 24 Tourism 32

Moonwalk 0 Moonwalk & Moonwalk 16 Moonwalk 24 Moonwalk 32

Fig. 6. The real-world image sequences on which the experiments are conducted.

4% 4 BMA: merely four iterations, the obtained motion map as illustrated
in Fig. 7 demonstrates a very satisfactory result where the
astronaut can be located easily.

The complete test results on this clip are depicted in Fig. 8
and Table 1V, from which it can be observed that the entropies
of the motion field generated by the TPA using different block
sizes are consistently better than those done by the BMA and
MRF.

VI. CONCLUSION

In this paper, a two-pass algorithm employing the mean
field theory as the optimization method in the framework of
MAP-MRF in a reliable manner is proposed for the purpose
of motion estimation. In our algorithm, a preprocessing pass is
initially applied to partition the set of sites into three different
regions of different characteristics. In the second pass, the
motion estimation is conducted, where two MRF’s, namely,
the motion vector field and the unpredictable field, are utilized.
In this algorithm, the discontinuity is taken care of by a simple
truncation function instead of introducing another MRF line

@) () field. Based on the partitions, the corresponding computation
Fig. 7. (a) Needlegrams of the clip “Toronto tourism commercial"forframe(s)]c the mea,n field is only mcurred,on the respecuvg Slte_S.
24 and 25. (b) Needlegrams of the clip “Moonwalk” for frames 23 and 24.A substantial number of computations are saved with this
algorithm. Because of the reduction of the number of MRF's,
the partition of sites, and the inherited power from the MFT,
correct match. As can be seen in Fig. 7, the performance @mpared to those existing schemes, a better balance is struck
the BMA method is so poor that hardly any useful informatioBetween efficiency and effectiveness. In addition, due to the
can be induced. For the MRF, with the use of line field anghoice of the MAD, which is more robust against outliers than
MSE, it is found that this pixel-based method is also relativelyie MSE, a more reliable estimation can be accomplished.
sensitive to noises; thus the resultant motion vectors are @ir experimental results substantiated this claim. Since no
that good. However, they are still much better than the BMAine field is induced in the estimation process, there exists
By contrast, the TPA is quite robust in this scenario. Aftdittle difference whether a site is a single pixel or a block.

4 x4 TPA:
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MYV entropy using the BMA:
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Fig. 8. The statistics of the results of the two real-world clips: (a) the “Tourism” clip and (b) the “Moonwalk” clip.

As such, the proposed algorithm can be more flexible in the upcoming MPEG-4 and MPEG-7 standards [38]. The
achieving different tradeoffs. Through extensive experimentdgorithm proposed in this paper, with its high efficiency, can
it is observed that a satisfactory result can be achieved bg tailored to suit a different demand in practice due to the
simply applying the algorithm based on ax44 block, where power of the MRF to model the contextual constraints and
the time consumed is only several times more than the BMthe MFT in approximating the global minima with reduced
This is superior to any other MAP-MRF motion estimatiomomputational load. For instance, one extension of the al-
methods reported in the literature so far. gorithm is to obtain the object segmentation by use of the

An efficient and effective method to obtain a representati@stimated motion field, where initial successes have been
of image sequences in terms of objects is of vital importaneétnessed.
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TABLE IV
STATISTICS OF THE MV ENTROPY FOR THE TWO REAL-WORLD IMAGE SEQUENCESUSING THE BMA AND THE TPA

971

Using the BMA

Entropy of MV for Tourism | Entropy of MV for Moonwalk
Mean std Mean std
8 x8 32.537 2.387 46.162 6.940
4 x4 40.146 3.575 57.922 3.561
Using the MRF
Entropy of MV for Tourism | Entropy of MV for Moonwalk
Mean std Mean std
11.278 2.425 23.817 1 3584
Using the TPA
Tourism Moonwalk
Entropy of MV | Iterations | Entropy of MV Iterations
Block size || Mean std Mean | std | Mean std Mean | std
4 x4 6.637 2.053 3.694 | 0.700 | 5.907 1.910 5.108 | 1.085
2x2 8.845 2.305 5.305 | 1.198 | 8.551 3.114 5.917 | 1.299
1x1 9.453 2.309 6.222 | 1.685 | 10.952 4.410 6.472 | 1.518

Another extension is to accommodate the illumination afi6] P. J. HuberRobust Statistics. New York: Wiley, 1981.
ternations within image sequences by use of the techniquéd
developed in our previous work [9], [32], where a generalized
linear equality instead of the intensity constancy constraint [&]

assumed between neighboring frames. [
To further improve the efficiency of our algorithm, aside

19]

from decreasing the block size gradually, the hierarchic&P!
strategy can also be utilized. One can apply this algorith[@l]
to such pyramid representations of each frame.a@glacian

[6] or wavelet [23] in a hierarchical manner [37].
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