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An Efficient Two-Pass MAP-MRF Algorithm for
Motion Estimation Based on Mean Field Theory

Jie Wei and Ze-Nian Li

Abstract—This paper presents a two-pass algorithm for esti-
mating motion vectors from image sequences. In the proposed
algorithm, the motion estimation is formulated as a problem of
obtaining the maximum a posteriori in the Markov random field
(MAP-MRF). An optimization method based on the mean field
theory(MFT) is opted to conduct the MAP search. The estimation
of motion vectors is modeled by only two MRF’s, namely, the
motion vector field and unpredictable field. Instead of utilizing
the line field, a truncation function is introduced to handle the
discontinuity between the motion vectors on neighboring sites. In
this algorithm, a “double threshold” preprocessing pass is first
employed to partition the sites into three regions, whereby the en-
suing MFT-based pass for each MRF is conducted on one or two
of the three regions. With this algorithm, no significant difference
exists between the block-based and pixel-based MAP searches any
more. Consequently, a good compromise between precision and
efficiency can be struck with ease. To render our algorithm more
resilient against noises, themean absolute differenceinstead of
mean square erroris selected as the measure of difference, which is
more reliable according to the knowledge of robust statistics. This
is supported by our experimental results from both synthetic and
real-world image sequences. The proposed two-pass algorithm is
much faster than any other MAP-MRF motion estimation method
reported in the literature so far.

Index Terms—Image processing, Markov random field, motion
estimation, object detection, video coding.

I. INTRODUCTION

T HE importance of motion estimation can hardly be over-
estimated in the processing of image sequences. The

motion estimation is essential for video compression, object
segmentation, object recognition, and a plethora of computer
vision applications. Indeed, even stereo images can be viewed
as a special case of image sequences [33].

In the video compression community, the block matching
algorithm (BMA) is generally employed [17]. With the BMA,
each block of the current video frame is compared to a
block of the same size in the previous (reference) frame in the
vicinity of its corresponding position. The one with the least
mean square error (MSE) or mean absolute difference (MAD)
is considered as a match, and the difference of their positions is
saved in the corresponding position on themotion mapas the
motion vector of the block in the current frame. It is evident
that thebrute-forcesearch for the least MSE/MAD match is
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computationally intensive. In order to cut the computational
overhead of the BMA, several effective enhancements have
been developed, such as the logarithmic search [17], three-
step search [19], and conjugate direction search [29], which
render the BMA practical in real-time video compression.

Nevertheless, the BMA can only work efficiently at the price
of the precision of the estimation. In order to obtain more
refined motion vectors, a more complex scheme must be taken
than that used in the BMA. The refined motion vectors should
reflect some natural interactions existing between contiguous
vectors, i.e., motion vectors generally manifest themselves
with smooth change except on the boundaries of those objects
undergoing motion. With these refined motion vectors, in
the case of video compression, the entropies of the motion
map will be reduced and a better compression result can be
accomplished. In cases of object segmentation, an improved
object contour can be obtained. Apparently, the block-based
least MSE criteria, giving no consideration to contextual
constraints in the spatial and temporal domain, cannot generate
satisfactory results due to the so-calledaperture problem1 and
noise existing in those frames, such as object segmentation
based on motion in computer vision.

In order to take the contextual constraints into account,
the Markov random field (MRF) has been widely employed.
Generally speaking, in the MRF the impact posed to the
value of the random variable on one site, the pixel in the
case of images, by those on other sites is restricted to its
close neighbors, where the “closeness” is determined by the
definition of theneighborhood system.A description of the
MRF will be given in the next section. The maximuma
posteriori (MAP) probability is utilized most commonly as
a statistical criterion for optimality and thus often chosen
in conjunction with the MRF in vision modeling [22]. The
resulting framework, referred to as MAP-MRF, is obtained.
In the settings of motion estimation, with the MRF as the
model, the estimation of the motion vectors is translated into
a problem of optimization, i.e., to locate the configuration of
the MAP of the MRF, which is the MAP-MRF problem.

There are mainly two schools of techniques in conducting
the optimization process. One is of deterministic nature, or
referred to aslocal methods;the other is of stochastic nature, or
referred to asglobal methods[22]. The local methods include:

1) iterated conditional modes (ICM) [3]: a “greedy” strat-
egy in the iterative local maximization;

1The component of the velocity of a moving edge in the direction of the
edge cannot be determined uniquely.
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2) dynamic programming (DP) [2]: an optimization tech-
nique for problems where only a part of all variables has
interactions simultaneously;

3) neural networks (NN’s) [34]: an alternative to Bayesian
classifiers in deriving the MAP.

The NN method does not always need to know the prior
probabilities. Instead, it can learn the stochastic properties of
the specific problem from the training set. On the other hand,
simulated annealing (SA) and graduated nonconvexity (GNC)
belong to the domain of global methods. The brief descriptions
for them are as follows.

1) SA [18]: a simulation of the physical annealing pro-
cedure. In order to avoid the local minima, instead of
a simple gradient descent method, a stochastic search,
such as a Metropolis algorithm [25], which is of the
nature of random fluctuations, is employed to find the
next configuration.

2) GNC [5]: a method that approximates the global minima
through locating the minimum of a convex approxima-
tion of the nonconvex function.

It is a successful effort to ease the computational burden of
SA. The common feature shared by all local methods is that
the computation converges quickly, but they are susceptible to
getting stuck to local minima. For global methods, the global
minima can be attained, however, often with extremely high
computational cost.

For the purpose of estimating motion vectors in the frame-
work of MAP-MRF, many methods have been developed
with various degrees of success [1], [14], [20], [30], [33]. In
these existing methods, either global methods or local methods
are used to search for the MAP configuration of the MRF
based on their respective prior beliefs. Thereby the strong
and weak points of the two different schools of MAP-search
schemes are all inherited. In order to strike a compromise
between efficiency and performance in the estimation of
motion vectors, a method based on mean field theory (MFT)
was proposed in [35] and [36]. There the MFT, originally
an approximation scheme in dealing with phase transitions in
statistical mechanics [7], is utilized to approach the global
minima with rapid convergence rate. It is claimed that results
nearly as good as SA and convergence rate comparable to the
ICM can be achieved with this method [36].

In this paper, after careful investigation of the motion
estimation in the framework of MAP-MRF, we develop an
efficient two-pass algorithm (TPA) using the MAP-MRF par-
adigm where fewer MRF’s in formulating the problem are
involved and a smaller number of sites are needed in the MAP-
search procedure. As a result, a substantially reduced cost in
the MFT-based optimization procedure is achieved. Within our
formulation, we will argue that the line field (LF), which was
first introduced in [10] and has been employed extensively in
the literature ever since, can be discarded in the process of
estimating motion vectors. Instead, the discontinuity problem
is taken care of by atruncation function.As such, only two
MRF’s are involved in our MAP-search process, namely, the
motion vector field and the unpredictable field. With the TPA,
after a “double threshold” preprocessing pass, the sites of the

current frame are partitioned into three regions of different
characteristics. The second pass, which is the MAP-search
procedure, is only conducted on some portions of the whole
sites, thereby further improving the efficiency in the MFT
procedure. In order to render our algorithm less sensitive to
gross errors, or “outliers” in the terminology of robust statistics
[13], the MAD instead of the MSE is selected as the energy
function where the contributions of the outliers are much less
than those in the MSE.

This paper is organized as follows. Section II begins with
a brief introduction to the concepts of the MRF and MFT
and their application to the motion estimation. The proposed
MAP-MRF model of the motion estimation is discussed in
Section III. The two-pass MAP-MRF algorithm based on MFT
is delineated in Section IV. Experiments conducted based
on the proposed algorithm are presented in Section V. We
conclude in Section VI with some remarks and discussions
about the proposed scheme.

II. M ARKOV RANDOM FIELD AND MEAN

FIELD THEORY FOR MOTION ESTIMATION

In this section, fundamental concepts of the MRF and
its applications are briefly introduced. We then proceed to
present the MFT, which plays a crucial role in the MAP
search procedure of the proposed algorithm. Next, the motion
estimation in the paradigm of MAP-MRF is presented. The
choice of energy functions to make its value more robust
against the gross errors is discussed in the last subsection.

A. Markov Random Field and its Application
in Image Processing

In what follows, the basic concepts of the MRF are re-
viewed. For rigorous expositions, one may refer to [22] and
[28]. Let be an integer
lattice; then denotes a family
of random variables, i.e., a random field, defined on .
Evidently each image can be viewed as a discrete sample
realization of , with assuming the intensity value on
each pixel site. is referred to as a
configurationof ; the complete set of all the configurations
is denoted as .

In order to introduce the MRF and its utility, a neighborhood
system on and the corresponding concept ofcliques

should also be introduced. is defined as

(1)

where is the set of sites on the neighborhood of ,
whose formal definition is as follows:

(2)

where is a positive integer. An is called an th order
neighborhood system if assumes the value of. For instance,
the first-order neighborhood system is the four-connection
system in the glossary of computer vision, while the second-
order neighborhood system is the eight-connection system.
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Fig. 1. The first-order neighborhood system and the corresponding cliques.

Based on , a clique is defined as a subset of
sites in , and each site is a neighbor of the other sites
in in the sense of . As an illustration, for the first-order
neighborhood system, can be of single site or double sites;
whereas for the second-order neighborhood systemcan be
of single, double, and triple sites. The possible cliques in the
first-order neighborhood system are depicted in Fig. 1. If the
collection of single site cliques is denoted as while that of
double sites is denoted as , etc., then the collection of all
the cliques for the th-order neighborhood system on is

(3)

Now we are ready to define the MRF. For ease of exposition,
let denote

, that is, the probability density
functions (pdf’s) of the event of the configuration. Next
denote the pdf’s of one random variable :
as . is called an MRF if the following properties
are satisfied:

(4)

(5)

Equation (5) is the so-calledMarkovianity, which indicates
that the behavior of the random variable on site is
only affected by those sites in . In other words, the
Markovianity means a local interaction on the random field,
which can be substantiated by most real-world images.

The MRF lends us a powerful tool in modeling the local
property for images. However, for the purpose of image
processing, the computation based on the pdf’s for each
site is prohibitively intensive. Due to the equivalence of
the MRF to Gibbs random field [10], [12], a method to
characterize the global feature of a random field from the local
features is provided. With this equivalence, the pdf for
a configuration , which is a joint event, has the following
close-form expression:

(6)

where

(7)

is the energy functionfor . is the clique potentialfor
a clique , and its value depends on the local configuration

of the clique

(8)

is the partition function for , which acts as a normalization
factor in (6).

Equation (6) has a crucial role to play in all the applications
of the MRF. Its importance lies in the fact that the joint
probability of the configuration is fully determined by
the nature of its local characteristics, i.e., the choice of
the neighborhood system and the values assigned to those
corresponding clique potentials. Thereby, out of the prior
belief, one can define a neighborhood system and assign
values to those corresponding clique potentials to reflect the
contextual constraints. The most possible result obtained from
this prior is the MAP, which, according to (6), turns out to
be the one that has the minimal energy . Thereby a rich
arsenal of optimization methods developed in various fields
such as statistics and statistical mechanics can be employed in
the search of the minimal energy.

B. Mean Field Theory

As mentioned earlier, the MFT has the promise of cutting
a nice tradeoff between efficiency and effectiveness, i.e.,
approximating the global minima at a cost comparable to the
local methods. The MFT was originally developed in statistical
mechanics [7], [26], [27] for systems undergoing phase transi-
tions. As pointed out in [21], problems in statistical mechanics
and image processing bear much resemblance to each other:
the overall property, the macro state for statistical mechanics
and image for image processing, is determined by the local
interactions of local properties, i.e., micro states in statisti-
cal mechanics and pixels in image processing, respectively.
Henceforth, many methods developed in statistical mechanics,
such as SA [10], [18], MFT, and the renormalization group
theory [11], have been exploited extensively in dealing with
image processing applications.

The basic idea of MFT is, as described in [7], to assume
that the effect to one particle imposed by its neighboring
particles through interactions is approximated by an average
magneticfield formed by these particles. Therefore, instead of
computing the interactions with all its neighboring particles,
one can obtain the mean field generated by its neighboring
particles and then compute the impact posed toby this
field. The MFT reduces the many-body statistical mechanics
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problem into a one-body problem. The resultant procedures
can be very accurate and useful [7], [27].

By analogy of MFT in statistical mechanics, for image
processing tasks, in order to search for the minimal energy
of (6), one should first calculate the mean field for each pixel.
Denote the mean field for as . By definition, one
has the following:

(9)

Substitute by use of (6) and (9) becomes

(10)

Provided that the first-order neighborhood system is adopted
for the MRF , the following approximation of the mean field
is obtained:

(11)

where the new partition function is defined as

(12)

and the new energy function is defined as

(13)

For rigorous expositions of this approximation formula, one
may refer to [36].2

Henceforth, the marginal pdf has the following
approximation formula:

(14)

From (14), the joint pdf for a configuration under the MFT
is approximated as follows:

(15)

Based on the MFT approximation of the pdf for a configuration
as defined in (15), the estimation of the MAP ofamounts

to minimizing the energy functions . With the MFT
procedure, one need only to compute the joint fixed points of
those ’s to achieve the approximated MAP. Suppose the
mean field of computed in iteration is denoted as
and a prescribed small number is. The joint fixed points of

’s are said to be achieved if the following condition is
satisfied:

(16)

the resulting ’s are the estimation of the MFT
process.

2Chandler [7] provided another formula under the Ising model.

Therefore, the optimization procedure under the MFT strat-
egy is to compute the mean field ’s based on (11)
iteratively until the difference between the results of two
contiguous iterations is less than a certain small number, which
indicates that equilibrium is attained.

C. Motion Estimation as an MAP-MRF Problem

As in [15], in the application of motion estimations, the
intensity constancyconstraint is generally assumed

(17)

where is the intensity value of site in the frame at
time and and are the projections of the motion
vector on along the horizontal and vertical direction,
respectively. For simplicity, denote as

and the set of the ’s on all sites as . The motion
estimation in the settings of MAP-MRF can be stated as the
process of maximizing the conditional pdf , i.e.,

(18)

which reads: in the presence of and locate the that
maximizes the conditional pdf.

As described in [20] and [36], since is not a
function of , it can be ignored in maximizing
with respect to . Therefore, after the application of Bayesian
theorem, (18) turns out to be

(19)

In the right-hand side of (19), the first term assumes the role of
measuring the “likelihood” between and undergoing
a motion represented by , while the second term addresses
the contextual constraints between neighboring motion vectors,
e.g., the smoothness of them in case they are of the same
object.

Under the MRF model, the first-order neighborhood system
is chosen throughout the following presentation. As discussed
before, (19) amounts to minimizing the corresponding energy
functions. For instance, for , the function for
the likelihood energy, which can be viewed as the collection
of the clique potentials for single sites, is usually formulated as

(20)

As far as the robustness is concerned, as described in the
next subsection, the proposed two-pass algorithm will employ
an improved energy function in order to be more resilient
against gross errors.

D. MAD Energy Function to Measure the Likelihood

As described in [13], the least squares function for (20) is
extremely sensitive to outliers. The problem is that, for those
outliers, their squares contribute “too much” to the overall
value of the MSE. Various functions have been proposed in
[13] and [16] in order to discount the contribution of those
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outliers; MAD is one of them, which is more robust than the
MSE. In this paper, due to its simplicity and robust feature,
the MAD is opted for as the energy function. Therefore,
the function measuring the likelihood of neighboring frames
becomes

(21)

For , one can define the following function, which
can be treated as the collection of the clique potentials for
double sites:

(22)

Due to the option of the first-order neighborhood system, the
foregoing two energy functions totally determine the prior
belief for the MAP-MRF problem. In the proposed TPA,
the MAD instead of the MSE is used as a measure of the
likelihood. We call this MRF model thesimple model for
motion estimation.In reality, the definition formulated in this
way, similar to the case when using the MSE, imposes a
universal smooth factor to the resulting motion vectors on
all sites since the motion vector on each site has the same
amount of interaction with its first-order neighbors. As such,
the resulting estimations of the motion vectors from the MAP-
MRF will exhibit the artifact of oversmoothness. Efforts to
attack it will be explicated in the next section to render the
estimation more naturally.

III. T HE PROPOSEDMAP-MRF MODEL

USING MFT FOR MOTION ESTIMATION

In this section, first the modeling of the interactions of
neighboring motion vectors is discussed, then a model for the
MFT estimation of motion vectors that reflects the prior belief
is proposed.

As mentioned briefly before, without introducing other
techniques, the simple model for motion estimation introduced
in the previous section imposes a universal smooth factor to
the random variables on every site, and the resultant motion
estimations will be oversmooth or often a total failure. In a
pioneering work by Geman and Geman [10], theline field
(LF) is introduced to enforce the discontinuities for some sites;
thereby the effect of oversmoothness can be avoided elegantly.

In essence, as described in [10], the sites of LF are the
dual of those of the original lattice , namely, the sites
of the LF are in the middle of each horizontal or vertical pair
of sites. Therefore, between every two neighboring sites in

, there exists exactly one site on the LF correspondingly,
as depicted in Fig. 2. The random variables on each site

of the LF are of Boolean nature, i.e., of the value “0”
or “1,” which relies on the difference of the corresponding
values of on . Suppose the two neighbors of on
the LF are and on . takes its value
according to the following rules:

if

otherwise
(23)

Fig. 2. The line field (cross) is the dual of the original field (dot).

where is a prescribed threshold. It is evident that the
value of indicates the presence or absence of an “edge
element.” Thus it is set to “1” when a discontinuity exists.
With the introduction of the LF, the prior models for the
MRF are so formed that, for any two neighboring sites on

, only if the corresponding on the LF is of the
value “0” will the interaction between them be counted in the
energy formulation. In this way no oversmoothing artifacts will
arise in the resulting MAP. As a result, the LF is employed
extensively in the applications of the MRF in image processing
and computer vision [8].

In order to attack the oversmoothness effect in motion
estimation, based on (11), Zhanget al. [36] employed the line
fields andunpredictable fields,wherein an impressive result
was accomplished. The unpredictable fields are exploited to
account for the situation where no correspondence of some
sites in can be made in because of the occlusions or
some uncovered areas, which is employed in most literature
addressing the MRF-based motion estimation, e.g., [20] and
[33].

The LF is of interest in its power to enforce the interactions
based on the contents of the; it finds its usefulness in a wide
spectra of applications. However, we will argue below that it
is not appropriate to exploit the LF literally in formulating
the interactions of motion vectors on neighboring sites or
blocks (an ensemble of sites). Instead, a function whose value
depends on the difference of the magnitude of motion vectors
of neighboring sites or blocks will be employed to enforce
discontinuity in an appropriate manner.

There are two observations justifying the removal of the LF
in the process of motion estimation.

• For image sequences, if one employs the LF in the formu-
lation of the prior models to estimate motion vectors, the
continuities of motion vectors are only enforced for neigh-
boring sites of similar intensity values, which indicates
that objects of interest are of smooth intensity changes.
Unfortunately, on the surface of an object, the intensity
can undergo dramatic changes. Moreover, although the
boundaries of objects often cause intensity discontinuities,
intensity discontinuities themselves do not necessarily
indicate object boundaries. Thereby, in the process of
motion estimation, discontinuities of neighboring motion
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vectors incurred solely out of the LF will be inclined to
generate “overscattered” motion vectors as the estimation
results.

• When using the LF, difficulties are witnessed if motion
vectors of macro sites (i.e., blocks) are to be estimated,
which is of more interest as far as efficiency is concerned.
One solution is to resort to the hierarchical method where
a pyramidal representation of the original frames should
first be given as mentioned in [36]. This “top-down”
strategy can be expected to generate some enhancement to
the original method as far as the efficiency is concerned.
However, the LF is not well preserved on the sites
of subimages of lower frequencies, since the low-pass
filtering would blur the image across the boundaries of
the blocks.

The efficiency of the removal of the LF has been discussed
in [5], where the minimization is first conducted over the
LF by use of a truncation function. In [4], the LF and the
robust statistical techniques are elegantly unified, in which the
LF is formulated in terms of the outlier process. As such, a
general framework is provided by using the existing robust
statistical methods. In this paper the LF is removed to reduce
the computation involved in the MAP search through the
introduction of a so-calledtruncation function . Suppose

is a threshold whose value can change dynamically in the
MFT process and and are the motion vectors of two
neighboring sites. The definition of is as follows:

if
otherwise.

(24)

The difference of the truncation function defined here from
the one in [5] is that a smaller penalty, e.g., , will be
levied if the value of exceeds the threshold in our
truncation function to encourage a disconnection. In Blake and
Zisserman’s definition [5], a penalty equal to is applied
in case the prescribed threshold is surpassed. Our truncation
function is defined on the same track as the scheme proposed
by Horn in [24] to cope with the discontinuities in optical flow.
In our implementation, can alter its value over the iterations.
By trial and error, is found to be , where
is the number of the current iteration. The rationale behind this
definition is: if the magnitude of the difference of the motion
vectors on two neighboring sites is too large, the two sites will
not be considered in the same object and a small penalty is
levied for the appearance of this discontinuity.

By substituting the LF with the truncation function, which
is a check on the difference of neighboring motion vectors, the
line field is totally removed in the process of the MAP search.
Therefore, the computational load is eased greatly, which is
one of the reasons for the efficiency of the proposed algorithm.
Plus, through using the proposed truncation function, it does
not matter whether the estimation of motion vectors is based on
each individual pixel or a block of pixels. A tradeoff between
efficiency and effectiveness can be cut with ease by changing
the block sizes and controlling parameters.

It is not unusual that for some sites or blocks in their
correspondence cannot be found indue to the fact that they

belong to the unpredictable area. Mathematically, for a site
, the MAD is defined as3

(25)

where , denoted as , are the sites deter-
mined by all possible motion vectors. If the maximum value of
the magnitude of motion vectors is, then the set of ’s,
denoted as , is the square of size centered on
in . Denote

(26)

If is very large, is considered unpredictable.
For instance, if we are concerned with compression, the cost of
transmitting/saving the site or macro site will consume
less bandwidth/space than that of the estimated motion vectors
and the corresponding displaced residual site or block. For
segmentation-by-motion tasks, evidently singling this out will
facilitate more meaningful object segmentation results.

In the literature, e.g., [36], an unpredictable field, whose
sites are the same as and the value on each site is of
the Boolean nature, is proposed to account for the existence of
some unpredictable sites. For a site or macro site, if the value
of the corresponding random variable of the unpredictable
field is 1, a constant value instead of a certain
will be the penalty. In [36], is also estimated for every
site in the MAP-search procedure. From our observation,
in the process of MAP-MRF motion estimation, in order
to address the unpredictable cases efficiently, we propose a
preprocessing pass, called “double-threshold” preprocessing,
which assumes the role of partitioning those sites or blocks
into three groups based on two predefined thresholdsand

, where , i.e.,

(27)

(28)

(29)

Based on this partition, there are three cases correspondingly.

• The sites in are excluded from the MAP search
procedure.

• For sites in , no unpredictable random variables
are defined.

• For sites in , both the motion vector field and
the unpredictable field are defined.

Thereby, in the proposed model, there are two MRF’s,
namely, motion vector field and unpredictable field . The
sites for entailed to compute are , while
on the corresponding ’s are always set to 0.
The sites for to be estimated consist only of , for

and the corresponding ’s are always set
to 1 and 0, respectively. In the next section the corresponding
energy function for either MRF will be given and the resulting
algorithm will be proposed.

3In the case of blocks, one can use the coordinate of its left upper corner to
indicate one block. Then the corresponding MAD can be defined in a manner
similar to the pixel case.
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TABLE I
VALUES ASSIGNED TO EACH PARAMETER IN THE EXPERIMENT

IV. THE PROPOSEDTWO-PASS

ALGORITHM FOR MOTION ESTIMATION

In the preceding section the MAP-MRF model for the
estimation of motion vectors was discussed, where two MRF’s
are employed in the estimation: the motion vector and the
unpredictable fields. For the motion vector field on

, the energy function is

(30)

where and are two control parameters generally of small
positive values. Notice here that the truncation functionis a
bit different from the one defined in the previous section with
one more tenor

if or

(31)

The rationale behind this is: if either of the two sites is
unpredictable based on the value of the corresponding value
on the unpredictable random field, no penalty should apply.
With this definition, only if the two neighboring sites are both
predictable and the difference of the corresponding motion
vectors in the current iteration is sufficiently small will the
interactions between them be counted in.

For the unpredictable field on , the energy function
is

(32)

where is a constant, i.e., the penalty is always levied when
an unpredictable site makes its appearance.and are two
control parameters. The function is formally defined as
follows:

if

sgn

otherwise
(33)

where the function is theKronecker function,i.e., it is of
the value 1 if the input is 0, and 0 otherwise; and the function
sgn is the sign function, i.e.,

sgn
if
otherwise.

(34)

Essentially, in (32), the first term is of the nature of the
clique energy for the single-site clique, whereas the second
term is for the clique of double sites, which takes care of the
interaction of neighboring sites on the unpredictable field.

In summary, the TPA is as follows.

1) The first pass—“double threshold” preprocessing. Com-
pute the as defined in (26) for each site, whereby the
three partitions and of
are acquired.

2) The second pass—MAP search.

a) Use (30) and (11) to compute the mean field of.

b) Use (32) and (11) to compute the mean field of.

c) Similar to [36], the normalized difference for the
two mean fields on the current iterationcan be
formally defined as follows:

(35)

If is greater than a prescribed threshold, then
exit; otherwise, go to step .

It can be observed that in the proposed algorithm, due to the
existence of the two passes, not only the number of Markov
fields but also the number of sites to be computed on is
reduced, and as such the efficiency is improved greatly.

V. EXPERIMENTAL RESULTS

In this section, experiments using the proposed TPA are
reported. All the image sequences consist of 256 gray-level
black and white images. With synthetic image sequences the
displacements and moving objects can be controlled with
ease; hence our first group of experiments is conducted on
two synthetic image sequences. One consists of one moving
object, while the other contains two objects undergoing certain
motions. Next, experimental results conducted on two real-
world image sequences are presented.

The controlling parameters adopted throughout the exper-
iments are listed in Table I. The following parameters are
used.

1) : Assumes the same role as that of the temperature
in simulated annealing. As discussed in [36], to ease
the computation burden, instead of making it change
dynamically, it is chosen to be held fixed, i.e., 1.0.

2) : Used to enforce the smoothness of the motion
vectors of neighboring blocks.

3) : Meant to determine the range of uncertain
blocks. Whether or not those blocks with average
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difference in between and are unpredictable
is to be determined by the following MAP search pass.

4) : Control parameters for the uncertain blocks.
The first two are the singleton clique energy, while
the last one is used to enforce the “smoothness” of
neighboring blocks with regard to their unpredictability.

Since there are many parameters and equalities to deal with,
it is very difficult, if not impossible, to estimate them au-
tomatically. The parameters given here are thus obtained by
trial and error. Except for , which is a hard threshold
labeling all those blocks with MAD larger than it to be
unpredictable, minor alterations to all other parameters will
not induce drastically different estimation results.

The searching window is always set to 55.
As mentioned before, no significant difference exists be-

tween block-based motion estimation and single-pixel-based
estimation with the proposed TPA; thus the proposed algorithm
is conducted on 4 4, 2 2, and 1 1 blocks. The last one
is actually the pixel-based estimation. They are denoted as 4

4 TPA, 2 2 TPA, and pixel TPA, respectively.
The needlegram, a visualization of the estimated motion

vectors for each site or block as defined in [36], is used to
show the performance of different schemes.

In order to evaluate the proposed algorithm, several criteria
are employed.

• Displacement field errorof the following form [36]:

(36)

where is the image lattice with the unpredictable sites
removed, is the number of sites in , and is the
known motion vectors. Evidently, these criteria are only
applicable to the synthetic image cases where the motion
map is known beforehand.

• Entropy of motion field,defined as follows [31]:

(37)

where and denote the relative frequency of
occurrence of the horizontal and vertical components of
the motion vector . is used to reflect the randomness
of the results of the motion estimation process. Usually,
a lower indicates a more consistent motion estimation.
For the same image sequence, a loweralso means
that less space/bandwidth is required to store/transmit the
motion map. Together with the needlegram, it offers an
indication as to the performance of the evaluated methods.

• Number of iterationsthe proposed algorithm takes before
the converging point is attained. The first pass of TPA,
a brute-force BMA to compute , is counted as one
iteration.

Detailed comparisons are presented with the block matching
algorithm with the MAD as the energy function and the MRF-
based method proposed in [36], which are denoted as BMA
and MRF later.

Fig. 3. The synthetic image sequence with one moving object and the cor-
responding needlegrams. Legend—dot: the block estimated as unpredictable,
line: the block with a nonzero motion vector, and blank: the block whose
motion vector is of magnitude zero.

A. Synthetic Image Sequences

In this part, experiments conducted on two types of synthetic
image sequences are reported. One contains a single moving
object while the other has two moving objects.

1) Single Moving Object:The sequence of two 128 128
synthetic images is obtained in the following way: an image
is generated through a realization of an identically independent
distributed Gaussian random process with mean value

and standard deviation . Then the 32 32
block in the center of is moved with a motion vector (3,
3). The uncovered area was filled with samples from the
same Gaussian random process as that generating. The
resulting image is denoted as. Last, a white Gaussian
noise with is added to both and . They are
viewed as the reference and current frame, respectively, in
the ensuing motion estimation process. The two frames and
the corresponding needlegrams for the 44 BMA, the MRF,
and the 4 4 TPA are depicted in Fig. 3.

It can be seen that the motion vectors and unpredictable
sites estimated by the BMA are the worst among all the three
methods. As to the MRF, the estimation is quite acceptable,
but not as good as the one generated by TPA; in addition, the
time consumption is much more than the 44 TPA (16 versus
4). The reason for the worse results of the MRF is twofold.

1) The existence of line field.In this synthetic image se-
quence, the intensity values of neighboring pixels, which
are sampled from an i.i.d., are no longer smooth, accord-
ing to the definition of the LF. Many positions will be
labeled as line elements. The “overscattered” effects, as
discussed in the last section, will have some negative
effects on the final estimation results.

2) The use of MSE energy function,which is more sen-
sitive to noise than MAD. Detailed test results are
listed in Table II. It can be seen from Table II that
fewer iterations are needed for the TPA to generate
comparable estimation results than for the MRF. This
efficiency manifests itself consistently in the other two
experiments.
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TABLE II
TEST RESULTS FOR THEFIRST SIMULATED IMAGE SEQUENCE

Fig. 4. The needlegrams for 4� 4 block after adding some pepper-like
sparse noises into the reference frame of the single-object synthetic sequence.

Fig. 5. The synthetic image sequence with two moving objects and the
corresponding needlegrams.

In order to show the difference between the MAD and the
MSE, some high-intensity (150 in our experiment) pepper-like
sparse noises are added to the reference frame. The resulting
needlegrams with the two versions are demonstrated in Fig. 4.
It can be observed that more robust estimation can be achieved
with the MAD. This is further confirmed by all of our extensive
experiments.

2) Two Moving Objects:The reference image in this test
is generated in the same manner as in the last experiment.
Instead of moving only one block, this time two neighboring
32 32 blocks around the central portion undergo motions,
one with the vector of (0, 3) and the other with (0,3). They
are shown in Fig. 5.

The corresponding needlegrams based on 44 blocks of
BMA, the MRF, and the TPA are illustrated in Fig. 5. Table III
lists more test results conducted on this sequence. It can be

observed that the smoothness and discontinuity are taken better
care of by the TPA than by the BMA and the MRF.

B. Real-World Image Sequences

Extensive experiments have been made on many real-world
clips, such asMiss America, Susie, Tennis,etc. In this section,
the test results of two different real-world image sequences are
presented to show the performance of the proposed algorithm.
One is the “Toronto tourism commercial” clip and the other
is the “Moonwalk” clip. Some of the image frames are shown
in Fig. 6.

1) The “Toronto Tourism Commercial” Clip:The images
are acquired from the “Toronto tourism commercial.” By
examining Fig. 6 one can find that initially two persons
are moving in the clip, then a third person steps in. The
needlegrams of the BMA, the MRF,4 and the proposed scheme
based on a 4 4 block, e.g., for frames 24 and 25, are depicted
in Fig. 7. It is observed that the result from the TPA reflects
the scenario much better than that of the BMA. It is of interest
to note that based on the result of the TPA, the three persons
can be separated by use of the consistency of the motion
vectors. The result generated from the 44 TPA can be
employed to obtain a quick object segmentation, while from
the result generated by BMA, it is impossible to obtain any
object segmentation. The time consumed is merely three times
that of the BMA, which is superior to any other MAP-MRF
method reported so far. For the MRF method, due to the use
of the line field and MSE, some incorrect motion vectors
make their appearances around those areas with noise or busy
textures. The overall estimation result of the MRF is quite
good, though with a long processing time.

The complete results from experiments conducted on this
image sequence are given in Fig. 8 and Table IV. It can be
seen that the entropy of the motion field increases in the later
stage, which is in accordance with the fact that a third person
entered in the view.

2) The “Moonwalk” Clip: Our last test is conducted on the
image sequence of NASA’s “Moonwalk” clip, as shown in
Fig. 6, where the astronaut is jumping and the background
is static. It should be pointed out that here the quality of
the images is far worse than that of the “Toronto tourism
commercial” sequence—lots of noises make their appearance.
Moreover, the background lacks textures and thereby the mere
minimal MAD criterion employed by BMA can hardly find the

4In the two real-world clips, the results of the MRF are always generated
with 30 iterations.
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TABLE III
TEST RESULTS FOR THESECOND SIMULATED IMAGE SEQUENCE

Fig. 6. The real-world image sequences on which the experiments are conducted.

(a) (b)

Fig. 7. (a) Needlegrams of the clip “Toronto tourism commercial” for frames
24 and 25. (b) Needlegrams of the clip “Moonwalk” for frames 23 and 24.

correct match. As can be seen in Fig. 7, the performance of
the BMA method is so poor that hardly any useful information
can be induced. For the MRF, with the use of line field and
MSE, it is found that this pixel-based method is also relatively
sensitive to noises; thus the resultant motion vectors are not
that good. However, they are still much better than the BMA.
By contrast, the TPA is quite robust in this scenario. After

merely four iterations, the obtained motion map as illustrated
in Fig. 7 demonstrates a very satisfactory result where the
astronaut can be located easily.

The complete test results on this clip are depicted in Fig. 8
and Table IV, from which it can be observed that the entropies
of the motion field generated by the TPA using different block
sizes are consistently better than those done by the BMA and
MRF.

VI. CONCLUSION

In this paper, a two-pass algorithm employing the mean
field theory as the optimization method in the framework of
MAP-MRF in a reliable manner is proposed for the purpose
of motion estimation. In our algorithm, a preprocessing pass is
initially applied to partition the set of sites into three different
regions of different characteristics. In the second pass, the
motion estimation is conducted, where two MRF’s, namely,
the motion vector field and the unpredictable field, are utilized.
In this algorithm, the discontinuity is taken care of by a simple
truncation function instead of introducing another MRF line
field. Based on the partitions, the corresponding computation
of the mean field is only incurred on the respective sites.
A substantial number of computations are saved with this
algorithm. Because of the reduction of the number of MRF’s,
the partition of sites, and the inherited power from the MFT,
compared to those existing schemes, a better balance is struck
between efficiency and effectiveness. In addition, due to the
choice of the MAD, which is more robust against outliers than
the MSE, a more reliable estimation can be accomplished.
Our experimental results substantiated this claim. Since no
line field is induced in the estimation process, there exists
little difference whether a site is a single pixel or a block.
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(a) (b)

Fig. 8. The statistics of the results of the two real-world clips: (a) the “Tourism” clip and (b) the “Moonwalk” clip.

As such, the proposed algorithm can be more flexible in
achieving different tradeoffs. Through extensive experiments,
it is observed that a satisfactory result can be achieved by
simply applying the algorithm based on a 44 block, where
the time consumed is only several times more than the BMA.
This is superior to any other MAP-MRF motion estimation
methods reported in the literature so far.

An efficient and effective method to obtain a representation
of image sequences in terms of objects is of vital importance

in the upcoming MPEG-4 and MPEG-7 standards [38]. The
algorithm proposed in this paper, with its high efficiency, can
be tailored to suit a different demand in practice due to the
power of the MRF to model the contextual constraints and
the MFT in approximating the global minima with reduced
computational load. For instance, one extension of the al-
gorithm is to obtain the object segmentation by use of the
estimated motion field, where initial successes have been
witnessed.
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TABLE IV
STATISTICS OF THE MV ENTROPY FOR THETWO REAL-WORLD IMAGE SEQUENCESUSING THE BMA AND THE TPA

Another extension is to accommodate the illumination al-
ternations within image sequences by use of the techniques
developed in our previous work [9], [32], where a generalized
linear equality instead of the intensity constancy constraint is
assumed between neighboring frames.

To further improve the efficiency of our algorithm, aside
from decreasing the block size gradually, the hierarchical
strategy can also be utilized. One can apply this algorithm
to such pyramid representations of each frame asLaplacian
[6] or wavelet [23] in a hierarchical manner [37].
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