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Continuous Depth Map Reconstruction
From Light Fields

Jiangiao Li, Minlong Lu, and Ze-Nian Li

Abstract—1In this paper, we investigate how the recently
emerged photography technology—the light field—can benefit
depth map estimation, a challenging computer vision problem.
A novel framework is proposed to reconstruct continuous depth
maps from light field data. Unlike many traditional methods
for the stereo matching problem, the proposed method does
not need to quantize the depth range. By making use of the
structure information amongst the densely sampled views in
light field data, we can obtain dense and relatively reliable local
estimations. Starting from initial estimations, we go on to propose
an optimization method based on solving a sparse linear system
iteratively with a conjugate gradient method. Two different
affinity matrices for the linear system are employed to balance the
efficiency and quality of the optimization. Then, a depth-assisted
segmentation method is introduced so that different segments can
employ different affinity matrices. Experiment results on both
synthetic and real light fields demonstrate that our continuous
results are more accurate, efficient, and able to preserve more
details compared with discrete approaches.

Index Terms—Depth estimation, light fields, sparse linear
systems.

I. INTRODUCTION

EPTH map reconstruction, also known as disparity

estimation, is a traditional challenging computer vision
task which has been studied for more than three decades. The
conventional way to get depth values is from stereo images.
Scharstein and Szeliski gave a good survey of this topic in [1].
Most methods nowadays solve the problem by minimizing an
energy function, which usually consists of a data term and a
smoothness term. The two most popular models for the energy
functions are the Markov Random Fields model [2] (MRFs)
and variational approaches [3], while the formulation of the
data term and the smoothness term can be different. For stereo
matching, a lot of previous work shows that energy functions
with non-convex terms model the problem better, although in
fact only an approximate optimization can be found. In this
case, the recovered depth values are not continuous but discrete
in the depth range. A drawback of the discrete methods is
that the time and memory cost of the algorithm is related to
the number of quantized levels. When the level is not high
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enough, “stair” effects are usually noticeable in the recovered
depth maps.

The newly developed technology the light field has brought
new possibilities in reconstruction of depth maps. Compared
with traditional image data, a light field contains not only
accumulated colour intensities but also some information about
ray directions. In general, the light field data can be seen as
a set of photos captured from densely and regularly placed
cameras. When the views are dense enough, there are some
interesting properties that make light fields different from
traditional multi-view data. One of the properties that has
been studied to solve traditional computer vision problems
is the fact that the projected points from one 3D point onto
different views correspond to a line in the so called epipolar-
plane image (EPI). The slope of this line is related to the
depth of the point in the space, which transforms the problem
of depth estimation into line detection on EPIs.

To estimate the orientation of the lines on EPIs, one idea
is to try out all different orientations: the one with the least
colour variance along the line is most likely to give the
correct depth value. Several methods have been developed
based on this point; different methods use different ways to
measure the colour variance. Kim er al. employed a modified
Parzen window estimation with an Epanechenikov kernel [4].
Tao et al., on the other hand, used the standard deviation
estimation [5]. Defocus is another clue that can be used for
depth. Instead of using the colour variance, researchers try to
find out by how much angle the EPIs need to be sheared to
make the interest point in focus. Defocus and colour variance
are used together to find the depth in [5] and [6]. An alternative
approach proposed by Wanner and Goldluecke [7], is to use
a structure tensor to estimate the slope of the lines on EPIs.
Unlike the other methods, it does not need to try out different
hypothetical depth values to find the optimal one, but at once
provides an estimation as well as a certainty level from one
structure tensor operation. In this work, we use the estimation
from the structure tensor as a starting point, followed by a
refinement step by examining the colour correspondence along
the detected line from the structure tensor.

The initial estimations from light fields are denser and more
reliable compared with those from traditional stereo images,
which also makes the optimization step different. However,
some works still follow a similar optimization method as
with stereo matching, such as MRFs in [5] and functional
lifting in [7]. These methods have to discretize the depth
values, so lose the advantages of the dense and reliable
initial estimations. Wanner and Goldluecke showed in [8]
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Fig. 1. Two-plane parametrization of 4D light fields.

that a simple denoising filter can generate comparable results
with the discrete global optimization, since the filter keeps
the continuous depth values. In Kim et al.’s work [4], by
applying the local method iteratively on the EPIs with different
resolutions, global estimation can be avoided. Only a median
filter is applied to eliminate outliers. With the aforementioned
initial estimation methods, the depth values usually come
with certainty levels. Therefore the optimization problem is
in essence to propagate the reliable estimations to other parts.
In this work, we explore an optimization method, given by
solving a linear system, which generates a smooth and globally
optimized result.

The paper extends our previous work [9]. We introduce
the refinement step of the initial estimations in Section III
and the optimization method in Section IV. The performance
of the proposed method is compared with the state-of-the-art
methods in Section V.

II. RELATED WORK

The light field concept was originally defined by physicists
who interpreted the flow of light as a field. It is a plenoptic
function which describes the amount of light, also known
as radiance, travelling towards every direction through every
point in the space. However, to measure the radiance of the
light at every location towards every direction is not feasible in
practice. The capture of light fields in fact relies on sampling
the radiance in space and reconstructing the plenoptic function.

The 4D light field was first proposed in [10] and later
widely used in light field analysis. We adopt the two-plane
parametrization [10] of 4D light fields and denote it as
L(x,y,s,t), as shown in Figure 1. Under this parametrization,
a 4D light field can be seen as a 2D array of perspective
views, where (s,?) can be seen as the index of different
views and (x,y) are spatial coordinates within each view
(see Figure 2a).

By fixing y and ¢, we can obtain a 2D (x,s) slice of a
light field, as shown in Figure 2b. Similarly, 2D (y, t) slices
can be obtained if x and s are fixed. These 2D slices are
called epipolar plane images (EPIs). Any point in the 3D space
can be projected to a line on EPIs. The slope of the line is
shown to be related to the depth of the corresponding point in
3D space [11].

Therefore, depth values can be obtained by estimating the
slope of lines in EPIs [7]. A structure tensor [12] is employed,
which produces an orientation estimation at each point and the
confidence level of each estimation. Figure 2c shows a depth
map obtained from the orientation estimation. Figure 2d shows
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Fig. 2.  Initial estimation on EPIs. (a) A visualization of 4D light field.
(b) Epipolar plane image. (c) Initial depth estimation on EPI. (d) Confidence
map on EPL
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Fig. 3. An example of the initial depth estimation. (a) Initial depth estimation.
(b) Confidence map.

the corresponding certainty map, in which the brighter colours
indicate higher certainty levels, and vice versa.

As we show in Figure 2, applying the structure tensor on an
EPI, we can get the depth information on one horizontal scan
line. By analyzing every 2D slice with different possible y, we
can assemble the initial depth estimations and their confidence
levels for the whole image from a certain view, as shown
in Figure 3. Based on the initial estimation we try to construct
a smooth and consistent depth map by solving linear systems
instead of making use of the discrete labelling approaches.

III. CERTAINTY MAP REFINEMENT
A. Limitations of the Structure Tensor

The structure tensor [12] provides a good way to get an
initial estimation of the depth. However, it also has several
limitations. The structure tensor works to find the dominant
orientation in a small neighbourhood of a point. However, if
there is no dominant orientation in the neighbourhood, i.e.
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Fig. 4. An illustration of different cases for the structure tensor.
(a) An epipolar-plane image. In window I, a dominant orientation is
detected, as indicated by the green line. In window II, no orientation exists.
In window III, multiple orientations exist. In window IV, the real slope is
indicated by the yellow line, while the estimation by the structure tensor is
indicated by the white line. In Window II and III, low certainty levels are
assigned. But in window IV, a high certainty level is assigned to the wrong
estimation. (b) A close-up of the local window IV. The dominant orientation
in the local window is indicated by the white line. But it is not the case if
the whole EPI is taken into consideration.

homogeneity or multiple orientations, the structure tensor
cannot give a reliable estimation. For example, in
Figure 4a, the colour is uniform in the local windows II, and
two dominant orientations exist in the local window III.
In these cases the structure tensor can assign a low certainty
level to the estimation. Areas in these cases can be fixed by
the global optimization step later, because the estimations
with high certainty levels will be propagated to areas with
low certainty levels.

However, in areas where depth is discontinuous, the struc-
ture tensor tends to give wrong estimations but still assigns
high certainty levels for them. For example the slope in the
window IV of Figure 4a is along the yellow line, given the
information of the whole EPI. However, the structure tensor
only considers the local neighbourhood, as shown in Figure 4b,
in which the dominant orientation turns to be along the white
line. Therefore, in this case, the structure tensor will provide
the orientation of the white line as the estimation and assign a
high certainty level for it, because in the local neighbourhood
Figure 4b, the white line is indeed the dominant orientation.
Howeyver, in the whole EPI, it is in fact the orientation of the
green area nearby. Consequently, the depth maps produced
by the structure tensor tend to have “fattened” boundaries
along depth discontinuities with high certainty levels assigned,
as shown in Figure 6.

Assigning high certainty level to wrong estimations has
an adverse effect on the future optimization step, since the
optimization method works to propagate information from
reliable estimations to unreliable ones. To this end, we propose
a method to refine the certainty maps produced by the structure
tensor in the next section.

B. The Refinement of Certainty Maps

To fix the problems discussed in last section, a variational
labelling method [13] is employed to enforce visibility con-
straints on each EPI in Wanner and Goldluecke’s paper [7].
However, since this optimization has to be applied on each
2D slice of the light fields, they need to optimize hundreds of
times for each light field, which usually takes several hours.
An alternative way to enhance the accuracy is to do visibility
reasoning explicitly. Instead of explicit visibility reasoning,
Zhang et al. [14] incorporate visibility into the data term of the
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Fig. 5. Temporal Selection.
energy function using statistical information from both colour
and geometry.

Inspired by Zhang et al.’s idea [14], we propose a method
to refine the certainty map of the initial local estimation, so
that wrong estimations are always assigned with low certainty.
As shown in Figure 6e, the “fattened” boundaries are assigned
to low certainty values after this refinement.

In an EPI I(x,s), any point (x, s) can be warped to other
views, given the estimated depth d(x,s). Ideally, under the
Lambertian assumption, the colour at the original point and at
the warped point should be identical. We define a matching
distance to measure the difference between the original point
(x,s) and the one warped onto view s’.

D(x,s,5) = ||I(x,s) —I(x', s
+ e, s+ clx, s)|d(x,s) —d(x', 5.
(1)

In the distance, I(x,s) and I(x’,s’) are three-dimensional
vectors for colour intensities, and d(x,s) and d(x',s’)
are estimated depth values. c(x,s) and c(x,s’) are the
corresponding certainty levels. If both d(x, s) and d(x', s”) are
perfectly correct, and if the surface is Lambertion, the distance
®(x, s, s") should be zero.

We warp point (x,s) to different available views, and
accumulate the distance. Then the accumulated distance is
mapped to a penalty coefficient p(x,s) for certainty level
c(x, s). The mapping function is defined as,

plx,s) =e p( (a ——Z x,5,5)) @)

[ISI] 4
(x,s) = p(x,s) x clx,s) 3)

where S is the set of all possible views. As the accumulated
distance becomes larger, the penalty coefficient goes to zero;
thus the refined certainty level is also close to zero. Otherwise
the estimation is considered reliable, and its certainty level is
almost unchanged. Parameters a and S control the shape of
the penalty function, which are empirically set as 20 and 1
respectively in the experiments.

Because of possible occlusions, it is better to only accumu-
late matching distances on visible views rather than go over
all the views. For example, in Figure 5 point A is occluded
in some views. Therefore the accumulated matching distance
of A is large, even though the correct depth value is assigned.
It is better to only accumulate the matching distance for the
visible views of A. Thus the temporal selection scheme in [16]
is employed. Instead of including all views into set S in
Equation 2, only the half with lower matching distance is
considered, as shown in Figure 5.
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Fig. 6. A result of the certainty map refinement. (a) The center view of
the light field. (b) A close-up of the center view. (c) The depth map from
the structure tensor. (d) The original certainty map from the structure tensor.
(e) The refined certainty map. The image (a) is from the data case
“MonasRoom” in the Light Field Benchmark Dataset [15].

IV. OPTIMIZING DEPTH MAPS
A. Optimization by Solving a Linear System

As shown in Figure 3 and Figure 6, initial depth maps are
not reliable and globally consistent. At this stage, we aim at
getting an optimized depth map from the initial depth map
and the corresponding confidence map.

We write the energy function in a matrix form,

Jd)=d"Ld+ d - d)"cd - d), )

where d and d are N x 1 vectors, represent optimal depth
values and initial depth values respectively. N is the number
of pixels in each view (i.e. N = P x Q, if the resolution of
the image is P x Q). We want to find the optimal d, which
minimizes the energy function J(d). In the first term, L is an
affinity matrix, which enforces the points with similar colours
to have similar depth values within a small neighbourhood.
The second term is a data term, which makes the optimized
result constrained by the initial depth estimations. C is a
diagonal matrix, whose elements are confidence levels of
corresponding pixels. Consequently, pixels with more reliable
initial estimations are more tightly constrained by the data
term. A controls the weight of the data term.

To optimize d, we can take the derivative of J(d), and try to
find the optimal d that makes the derivative zero. As a result,
the cost function (4) can be minimized by solving a sparse
linear system.

%fld) =2d"L+2.d-d)TC=0. (5)
(L +1C)d = ACd. (6)

By defining the affinity matrix L properly, we can make
L + AC a symmetric positive definite matrix. Then this
sparse linear system can be solved with the conjugate
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gradient method. Two formulations of affinity matrix are
introduced, which are explained in detail in Section I'V-B.

B. Affinity Matrix
A straightforward formulation of the affinity matrix L is
L=U-WTU-w). (7
Elements in W are defined as

Wi = 1%/ 2kensriy dik it € Nbr(@) g
Y7o otherwise ®)
—Aljj

a;j = max(exp( ), €). )
Nbr(i) is the neighbourhood of pixel i; a;; is a pair-wise
weight based on the colour difference Alj; of neighbouring
pixels i and j. y and € control the sharpness and the lower
bound of the exponential function. With this formulation,
the first term in Equation (4) is identical with the typical
smoothness term in energy functions used in the area of
stereo matching,

2
Esmoorn(d) = Z(di - M) .0
; > jeNG) %ij

To solve the linear system with the conjugate gradient
method, the time complexity in each iteration is O(er),
where N is the total number of pixels and r is the width
of the neighbourhood window. With larger window size, the
depth information propagates from reliable pixels to other
parts faster. However, in this way each iteration will take a
longer time.

We also tried another formulation, known as the matting
Laplacian matrix [17], for which a faster algorithm [18] with
large window sizes is available. This matrix was originally
proposed to solve matting problems, and later also used
in haze removal, intrinsic images and colorization. In this
formulation, the time complexity in each iteration is O(N),
which is independent of the window size. As a result, a larger
window size can be employed, which makes the number of
iteration times much smaller and the overall time to solve the
linear system much shorter.

The (i, j) element of this matting Laplacian matrix is
defined as

o1 T
Z (511 |a)k|(1+(ll i)

kG, j)ewx

X (Zk + —U) 11 = i), (11

| oo |
where J;; is the Kronecker delta, u; and Xy are the mean and
covariance matrix of the colours in a small local window g,
|wg| is the number of pixels in it, and U is a 3 x 3 identity

matrix, and € is a regularizing parameter. More information
can be found in [17] and [18].

C. Segmentation

In order to apply different affinity matrices on different
segments, and to keep the linear systems to a feasible size, we
segment the reference image before the global optimization.



LI et al.: CONTINUOUS DEPTH MAP RECONSTRUCTION FROM LIGHT FIELDS

3261

TABLE I
MEAN SQUARED ERRORS OF SELECTED DISPARITY ESTIMATION ALGORITHMS

S.T. init. | Fast Denoising[8] | Constrained Opt.[21] | Global Opt.[8] | MRFs-32 | MRFs-64 | The Proposed Method
Buddha 0.81 0.57 0.55 0.62 0.6 0.63 0.64
Buddha?2 1.22 0.87 0.87 0.89 0.58 0.67 0.53
Mona 1.15 0.9 0.82 0.93 0.73 0.73 0.64
StillLife 3.94 3.06 2.61 3.37 3.87 3.44 3.25
Horses 3.6 2.12 2.21 2.67 0.92 0.94 0.95
Medieval 1.69 1.15 1.1 1.24 2.33 2.21 2.1
Papillon 3.95 2.26 2.52 2.48 2.83 2.65 2.28
[ Average [ 2.34 [ 1.56 [ 1.53 [ 1.74 [ 1.69 [ 1.61 [ 1.48 ]

! The values in the table show the average mean squared error in pixels times 100, i.e. a value of 0.81 means that the mean squared error

in pixels is 0.0081.

2 MRFs-32 is the result from MRFs method with 32 discrete depth levels, and MRFs-64 is with 64 discrete depth levels.
3 “S.T. init” represents the initial estimations from the structure tensor without any optimization. The value in this table is generated by the

‘cocolib’.

On smaller segments, the normal affinity matrix is employed,
with which the window size is set as 9 x 9. On large segments,
the matting Laplacian matrix is employed, with which the
window size is set as 31 x 31.

The mean shift method [19] is employed for this purpose.
This method does not ask for a priori knowledge about the
number of segments. In addition, it is not too sensitive to the
choice of parameters.

The mean shift method works in a joint domain of space
and colour and thus groups pixels with similar colours and
close spatial coordinates. This is suitable for general purposes
in image segmentation. However, for the purpose of depth
map optimization it can be improved, especially when the
initial depth information is already available. For example,
for a surface with limited depth variation in the space, the
segmentation method may segment the surface into different
pieces because of the texture variation on it. However, it is
more desirable to group them into one segment since the depth
values are continuous, in which the Laplacian matting matrix
suffice. To this end, we modify the mean shift segmentation
by taking the initial depth estimations into consideration.
As shown in Figure 7, it is more desirable to group the
segments on the background wall into one segment, since they
are on the same depth level. It is more efficient to optimize one
large piece than optimizing several some pieces separately.

The original mean shift method works via the following
procedure [19]: First, a mean shift filter is applied on the
image. Then pixels with similar filtered values are assigned
to the same segments. At last, regions with too few pixels
are eliminated.

To make it more suitable for our purpose, one extra step
is added after the second step of the original mean shift
method: If two neighbouring segments have similar average
depth values, we consider them as on the same depth level
and merge them. One example is shown in Figure 7, and more
results are provided in Section V.

V. EXPERIMENTAL RESULTS

We test the proposed framework on two datasets, the Light
Field Benchmark Dataset (LFBD) [15] and the Stanford
light field archive [20]. The data in both datasets are
four dimensional, densely sampled from 9 x 9 or
17 x 17 views. The synthesized data from LFBD comes with
ground truth.

(b)

(c) (@

Fig. 7. An example of the depth-assisted segmentation. (a) One view of the
light field; (b) Segmentation result via the mean shift; (c) Segmentation result
with depth information; (d) The depth map from the initial estimation. The
image (a) is from the data case “MonasRoom” in the Light Field Benchmark
Dataset [15].

We compared our results with results reported in the Light
Field Benchmark [15], including the fast denoising method
in [8], global optimization with function lifting [7] and the
constrained global optimization [21]. The comparative results
are all generated from the open-source code ‘cocolib’.

We also compare our method with a method based on the
MRFs model as described in [2]. A modification is made on
the data term to fit our problem. In stereo matching, the data
term describes to what extent the pair of matching pixels differ
with each other. In the case of optimizing the depth maps from
light fields, the data term here measures to what extent the
optimal result differs from the initial estimation. The certainty
level is used as a weight. Then

Edata = Z C(xa y)'d(xs y) - g(xa y)l’
(x,y)

(12)
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TABLE I
PERCENTAGE OF WRONG DEPTH VALUES

Fast Denoising[8] Global Opt.[8] MRFs-64 The Proposed Method

>5% | >1% | >0.1% | >5% | >1% | >0.1% | >5% | >1% | >0.1% | >5% | >1% | >0.1%

Buddhal 0.64 1.22 27.1 0.09 1.13 324 0.12 1.3 27.7 0.02 1.62 15.04
Buddha2 0.13 3.29 73.8 0.15 322 85.5 0.13 1.56 60.3 0.02 2.3 58.7
MonasRoom 0.4 2.18 37.7 0.44 2.18 453 0.34 1.6 44.1 0.07 2.45 24.4
StillLife 0 0.99 21.5 0.001 1.12 17 0 1.43 22.6 0 1.19 17.7
Horses 0.07 4.86 76.9 0.27 4.79 72.4 0 1.6 41.8 0 2 31.2
Medieval 0.29 2.03 72.7 0.31 2.22 70.74 0 0 2.38 0 0 2.3
Papillon 0 1.7 61.3 0.004 1.86 58.7 0.01 2 40.1 0 2.69 37.9

[ Average [ 022 [ 232 | 53 | 018 | 236 | 5458 [ 0.086 | 1.36 | 3414 [ 0.016 | 1.75 | 26.75 |

! The values in the table is the number of missed pixels whose relative depth error is greater than a certain value over the total

number of pixels.

TABLE III
PERCENTAGE OF WRONG DISPARITY ESTIMATIONS

Fast Denoising [8] Global Opt. [8] MRFs-64 The Proposed Method

>1 >0.5 | >0.1 >1 >0.5 | >0.1 >1 >0.5 | >0.1 >1 >0.5 | >0.1

Buddhal 0.13 | 0.52 245 0.18 | 0.56 2.03 0.24 | 048 2.55 0.056 0.6 4.57
Buddha2 0.07 | 0.55 8.01 0.1 0.57 7.3 0.09 | 0.58 3.72 0.013 | 043 5.32
MonasRoom | 0.29 | 0.86 3.95 0.32 | 0.86 4.33 0.31 | 0.63 3.97 0.033 | 0.85 5
StillLife 0.57 1.58 14.55 | 0.67 1.82 10.83 | 1.11 | 2.58 15.48 0.65 2.1 13.1
Horses 0.28 1.59 | 29.35 | 0.59 2.2 24.8 0.13 1.34 7.33 0.058 | 0.88 8.89
Medieval 0.28 | 0.89 9.97 0.31 0.93 8.65 1.29 | 2.24 5.56 0.57 2 7.23

Papillon 0.67 1.38 15.34 | 0.82 1.52 13.7 1.48 1.87 9.36 0.89 2.1 10.92

[ Average [ 033 ] 1.05 [ 11.95 [ 043 | 1.21 [ 1023 [ 0.66 | 1.39 | 6.85 | 032 | 1.28 | 7.86 |

! The values in the table is the number of missed pixels whose relative disparity error is greater than a certain value

over the total number of pixels.

where c(x,y) is the certainty level, d(x, y) is the optimal
depth value, and d(x, y) is the initial depth value. We made
use of the code published with paper [2]. A graph-cut
optimization [22] is used to minimize the energy function.
Several different combination of parameters and data terms
are tried, and one with best performance is chosen.

The comparison is done with three metrics: 1) the average
mean squared disparity errors (MSE) in pixels; 2) the per-
centage of missed pixels for which the relative depth error
is greater than a certain value; 3) the percentage of missed
pixels for which the relative disparity error is greater than a
certain value. The conversion between depth and disparity is
done with the conversion formula and parameters provided by
the dataset [15]. Comparisons with the three metrics are shown
in Table I, Table II and Table III respectively. We only showed
seven datasets from the LFBD, because the other five datasets
will run out of memory using the published code ‘cocolib’.

As shown in the three tables, our method outperforms
the other methods in all the metrics. Moreover, although all
the methods take the structure tensor as the initial estima-
tion, the results generated with ‘cocolib’ is better than the
implementation in our method (VIGRA library). To get a
fair comparison, instead of the overall result we compared
the performance improvement made by different optimization
methods, in Table IV. In this case, our optimization method
clearly gives a much larger improvement over the initial
estimations. Due to space limitations, only the average results
over all the seven datasets are shown here.

As shown in Table V, our method runs much faster
compared with the global optimization method and the

(©)

(d)

Fig. 8.  Close-up results of “StillLife” from the Light Field Benchmark
Dataset [15]. (a) The center view of the light field; (b) A close-up of the
initial depth estimation; (c) A close-up of the result of the functional lifting;
(d) A close-up of the result of the proposed method.

MRFs method. Unlike these discrete methods, the running
time of our method is independent of the number of discretized
levels. The denoising method in [8] is very fast, and also
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Fig. 9. Selected results. From the left to the right, the columns are the center views of the 4D light fields, the initial estimations, segmentation results, results
from the global optimization with functional lifting [8], results from the MRFs and the results from the proposed method. The three rows on the top are from
the Light Field Benchmark Dataset [15], and the others are from Stanford light field archive [20].

generates continuous results. However, it employs a much
simpler model with L-1 norm and only enforces point-wise
smoothness. Rather than an optimization step, it’s more like
a denoising filter. Moreover, our method achieves higher
accuracy than the fast denoising method.

The running time in Table V is obtained on a computer
with an Intel Core i7 CPU with 12G RAM and a

NVIDIA GeForce GTX 570 graphic card. All the methods
are implemented in C/C++-. The ‘cocolib’ is implemented in
parallel with CUDA.

The Stanford light field archive does not have ground truth
information, so we compare the results visually in Figure 9,
as well as some test cases from LFBD. A close-up comparison
is shown in Figure 8. One can see that the proposed method
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TABLE

v

AVERAGE PERFORMANCE OF SELECTED ALGORITHMS

MSE Disparity Error Depth Error

>1 >0.5 >0.1 >5% >1% 0.10%

S.T.init. (‘cocolib’) - 2.34 0.55 1.62 14.04 0.25 3.63 52.9

Fast denoising[8] - 1.56 0.33 1.05 11.95 0.22 2.32 53
Improvement | 33.33% | 40.00% | 35.19% | 14.89% | 12.00% | 36.09% | -0.19%

Global Opt.[8] - 1.74 0.43 1.21 10.23 0.18 2.36 54.58
Improvement | 25.64% | 21.82% | 25.31% | 27.14% | 28.00% | 34.99% | -3.18%

S.T. init. (VIGRA) - 4.6 0.86 341 23.9 0.2 4.99 46.45
MRFs-64 - 1.61 0.66 1.39 6.85 0.086 1.36 34.14
Improvement | 65.00% | 23.26% | 59.24% | 71.34% | 57.00% | 72.75% | 26.50%

The Proposed Method - 1.48 0.32 1.28 7.86 0.016 1.75 26.75
Improvement | 67.83% | 62.79% | 62.46% | 67.11% | 92.00% | 64.93% | 42.41%

! This table shows the average mean squared disparity error times 100, as well as the percentage of missed pixels with
disparity or depth error larger than a given quantity.
2 The “improvement” rows for each algorithm is the relative performance improvement over the initial structure tensor

result.
TABLE V
EFFICIENCY OF DIFFERENT OPTIMIZATION METHODS
Resolution Global Opt.-32[8] | Global Opt.-64[8] | MRFs-32 | MRFs-64 | The Proposed Method
Buddhal 9*9*768%768 461 917 296 1027 199
Buddha2 9*9*768%768 455 898 780 1278 203
MonasRoom | 9%9*768*768 438 869 334 966 211
StillLife 9*9*768%768 474 886 214 707 338
Horses 9*9%1024*576 551 1075 212 957 252
Medieval 9*9%1024*760 590 1154 337 834 320
Papillon 9*9*768%768 465 888 686 841 182
[ Average [ - [ 491 [ 955 [ 408 [ 944 [ 244

! The running time is in seconds.

2 Both the global optimization in [8] and the MRFs method are tested with 32 and 64 discrete depth levels.
3 The number shown in this table is for the optimization step only.

generates more accurate and detailed results. The global
optimization method with functional lifting [8] can keep
accurate and sharp boundaries, but tends to erase details.
The MRFs model keeps relatively more details, but still has
noticeable staircase effects.

VI. CONCLUSION

In this paper, we propose a novel framework to reconstruct
continuous depth maps from 4D light fields. A refinement of
the initial depth estimation is introduced by checking colour
consistency between different views. Based on the initial depth
estimations, we construct a sparse linear system, in which

[3]

[4]

[5]

[6]

[7]

T. Pock, D. Cremers, H. Bischof, and A. Chambolle, “Global solutions
of variational models with convex regularization,” SIAM J. Imag. Sci.,
vol. 3, no. 4, pp. 1122-1145, 2010.

C. Kim, H. Zimmer, Y. Pritch, A. Sorkine-Hornung, and M. Gross,
“Scene reconstruction from high spatio-angular resolution light fields,”
ACM Trans. Graph., vol. 32, no. 4, 2013, Art. ID 73.

M. W. Tao, S. Hadap, J. Malik, and R. Ramamoorthi, “Depth
from combining defocus and correspondence using light-field cam-
eras,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV), Dec. 2013,
pp. 673-680.

M.-J. Kim, T.-H. Oh, and I. S. Kweon, “Cost-aware depth map estima-
tion for Lytro camera,” in Proc. IEEE Int. Conf. Image Process. (ICIP),
Oct. 2014, pp. 36-40.

S. Wanner and B. Goldluecke, “Globally consistent depth labeling of
4D light fields,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Jun. 2012, pp. 41-48.

two different affinity matrices are employed. In order to apply ~ [8] S. Wanner and B. Goldluecke, “Variational light field analysis

. . . . e for disparity estimation and super-resolution,” [EEE Trans.
different a.fﬁmty matrlce?s on different patches, a depth-assisted Pattern Anal. Mach. Intell, vol. 36, no. 3, pp. 606-619.
segmentation method is also proposed. We compared our Mar. 2014.

method to the state-of-the-art work. It generates more accurate
depth values and tends to keep more details. As the running
time of our method is independent of the depth levels, to
achieve a similar level of smoothness and details, our method
is much faster compared with other discrete optimization
methods.
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