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Depth maps can be constructed for missing parts which are planar 
or simply curved surfaces. Missing parts are discovered in a hier- 
archical fashion, and interpolated using the linear Coons surface 
model blending function at the bottom of the pyramid. 

This paper has also explored the range and intensity edge cor- 
respondence issue further than previous researchers. In particular, 
it was found that the most reliable edge correspondences are 
achieved when the same edge detection and thinning method is used 
for all edges. Also, a more general-purpose method of finding edge 
correspondences has been presented which records the actual re- 
gion of equivalence. 
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Stereo Correspondence Based on Line Matching in 
Hough Space Using Dynamic Programming 

Ze-Nian Li 

Abstract-This paper presents a method of using Hough space for 
solving the correspondence problem in stereo vision. It is shown that 
the line-matching problem in image space can readily be converted into 
a point-matching problem in Hough (p-8) space. Dynamic program- 
ming can be used for searching the optimal matching, now in Hough 
space. The combination of multiple constraints, especially the natural 
embedding of the constraint of figural continuity, ensures the accuracy 
of the matching. The time complexity for searching in dynamic pro- 
gramming is O(pmn) ,  where m and n are the numbers of the lines for 
each 8 in the pair of stereo images, respectively, and p is the number 
of all possible line orientations. Since m and n are usually fairly small, 
the matching process is very efficient. Experimental results from both 
binocular and trinocular matchings are presented and analyzed. 

I .  INTRODUCTION 

The recovery of depth information is important for 3-D image 
analysis. One method for depth recovery is stereo vision, in which 
pairs of images from horizontally and/or vertically displaced cam- 
eras are used. One of the most difficult problems in stereo vision 
is correspondence [l]. Once corresponding points in the pair of 
images are identified, their disparity values can be calculated and 
used to recover the depth. 

We are developing a vision system for mobile robots. The pro- 
posed domain is an office environment. The robot is planned to 
walk in corridors and rooms to fetch and deliver simple objects. 
Both stereo and laser range data will be used. Since most of the 
objects of interest will be man-made, it is natural to think of straight 
lines as the main feature for stereo matching. The stereo algorithm 
described in this paper, can quickly render a nondense depth map 
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which will help the robot to overcome most parts of the corridors 
and offices. A range-guided stereo system, as described in an- 
other paper [2], will be invoked for generating a dense depth map 
when close-up views are necessary. 

Baker and Binford [3], Ohta et a l .  [4], [5] presented interesting 
stereo-matching algorithms using dynamic programming. In Ohta 
and Kanade’s paper [4], edge-delimited intervals were used as ele- 
ments to be matched. The correspondence problem was cast as a 
problem of finding an optimal path in search spaces. In order to 
incorporate the constraint o f j g u r a l  continuity [6], a 3-D search 
space was used. It was, therefore, relatively computationally com- 
plex. The later paper by Ohta et a l .  [5], employed “collinear tri- 
nocular stereo” to cope with the occlusion problem. The issue of 
figural continuity was, however, not addressed. 

During the past decade, more and more feature-based stereo- 
matching algorithms have been developed, with many using linear 
features [7], [SI. Several state-of-the-art robot systems primarily 
used line features for vision-guided navigation and object recog- 
nition, especially in man-made environment [9], [ lo].  One of the 
major advantages of the line-matching techniques is that they nat- 
urally incorporate the constraint of figural continuity. The process 
for matching linear features can still be quite complex. In general, 
the performance and speed of the existing stereo systems are yet to 
be satisfactory. 

The Hough transform [ 111 is known to be suitable for extracting 
lines and curves. In this process, lines (curves) in image space are 
transformed into peak points in the parameter space, or Hough 
space. We discovered that the line-matching problem in the image 
space can be readily converted into a peak point-matching problem 
in Hough space. Dynamic programming can be performed in Hough 
space, namely, the matching entities are the peak points in Hough 
space. It turns out that if the lines are represented by parameters p 
and 0, then the search process for the dynamic programming can 
be independently executed for each 0, and is, therefore, very effi- 
cient. After a correct matching between corresponding lines is 
made, it is not difficult to obtain the disparity values, with a refined 
higher accuracy, for the individual corresponding points on the pairs 
of matched lines. Compared with the original dynamic program- 
ming approach by Ohta and Kanade [4], the constraint of figural 
continuity is embedded in our line-based approach, and hence, only 
one search in the Hough space is needed. The complexity of the 
search process is thereby significantly reduced. 

As shown by Burt and Julesz [12], binocular fusion cannot be 
obtained when the disparity gradient exceeds a certain limit. The 
disparity gradient limit implies the constraint of nonreversal order, 
i.e., the left-to-right order of lines cannot be reversed in one eye 
with respect to the other. This constraint introduces only a minor 
(and usually acceptable) restriction on the real applications. In this 
paper, a peak ordering algorithm based on the constraint of non- 
reversal order, is presented to ensure the optimality of the dynamic 
programming when the orientations of the corresponding lines in 
the stereo images differ. 

It is known that if the two cameras of a binocular system are 
displaced horizontally, then the horizontal lines in two images can- 
not be uniquely matched unless the end points of the horizontal 
lines can be located. A good solution to this is the use of three 
cameras as suggested by [13]-[15]. The trinocular stereo vision 
facilitates an additional powerful constraint, the trinocular unique- 
ness constraint [13], i.e., the horizontal and vertical disparities are 
identical, provided the camera displacements in both directions are 
equal. It will be effectively accommodated in the search process of 
our dynamic programming. 

The proposed Hough method for line matching employs multiple 

constraints (epipolar, uniqueness, disparity gradient, figural con- 
tinuity, and trinocular uniqueness constraints). Especially, it has 
the merits of naturally enforcing the constraint of figural continuity 
and speeding up the matching process. Moreover, it could be used 
to simultaneously yield certain boundary descriptions in Hough 
space which can be very useful for surface interpolation as sug- 
gested, for instance, by Hoff and Ahuja [16] in their integrated 
approach for Surface from Stereo. 

The organization of the paper is as follows: Section I1 describes 
our algorithm of line matching in Hough space. Section I11 dis- 
cusses dynamic programming for line matching in Hough space. 
Section IV presents experimental results. Section V concludes the 
paper. 

11. STEREO CORRESPONDENCE IN HOUGH SPACE 

This section will describe the method for line matching in Hough 
space. Since most procedures for binocular matching can be shared 
by trinocular matching in an obvious way, most of the descriptions 
in this paper will be based on binocular stereo vision. They can 
readily be generalized to trinocular matching, with the aid of the 
discussions in the last part of Section 111-C. 

Let L, and L, be the corresponding lines in the left and right 
images, represented by 

L,: p, = x, cos 8, + y ,  sin e,, 
L,: pr = X, COS 0, + yr sin O r ,  

where p, and pr denote the normal distances from the lines to the 
origins, and 0, and 0, are the edge gradient directions which are 
perpendicular to the line orientations. For stereo images, two ( p -  
0) accumulator arrays can be used for the left and right images, 
respectively. After the points on L, and L, vote on the accumula- 
tors, peaks will be formed at ( p,, 0,) in the left Hough space, and 
at (p , ,  0,) in the right Hough space, each representing a line. Be- 
cause of the epipolar constraint, each pair of matching points on 
the corresponding lines in the left and right images are considered 
to have an identical y coordinate, i.e., y ,  = yr .  Moreover, if the 
displacement b of the two cameras is relatively small and the ob- 
jects are relatively far away from the cameras, then it can be as- 
sumed that 8, = 0,. Accordingly, 

(1) 

With the above assumption, the following algorithm can be used 

( P I  - P , )  = (x, - 1,) cos 0, 

where 0 is approximately equal to 0, and 8,. 

for deriving disparity values. 

Algorithm (Stereo Correspondence Based on Line Matching) 

For each peak in Hough space, maintain a list of the coor- 
dinates for the points that voted for this peak. 
Find the corresponding peaks representing L, and L,  in the 
lefi and right Hough spaces. 
The search space for matching peaks in the Hough spaces in 
quite limited, because: 
a) For each peak with 0, in the left accumulator, only peaks 

with 0, A0 are possible matching candidates in the right 
accumulator,’ while A0 is a small number. 

b) According to (2.1), if the estimated disparity ( d  = xI - 
x,) values are in the range of [ d , ,  d 2 ] ,  where d l  and d2 
are the lower and upper bounds of the possible disparities, 

‘In this paper we only discuss matching from the left image to the right. 
Although matching from right to left can be similarly conducted and both 
results must then be combined in a cooperative way. 
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‘t 
Fig. 1. Assign disparity values after line matching. 

then the displacement ( p ,  - p,) will be in the range of 
[ d ,  cos 0, d2 cos 01. Thus, only peaks with p ,  E [ p ,  - d ,  
cos 0, p, - d2 cos 01 are possible matching candidates in 
the right accumulator array. 

3 )  Assign disparity values to individual points on the matched 
lines L, and L,. 
Points that are on the same epipolar line are now readily put 
in pair. Their x, - x, are taken as disparity ( d )  values. Fig. 
1 illustrates a possible point-matching situation after the two 
lines have been chosen as corresponding pairs. One of the 
advantages of using the Hough transform is that it is tolerant 
to noisy and broken lines. In case a slightly broken line is 
caused by a partial occlusion in one image but not in the 
other, two corresponding peaks will still be formed and 
matched. As shown in Fig. 1, a reasonable match between 
most points is still possible.’ 

In most cases, the actual disparity d ,  assigned to each individual 
point, is slightly different from the estimated disparity for the whole 
line, since a small nonzero A0 is allowed. In other words, the dis- 
parity for each individual point is refined to a higher accuracy. 

111. DYNAMIC PROGRAMMING FOR LINE MATCHING IN 

HOUGH SPACE 

This section shows the most important part, Step 2 of the pro- 
posed algorithm, Le., dynamic programming in Hough space. To 
start the description, it is temporarily assumed that O1 = Or ,  i.e., 
A0 = 0. This assumption will be relaxed in Section 111-B. 

As depicted in Fig. 2(a), for a particular 0 there may exist more 
than one contending line in both left and right images. Accord- 
ingly, more than one peak is located for the same 0 in both left and 
right Hough spaces. In Fig. 2(a), the corresponding lines are drawn 
as thicker ones. Often, one-to-one correspondence does not exist 
between lines in the left and right images. This is because 1) the 
leftmost lines in the left image may be shifted out of the image 
plane in the right image, and vice versa; 2) the occlusions of lines 
may be different from the left and the right views; 3) the noise and 
reflectance in the two images may differ. In general, for each 0, it 
is necessary to find the correspondence between n peak points in 
the left Hough space and m peak points in the right Hough space. 

For dynamic programming in Hough space, an m X n search 
plane is constructed for each possible 0 value. Fig. 2(b) illustrates 
such a search plane. The horizontal axis shows the peaks in the left 
Hough space and the vertical axis shows the peaks in the right 
Hough space. Along each 0 in the Hough space, peaks are scanned 

’The term “line matching” has been loosely used in this paper. Strictly 
speaking, “collinear points” are being matched. Peaks in the Hough spaces 
represent the collinear points (whether they are connected or not). Optimal 
matches between the corresponding peaks are obtained in the Hough space 
using dynamic programming. Afterwards, disparity values are assigned to 
the individual points on each epipolar line. 

Xl  

Fig. 2. Dynamic programming for line matching in Hough space. (a) Lines 
in image (x-y) space and their corresponding peak points in Hough ( p - 0 )  
space. (b) The search plane for matching lines in (a). 

from left to right, namely, peaks are ordered according to their p 
values. In this example, n = 4 and m = 5. 

For line matching in Hough space, if 0, = 0, is presumed, Le., 
all contending m lines in the right image and n lines in the left 
image are parallel, then the p values of the peaks can be used to 
determine the partial order of the peaks in the Hough spaces. It is 
because: 

1) For each direction Bo the peaks are all in 1-D p-O0 subspaces. 
2) The order of the peaks in each 1-D p-O0 subspace has a fixed 

and consistent relationship with the order of the lines in each 
image. 

In this case, the constraint of nonreversal order also applies to the 
corresponding peaks in the Hough subspaces along the p dimen- 
sion. 

A. Optimal Solution Path 

The process of dynamic programming in the Hough space is sim- 
ilar to the dynamic programming in image space described by Ohta 
and Kanade [4]. Instead of matching intervals in image space, peaks 
in Hough space which represent lines in the image space are 
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matched. The correspondence problem is now a problem of finding 
an optimal solution path (with the least cost) on the search plane, 
where nodes in the search plane correspond to potential matches of 
peaks from the Hough space, and a solution path i s  any path from 
S to G [from (0, 0) to ( m ,  n ) ] .  

Each of the three types of segments below is a primitive path and 
is assigned a cost. Because of the nonreversal ordering constraint, 
starting from S, a path can be extended towards only one of the 
three directions: east, south, or  southeast. 

The horizontal segment from ( i ,  j - 1) to ( i ,  j )  on a path, 
corresponds to no match for line j in the left image, e .g . ,  the 
dark horizontal segment from (0, 0) to (0, 1) in Fig. 2(b) in- 
dicates that the first (leftmost) line in the left image has no 
matching line in the right image. 
The vertical segment from ( i  - I ,  j )  to ( i ,  j )  on a path, cor- 
responds to no match for line i in the right image. 
The diagonal segment from ( i  - I ,  j - I )  to ( i , j )  on a path, 
corresponds to a match between line j in the left image and 
line i in the right image, e.g. ,  the first dark diagonal segment 
from (0, 1) to (1, 2) in Fig. 2(b) represents the match between 
the second leftmost line in the left image and the first (left- 
most) line in the right image. 

Let C ( t )  be the cost of the optimal path from the origin (0, 0) to 
node t ,  and c ( t ,  t - i )  be the cost of the primitive path from t - i 
to t .  Then the local optimal cost at any node in the search plane 
can be recursively defined as: 

C(S) = 0, 

C(t )  = min { c ( t ,  t - i )  + C(t  - i)] ,  
( 4  

where 
S = (0, 0); i = (i, j ) ,  0 I i I 1, 0 I j 5 1 ,  

a n d i  + j  # 0 

The path that renders C ( G )  at node G = (m. n )  is the optimal 
solution path. 

It is presumed that the search process is Markovian [4], namely, 
C ( t )  only depends on its immediate predecessor’s C ( t  - i )  and the 
c ( t ,  t - i). It does not depend on the previous history, i .e. ,  the 
way of deriving C ( t  - i). 

B. Peak Ordering 

The optimality of the dynamic programming relies on the con- 
sistent ordering of the peaks in both Hough spaces. If the orders of 
the peaks for matching lines Lll-Lrl, and L12-Lr2 are not the same 
in the two Hough spaces, then at least one of these lines will simply 
be overlooked by the matching process. 

In general, when a line in the 3-D scene is not parallel to the 
image planes, its projections onto the left and right images are not 
in parallel. In other words, 0, = Ol + A0 and the assumption that 
A0 = 0 is now relaxed. This subsection examines the peak-order- 
ing problem when relatively large A0 values are encountered. It 
should be reemphasized that the presumption that lines will never 
have reversed orders in the left and right images has always been 
made throughout this paper. 

1) Problem of Peak-Ordering in 2 - 0  Hough Subspaces: As 
stated above, for each line orientation with a gradient direction 00, 
when At9 = 0 was assumed, the p values of the peaks could be used 
to determine the partial order of the peaks in the I-D Hough sub- 
spaces (where 0 = O0). If A0 # 0, the peaks will reside in a 2-D 
p-0  subspace, where I9 E [eo - A0, Bo + A@, and their ordering 
becomes a nontrivial problem. Unfortunately, the p values can no 

(a) (b) 
Fig. 3 .  An example of reversed p-order. (a) Left image. (b) Right image. 

longer be directly used to determine the partial order of the peaks 
in the Hough subspace. Fig. 3 illustrates this problem. Although 
lines L ,  and L2 have the same order in their respective left and right 
image spaces (while scanning from left to right on each epipolar 
line, L ,  precedes L 2 ) ,  we have p , ,  < p 1 2 ,  whereas p r l  > pr2 .  

2)  A Peak-Ordering Algorithm: This subsection describes an 
insert-sort algorithm which is needed for peak ordering in a 2-D 
( p - 0 )  Hough subspace, where 0 E [e, - A0,  Bo + AO]. Since peaks 
in the Hough space and lines in the image have a one-to-one map- 
ping, the peak ordering will actually be accomplished by examin- 
ing the order of the lines in the image. The correctness of this al- 
gorithm is based on the fact that the order of the lines in both stereo 
images is nonreversal. 

Let (xil, y,,) and (xil. ykz) be two endpoints of line Lk,  and ykI 
< xi:. 

Algorithm (Peak Ordering). 

I )  Sort all the lines with 0 E [e,, - AO. 0, + A01 in increasing 
order of the y-coordinates ( y i l  ) of their lower endpoints, and 
store them in INITIAL-LIST. 

2) Repeat until INITIAL-LIST i s  empty: 
Fetch the first line L in INITIAL-LIST. If RESULT- 
LIST is empty, insert L in RESULT-LIST; otherwise, 
compare L with each line LA in RESULT-LIST: 

if L is ahead-ofL,, insert L before L,; 
otherwise ( L  is not ahead-of any L i ) ,  append L at the 
end of RESULT-LIST. 

To ensure that the algorithm works properly, cases of in- 
tersecting lines are not allowed. If two lines intersect, one 
of them must be split into two at the intersecting point. 
The function aheud-of simply checks the geometrical re- 
lationships between two lines. For nonintersecting lines Lk 
and L in step 2). let yil, vi?, and y , ,  yz be their y-coordi- 
nates of rcspective endpoints; then from the above discus- 
sion we have yil < y k 2 ,  yI < ??. and yh] < y,. 

function ahead-of; 
begin 

if yI > y h r / ” L h  and L do not overlap in Y dimension 
(nonoverlapping Y-extents)*/ 

then return nil: 
else if the endpoint yl  is at the left of linc Lk 

then return true: 
else return nil: 

end: 

C. Cost Functions 

The cost c for each primitive path on the search plane is assigned 
by heuristic costfunctions. The following are used in this paper. 
The first function (c, ) is applicable to all primitive paths, while the 
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second and third (cq and c 3 )  are only applied to the diagonal prim- 
itive paths. When multiple cost functions are used, a weighted sum 
of costs c = Ci wici is taken, where wi are adjustable weights. 

1) Maximize the Number of Points Matched (cl); The heuristic 
is that, usually, less points can be put in pairs, if erroneous cor- 
respondence is made among the contending lines. Since the hori- 
zontal and vertical segments on a path in the search plane imply no 
matches, their cost is set to be equal to the length of the line being 
skipped. This could be costly-in other words, the skipping of long 
lines is discouraged. The diagonal segment represents a match be- 
tween a pair of lines. As shown in Fig. l ,  there might not be a 
perfect point-to-point match between the designated matching lines. 
Let ZI and Z2 be the lengths of the lines L, and L,, and h be the 
number of the points matched on each line. Then the cost assigned 
to the diagonal segment in the search plane is 

(2) 

Fig. 4 shows a small example of an optimal path with a cost 
function that maximizes the number of points matched between six 
left lines and six right lines. These lines all have approximately the 
same 8. The lengths for the six left lines are 3, 1 1 ,  13, 18, 13, 8. 
The lengths for the right lines are 12, 14, 21, 12, 8 ,  7 .  The number 
in (0, j )  indicates the cost for skipping the first j left lines. The 
number in (i, 0) indicates the cost for skipping the first i right lines. 
In general, all the numbers indicate the optimal cost C for getting 
to the node. Let us take node ( 4 ,  5) as an example of the calculation 
of C ( t ) .  As said before, there are three paths to reach the node (4, 
5) and their cost are: 

C I  = 11 + 12 - 2h. 

c ( ( 4 ,  5 ) ,  ( 4 ,  4 ) )  + C ( 4 ,  4 )  = 13 + 22 = 35, 

c ( ( 4 ,  5 ) ,  (3, 5 ) )  + C(3, 5) = 12 + 23 = 35, 

~ ( ( 4 ,  5), (3, 4 ) )  + C(3, 4 )  = 5 + 10 = 15. 

Obviously, the last has the least cost of 15.3 Therefore, C(4, 5) = 

15. 
2) Compare the Local Property at the Vicinity of the Lines 

(cz):  Edge magnitudes along a line can be used to measure the 
difference between the gray-level intensities at the two sides of the 
line. It can be enforced that two correctly matched edge lines should 
have similar edge magnitudes. A higher cost can be assigned to the 
candidate pair that has larger differences in their local properties. 
Let h be the number of possible pairs of matching points on lines 
LI and L,, and S: and S: be the edge magnitudes at the kth point. 
The cost function for measuring the difference of the local prop- 
erties for L, and L, is defined as 

c, = A c IS) - $ 1  
h k = l  

(3) 

3)  Enforce the Trinocular Uniqueness Constraint (cJ: The tri- 
nocular uniqueness constraint is effective in reducing false matches 
[13]. It can be incorporated into a heuristic function in the follow- 
ing way: 

Assume the left and right cameras are arranged as before; the 
third camera is placed above the left camera with the same dis- 
placement b. The image obtained from the left camera will now be 
called base ( B )  image, and the other two images horizonral ( H )  
and vertical ( V )  images, respectively [ 151. Two dynamic program- 
ming search spaces will be created, one for the horizontal B-H 
matching and the other for the vertical V-B matching. To illustrate 

'c((4, 3, (3 ,  4)) reflects the cost of the partial match between the fifth 
left line and the fourth right line. Ten points from each line are matched. 
The cost for this diagonal segment is 1,  + 1, - 2h = 13 + 12 - 2 X 10 
= 5 .  

0 1 2 3 4 5 6  
~~ ~~ ~ ~ 

S 0 -3,14 27 45 58 66 

12 15 4 17 35 48 56 

26 29 18 5 23 36 44 

47 50 39 26 10 23 31 

59 62 51 38 22 15 23 

67 70 59 46 30 23 19 

74 77 66 53 37 30 26 
G 

\ 
\ 
\ 
\ 

I 

Fig. 4. An optimal path that maximizes the number of points matched. 

graphically, they are drawn together in Fig. 5 with the rotated 
V-B search space placed on the top of the B-H search space, both 
sharing the middle axis for the base image. As shown, the optimal 
solution path for the B-H matching runs from S to G,, whereas the 
path for the V-B matching runs from S to G,. 

The trinocular uniqueness constraint implies % = z, where & 
and d, are the average horizontal and vertical disparity values along 
the correctly matched lines. Let & ( i ,  j )  be the average disparity 
value associated with the diagonal segment ( i  - 1 ,  j - 1) to ( i ,  j )  
in the B-H search space, the cost function for enforcing the tri- 
nocular uniqueness constraint at node ( i ,  j )  is defined as: 

( 4 )  c j  ( i ,  j )  = A d 2  ( i ,  j ) ,  

where 
kz 

A d ( i , j )  = Min l & ( i , j )  - & ( k ,  j ) l .  ( 5 )  

A d ( i ,  j )  measures the minimum difference between % ( i ,  j )  and 
z ( k ,  j )  of the potential matching lines within the range [ k , ,  k 2 ]  in 
the V-B search space. As shown in Fig. 5, (ko, j) is the node in 
the V-B search space that offers the minimum difference Ad.  

D.  Time Complexity f o r  Searching in Dynamic Programming 

Since each node t has only three possible predecessors t - i ,  
i.e., its immediately west, north, or northwest neighboring node, 
the computation of C(t )  for all the nodes can be done in one scan 
(row-by-row) through the 2-D search plane, starting from S and 
ending at G. 

Taking into account of the fact that A% # 0, the number of nodes 
in the search plane for each % is O(mn) ,  where m and n are the 
numbers of the lines for each % in the pair of stereo images, re- 
spectively. At each node only three primitive paths are examined, 
denoted as u = 3.  It is also suggested in Step 2 of the algorithm 
that only peaks with p r  E [ p, - d ,  cos 8 ,  p, - d2 cos e] are possible 
matching candidates in the right accumulator array. That means 
only a portion k of the nodes are to be searched (k  < 1). Alto- 
gether, the number of primitive paths to be examined is in the order 
of k x m x n x u .  It follows that the computational cost for each 
% is O(mn).  Since the search will be performed for all possible line 

k = k i  
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(C) (d) 

Fig. 6.  Test images for the binocular scenes. (a) Left cube. (b) Right cube. 
(c) Left corridor. (d) Right corridor. orientations, the overall time complexity is O ( p m n ) ,  wherep is the 

number of all possible 0’s. There are, for example, 36 possibly 
different 0’s in the Hough space, and m and n are usually fairly 
small. This makes the search very fast. 

The enforcement of the trinocular uniqueness constraint has its 
overhead. While performing horizontal matching, the disparities of 
potential vertical matches must be examined, and vice versa. How- 
ever, only a constant number of the potential matches within a cer- 
tain disparity range are examined each time. Hence, the time com- 
plexity remains 0 (pmn) .  

IV. EXPERIMENTAL RESULTS 

The proposed method was tested using real-world images. The . -  
first two sets of our test data are binocular stereo images in which 
two cameras are mounted on the same horizontal level and sepa- 
rated with a displacement b = 4 in. The first set has two Rubik 
cubes in each image [Fig. 6(a), (b)]. They are frequently used in 
the stereo-vision literature, because the repetitive pattem often 
causes some difficulty for the correspondence process. The second 
stereo pair is an ordinary indoor scene (Fig. 6(c), (d)). It is a cor- 
ridor scene, typical for an office environment. The first room is an 
office with sliding glass doors and windows. A cart is placed in the 
corridor to add a little more complexity to the scene. The third set 
is a trinocular office scene (Fig. 7(a)-(c)). The horizontal and ver- 
tical camera displacements are both b = 4 in. 

A .  Edge Detection 

A gradient-based edge operator adopted by Rosenfeld, Omelas. 
and Hung [17] is used. Basically, two Sobel gradient masks are 
used to derive approximate partial derivatives along the horizontal 
and vertical directions. They are then combined to yield the gra- 
dient (magnitude and direction) information. The edges thus ex- 
tracted are usually more than one pixel wide. The nonmaximum- 
suppression technique [17] is used to reduce their edge widths to 
one. A pixel P will survive as an edge pixel, if its edge magnitude 

(b) (C) 

Fig. 7 .  Test images for the trinocular “office” scene. (a) Vertical. (b) 
Base. (c) Horizontal. 

is greater than the edge magnitudes of both neighbors that are along 
the edge direction and have similar edge directions as pixel P. Figs. 
8 and 9 are the edge maps after pyramid linking for the test images. 

The recursive edge detector by Deriche [18] was also tried for 
comparison. Its edge detection result was quite similar to the Sobel 
result. The Sobel operator was chosen because of its readiness for 
parallel processing. 
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id) 
Fig. 8. Edge maps for the binocular scenes. (a) Left cube. (b) Right cube. 

(c) Left corridor. (d) Right corridor. 

t l '  I I ' I  . . I 

Fig. 9. Edge maps for the trinocular "office" scene. (a) Vertical. (b) Base. 
(c) Horizontal. 

B. Implementing the Hough Transform 

As suggested by Duda and Hart [ 1 11, a p-0  accumulator array is 
used as the Hough space for the lines. The range of the accumulator 
array is 0" I 0 < 360°, -pmax 5 p 5 pmax. The divisions are 
every 10" for 0 and every 1 pixel for p. Since the gradient infor- 
mation is used, an edge point P votes for only one corresponding 

point ( p o ,  0,) in the accumulator array. After all the edge points in 
the image space have voted, local maximum points (peaks) are ex- 
tracted to represent the lines. 

Because of the inevitable error of discrete sampling and espe- 
cially the inaccuracy in the computation of the edge direction 0, a 
peak in the Hough space for a line is usually not as sharp as a single 
spike. It is more likely that all the collinear points in the image will 
map into a cluster in the accumulator array centered at the location 
of the peak point. We developed a hierarchical peak compaction 
method [19] which adapts to the error scale at each level and cal- 
culates the best achievable accuracy, and, therefore, generates sharp 
peaks in the Hough space. As an example, Fig. 10 illustrates the 
Hough accumulator arrays generated by the hierarchical peak com- 
paction method for the cube images. The height of the bars repre- 
sents the total votes collected for each peak. 

As described in Step 1 of the algorithm in Section 11, it is nec- 
essary to keep the coordinate information for all the voting edges. 
Hence, a linked list of edge points is maintained at each peak in 
the accumulator array. For expedient access, the list is sorted by y 
and then x values of the edge points. The sorting tums out to have 
no overhead, since the edge points were examined in order, at the 
time when their votes were taken. 

C. Dynamic Programming for  Matching 

The peak ordering and searching process for the dynamic pro- 
gramming have been discussed in detail in Section 111. In our im- 
plementation, relatively large A0 is allowed. For the binocular im- 
ages, the matching is performed from the left to right. For the peak 
points with 0, - 5" 5 0 I Bo + 5" in the left Hough space, 
potential matches with peak points in a subspace Bo - 15" I 0 I 
0, + 15" in the right Hough space are considered. In the trinocular 
case, both base-horizontal and base-vertical matching are per- 
formed adopting the same range of AO. 

As an example, Fig. 11 shows the search space of the dynamic 
programming for the left and right cube images when 0, 130". 
Twelve of the slant lines have their edge gradient directions falling 
into this range in both images. In addition, six and four noisy and 
short line segments are also detected by the Hough transform from 
the left and right images, respectively. Hence, the size of the search 
space is m = 16 and n = 18. For the cost function C, a combination 
of two criteria, applicable to binocular matching is used. More 
weight has been placed on the first criterion, Le., maximizing the 
number of points that can be matched (w, = 0.8 and w2 = 0.2). 
The search result is indicated by the optimal solution path in Fig. 
11 in which the twelve diagonal line segments correspond to all 
correct matches. All the short lines (noise) are skipped in this case, 
although there could sometimes be incidental matches between them 
as well. 

Because each original scene consists of two cubes at different 
depth and their slant lines have similar 0 and p values, the peak 
ordering process tums out to be crucial for generating the correct 
result. It happens that the peak-ordering problem as illustrated in 
Fig. 3 occurs quite frequently. Consistent ordering is obtained by 
the insert-sort peak-ordering algorithm. Intermixed with the noisy 
short lines, the six slant lines of the lower left cube are placed in 
front of the six slant lines of the upper right cube in both images. 
Among the six lines in each group, they are ordered from left to 
right, in the same way as they appear in the original images. 

The trinocular matching shares most procedures with the binoc- 
ular matching. For vertical (or near vertical) lines, matching only 
takes place in the base-horizontal pair of images, whereas, for hor- 
izontal (or near horizontal) lines, matching only takes places in the 
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(a) (b )  
Fig. 10. Hough accumulator arrays for cube images. ( a )  Left cube. (b )  

Right cube 

s 0 2 4 6 41 83 112 136 171 206 208 210 212 247 283 310 337 368 397 
I 
4-6-8-10 45 87 108 132 167 202 204 206 208 243 279 306 333 364 393 

37 39 41 43 16 58 87 111 146 181 183 185 187 222 258 285 312 343 372 

78 80 82 84 57 19 48 72 107 142 144 146 148 183 219 246 273 304 333 

104 106 108 110 83 45 28 52 87 122 124 126 128 163 199 226 253 284 313 

125 127 129 131 104 66 49 33 68 103 105 107 109 144 180 207 234 265 294 

128 130 132 134 107 69 52 36 71 106 108 110 112 147 183 210 237 268 297 

165 167 169 171 144 106 89 73 40 75 77 79 81 116 152 179 206 237 266 

204 206 204 206 183 145 128 112 79 54 56 58 60 95 131 158 185 216 245 
I 

206 208 206 208 185 147 130 114 81 56 58 60 62 97 133 160 187 218 247 
I 

209 211 209 211 188 150 133 117 84 59-61-63-65 100 136 163 190 221 250 

243 245 243 245 222 184 167 151 118 93 95 97 99 78 114 141 168 159 228 

278 280 278 280 257 219 202 186 153 128 130 132 134 113 87 114 141 172 201 

310 312 310 312 289 251 234 218 185 160 162 164 166 145 119 94 121 152 181 

342 344 342 344 321 283 266 250 217 192 194 196 198 177 151 126 103 134 163 

374 376 374 376 353 315 298 282 249 224 226 228 230 209 183 158 135 116 145 

408 410 408 410 387 349 332 316 283 258 260 262 264 243 217 192 169 150 125 

\ 

\ 

\ 
\ 

I 

\ 
\ 

\ 

\ 
\ 

\ 

\ 
\ 

G 
Fig. 11. Dynamic programming search apace for the cube iniagc\ u h e n  H,, 

= 130". 

base-vertical pair of images. The trinocular uniqueness constraint 
is only applicable to the slant lines, e .g . .  20" i 0 5 70". where 
matchings could occur in both directions. The weights for com- 
puting the cost C of these slant lines are ( tv l  = 0.4.  w2 = 0 . 2 .  and 

Fig. 12 shows the disparity maps generated by our program. For 
displaying in black and white, disparities are shown by various 
gray-level intensities. The points with larger disparities are shown 
brighter. The binocular configuration is not suitable for \tereo- 
matching between horizontal lines. Hence. matching is not at- 
tempted for these lines. The gray outputs for horizontal (or nearly 
horizontal) lines in Fig. 12(b) are not indications of their dispari- 
ties. Rather, they just indicate the existence of these edges for ease 
of viewing. Fig. 12(c), however, is a complete disparity map gen- 
erated by the trinocular matching. 

~ ' j  = 0.4). 

D. Performance Analysis 

Disparity error rate t is used to measure the quality of the stereo 
matching. E is calculated by carefully examining thc disparit! map. 
If a matched point has a disparity deviated from the correct value 
by more than one, it is counted as an error. 

As shown in Table I, t = 2.57% for the cube scene. 4 .80% for 
the corridor scene, and 2.98% for the office scene. The above dis- 
panty errors compare very well with other reported result\ 1131- 
[15 ] ,  [20]. For the cube images, all 72 pairs of lines are correctly 
matched, and the disparity errors occur mostly on the slanted edges 
in the cubes. For the corridor scene, the matching between hori- 

( C )  

Pig  12 Disparity maps ( a )  Cube. ( b )  Corridor. ( c )  Office. 

Disparit> errnr  rate ( f )  2 . 5 7 %  4.80% 2.98%' 

zontal lines are not attempted: most disparity errors are again caused 
by the slant lines and the mismatches on the noisy (textured) floor 
points in the corridors. The trinocular matching for the office scene 
indeed, produces good matches for lines of all orientations. More- 
over, the error rate E = 2.98% is significantly smaller than the t 
= 4.80% in the binocular corridor scene with comparable com- 
plexities. 

Currently, the entire matching process f o r  the trinocular ofice 
scene takes 7 .4  sec ofcpu time on a Sun SPAKC-1: approximately 
0.51 scc ( 7 %  of the 7.4 sec) for peak ordering, 1.28 sec (17%) for 
the search process of dynamic programming. 3.6 sec (48%) for the 
calculation of cost functions and other programming overheads, 
and 2.0 sec (26%) fo r  generation and display of  the disparity map. 

We have recently constructed a hybrid pyramid vision machine 
consisting of the AIS-4000 and 64 transputers 1211. As shown, edge 
detection and Hough line detection can be executed in less than a 
second by the pyramid machine. The calculation of costs and the 
search for dynamic programming can be independently performed 
for each 0 ,  and. therefore. can be executed in the transputers (one 
for each 0)  to realize a significant speedup. 

v .  C0hC.l I \ I O N  

This paper presented a method of using dynamic programming 
in Hough space for solving the corrcspondence problem in stereo 
vision for mobile robots in an ollicc environment. The line-based 
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stereo algorithm described in this paper, can quickly render a non- 
dense depth map which can be combined with our range-guided 
stereo system to meet both the far-range and near-range sensing 
requirements for vision-guided robot navigation. Since most of the 
objects of interest are man-made, lines are chosen as matching en- 
tities for stereo matching. Multiple constraints (uniqueness, epi- 
polar, disparity gradient, figural continuity, and trinocular unique- 
ness constraints) are integrated in the matching process. The main 
advantages of this approach are the natural embedding of the con- 
straint of figural continuity, and the speed-up of the matching pro- 
cess. Moreover, it could be used to simultaneously yield certain 
boundary descriptions in the Hough space which can be very useful 
for scene analysis. 

The time complexity for the search in the dynamic programming 
in Hough space is O(pmn) ,  where m and n are the numbers of the 
lines for each 0 in the pair of stereo images, respectively, and p is 
the number of all possible line orientations. Since m and n are usu- 
ally fairly small numbers, the search is very efficient. In general, 
line orientations differ (slightly) in the pairs of stereo images which 
could disturb the order of the peaks in the Hough space. A peak- 
ordering algorithm is introduced to ensure the optimality of the 
dynamic programming. 

Our preliminary results show that the proposed method works 
well on several sets of test images of real-world scenes. Relatively 
small disparity errors are observed and they compare well with other 
published results. The trinocular method offers even lower error 
rates and better matches for lines of all orientations. Its execution 
speed on a Sun SPARC-1 is satisfactory. 

The implementation of Hough line detection and dynamic pro- 
gramming has the potential to be parallelized to meet the real-time 
requirement of robotic applications. One of the future research top- 
ics is the extension of this method to matching of 3-D curves of 
simple parametric forms. 
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Improving Learning of Genetic Rule-Based Classifier 
Systems 

Alastair D. McAulay and Jae Chan Oh 

Abstract-A genetic classifier system is reviewed and used for learn- 
ing rules for classification. Two new strategies are described that en- 
able all the letters of the alphabet to be learned. A “remembering” 
strategy locks in good rules to overcome forgetting that otherwise oc- 
curs during learning. A “specializing” strategy fine tunes the search 
process for rules. Experiments and an encoding scheme are described. 
Results show, for the first time, that a genetic classifier-type system 
can learn to classify all the letters of the alphabet. Further, computer 
experiments show that the new strategies result in faster and more ro- 
bust classification involving images of varying position, size, and shape. 

I. INTRODUCTION 

Learning systems involve searching a given knowledge domain 
for an optimal feasible solution [14]. In practice, researchers are 
generally satisfied with learning techniques that provide an ade- 
quate suboptimal feasible solution. Many search functions or al- 
gorithms converge into local minima which often do not provide 
an adequate solution. Neural networks, logical deduction, function 
optimization, simulated annealing, and other mathematical and sta- 
tistical methods are examples of learning techniques. 

Manuscript received August 30, 1991; revised March 5 ,  1993. 
A. D. McAulay is with the Department of Electrical Engineering and 

J .  C. Oh is with the Department of Computer Science and Engineering, 

IEEE Log Number 9212939. 

Computer Science, Lehigh University, Bethlehem, PA 18015. 

Wright State University, Dayton, OH 45435. 

0018-9472/94$04.00 0 1994 IEEE 

.. . 


