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Abstract

Search based on image contents is an important issue in
large image and video databases. In this paper, two meth-
ods for a better content-based image retrieval (CBIR) are
presented, namely, the use ofrecognition kernelandlocales.
Features of model objects are extracted at levels that are
most appropriate to yield only the necessary yet sufficient
details, together they form the kernel. Instead of relying on
image segmentation, a method of feature localization based
on locales is developed. It is shown that the deployment of
the recognition kernel and locales in a pyramidal (multires-
olution) framework delivers good retrieval results.

1. Introduction

The inclusion of voice, image and video in multimedia
databases has proven extremely effective in various appli-
cations such as education, entertainment, medicine, and e-
commerce. Multimedia data is much richer than textual (al-
phanumeric) data. However, it also poses many new chal-
lenges. Existing computer vision technologies [5] can read-
ily extract features at low and intermediate levels (color,
texture, depth, edge, region, simple motion and shape, etc).
Earlier papers [8, 9, 3] have reported various degrees of
success in searching image and/or video databases by con-
tent. Recent work [10] attempted to incorporate user feed-
backs to improve the relevance of the image retrieval results.
However, the field is still young and the state-of-the-art has
been quite primitive.

In an effort to enable efficient retrieval in a multime-
dia database, we have been developing a multi-level data-
modeling and retrieval system to facilitate CBIR. The sys-
tem integrates the multi-level descriptions of the image and
video data and their associated confidence factors. Instead
of replying on image segmentation, a method of feature
localization based onlocalesis developed. Comparing to
most existing approaches, our work has the following char-

acteristics: (a) the exploration of CBIR from largely re-
duced image data, (b) the exploitation of intrinsic image
features that are most effective for CBIR, and (c) the in-
tegration of CBIR methods into a pyramidal framework.

Section 2 introduces the multi-level recognition kernel
for modeling and matching in CBIR. Section 3 describes
locales for feature localization. Section 4 presents the ex-
perimental results. Section 5 is a brief conclusion.

2. Recognition Kernel for CBIR

New and better methods ofModelingandmatchingare
essential for effective and efficient CBIR in image and video
databases. It is shown in this section that multiresolution
modeling offers substantial savings by matching at largely
reduced scales when it is possible. Meanwhile it preserves
necessary details when they are appropriate at various lev-
els.

2.1. Definition of recognition kernel

A recognition kernelis defined as a multiresolution
model for each object. Features of an object are extracted at
levels that are most appropriate to yield only the necessary
yet sufficient details. Together they form the kernel.

Fig. 1 illustrates a three-level recognition kernel in
which different features are adopted at each level. Cer-
tain features (such as color) are known to be well-preserved
under severe reduction of image resolution, they are hence
used at low-resolution. Others (such as texture and shape)
require relatively higher resolutions.

1. Color: Colors in a model image are sorted according
to their frequency (number of pixels) in the color his-
togram. The first fewMost Frequent Colors(MFCs)
and their frequencies are generally quite important as
characteristic measures of an object. In this design,
since color is used at a very low resolution where only
very few prominent colors are preserved, the MFCs be-
come especially dominant.
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Figure 1. A Recognition Kernel.

2. Color Axes: For each MFC, the centroid of all pixels
is located first. Aprime axisfor each MFC is defined
about which the minimum moment is obtained. The
color axis for theith MFC is denoted by the orientation
θi of its prime axis (0◦ ≤ θi < 180◦, 30◦ increments).
The angles between the color axes of MFCs character-
ize the shape and color distribution of the object.

3. Texture 1: Edge density (“edgeness”) is used to give
an estimation whether the area is highly textured. Edge
detection is only performed on the luminance image Y,
whereY = 0.299R + 0.587G + 0.114B.

4. Edge Orientations: Similar to sorting colors, the edge
orientations can also be sorted according to their fre-
quency (number of pixels) and theMost Frequent Ori-
entations(MFOs) can be readily obtained.

5. Texture 2: At this highest resolution for modeling, sec-
ond order statistics could be used to generate texture
feature vectors. In the current implementation, edge
density and edge axes of the MFOs (derived similarly
as in color axes) are used.

2.2. Taking care of various object sizes
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Figure 2. Match Objects with Various Sizes.

For this discussion it is assumed that the multiresolution
images are square, and their sizes are2k × 2k at Levelk in
the image pyramid.

Objects are modeled at a fixed size. While matching the
model with objects in the image database, variable object

Table 1. Effective Sizes of the Search Window
for Features at Multi-levels

Kernel Effective Search Window
Resulution K-1 K-2 K-3

Color 32 · 32 128 · 128 64 · 64 32 · 32
Color Axes, Txt 1 64 · 64 256 · 256 128 · 128 64 · 64
Txt 2, Edge Orient 128 · 128 512 · 512 256 · 256 128 · 128

sizes must be dealt with. As shown in Fig. 2 the same
recognition kernel will be applied at different levels in the
image pyramid.

Table 1 assumes that the recognition kernel consists of
three levels at resolutions32× 32, 64× 64, and128× 128,
respectively. When the bottom level of the kernel is placed
at Level 7 with the resolution of128 × 128, it is denoted
as K-1 in Fig. 2. K-1 is capable of matching objects with
the largest size. As illustrated in Table 1, the effective sizes
of the search windows for features at the three levels are
128 × 128, 256 × 256, and512 × 512. When the targeted
size of the object in the image is small (less than 128 in each
dimension), K-3 will be used in which the bottom of the
recognition kernel and the bottom of the image pyramid are
at the same level. The effective sizes of the search windows
for the multi-level features of K-3 are32× 32, 64× 64, and
128×128. Similarly, K-2 is used for searching objects with
a medium size.

Since the above scheme would only allow match-
ing at full-size, double-size, and quad-size, an addi-
tional scaling factor Sis introduced for the further ad-
justment of the model size. WithS ∈ (0.63, 0.8, 1.0)
and the recognition kernel applied at 3 levels (K-1,
K-2, and K-3), the effective scaling factor isSe ∈
(0.63, 0.8, 1.0, 1.25, 1.6, 2.0, 2.5, 3.2, 4.0).

2.3. Color matching with multi-level kernels

When the recognition kernel with a certainS is placed
at a certain level in the image pyramid, features at the three
levels will all be matched. Since the entire matching process
will likely take substantial amount of time, a coarse-to-fine
strategy is devised. Namely, the search will start at the
coarsest level of the kernel using colors only.

In case of K-1, since the coarsest level of the kernel is
placed at Level 5 of the image pyramid, they have identical
resolutions, i.e., the entire Level 5 image is the search win-
dow. Each of the RGB axes of the color histogram is quan-
tized into 8 intervals. The frequency (number of pixels) of
each of the8× 8× 8 bins is calculated. Clusters with high
frequency cells are identified and their neighboring cells in
the RGB color histogram space are treated assimilar colors
and merged into the dominant color. The color counts are
then sorted to generate the five MFCs.

For K-2, the coarsest level of the kernel (32 × 32) is
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Figure 3. Searching Color Matches with K-2.

placed at Level 6 (64 × 64) of the image pyramid. In other
words, the search window is half the size of the image and
the targeted object must fit inside the search window. A
search pattern as illustrated in Fig. 3 is created. At its first
round, the32 × 32 search window will be placed at nine
locations where the “X” marks the center of the window.
The nine search windows provide a very generous degree
of overlap which is necessary for an accurate positioning.
As in the case of K-1, the MFCs of the image within the
window and the MFCs of the model will be compared. If
a potential match is identified (in Fig. 3 it is at the center
position), then nine new center locations (marked as “•”) of
the search window will be determined for a second-round
search. Note, the size of the search window is not altered,
whereas the distance of the search windows is reduced to
half as compared to the previous round. The purpose of
this second round is to obtain an improved match. The best
matching window is drawn in dashed lines in Fig. 3 which
indicates the northeast center position is the winner after the
second round.

In general, the search algorithm for matching colors at
the coarsest resolution (32 × 32) of the recognition kernel
using K-1, K-2, and K-3 is as below:

Algorithm: (Matching color using K-1, K-2 and K-3)

begin
for p = 1 to 3 // K-1, K-2 and K-3

Place the coarsest level of recognition kernel at
Levelp + 4 of the image pyramid

img size = 2p+4;
r = img size/32;
for i = 1 to (2r − 1)

for j = 1 to (2r − 1)
Center the search window at(16i, 16j)

to match MFCs of the search window and
the model atS ∈ (0.63, 0.8, 1.0);

if similar, generate a tighter bounding box;
end

2.4. Search at multiresolutions

The matching process at the subsequent two levels of

the recognition kernel with higher resolutions uses a rather
straight forward method. Since the location and size of the
bounding box for a potential matching object is hypothe-
sized at the previous color matching step, additional fea-
tures of the recognition kernel as defined in Section 2.1 at
corresponding location and levels will be examined. Since
several more certainty factorsCi are introduced at each step
to measure the degree of success in potential matching, a
combined certainty factorC =

∏
i Ci is defined. WhenC

exceeds a selected thresholdτ , the detection of an object is
declared.

3. Locales for Feature Localization

Since CBIR considers objects within an image, it is com-
mon to apply some sort ofsegmentationto identify regions
of objects — say patches that have about the same color [3].
However, we have shown [7] that it is more useful to use a
set oflocalesto express not a complete image segmentation
but instead afeature localization.

3.1 Feature localization vs. image segmentation

For image segmentation: IfR is a segmented region,

1. R is usually connected; all pixels inR areconnected
(8-connected or 4-connected).

2. Ri ∩Rj = φ, i 6= j; regions aredisjoint.

3. ∪n
i=1Ri = I, whereI is the entire image; the segmen-

tation iscomplete.

Object retrieval algorithms based on image segmen-
tation permit imprecise regions by allowing a tolerance
on the region matching measure [3]. This accounts for
small imprecision in the segmentation, but over- and under-
segmentations are common because a satisfactory image
segmentation based on low level features is unattainable. A
more effective and attainable process than image segmen-
tation is a coarse localization of image features based on
proximity and compactness.

Definition: A localeLf is a local enclosure of featuref .

A localeLf uses blocks of pixels calledtilesas its position-
ing units, and has the following descriptors:

1. EnvelopeLf — a set of tiles representing the locality
of Lf .

2. Geometric parameters — massM(L), centroidC(L)
and eccentricityE(L).

3. Color, texture, and shape parameters of the locale. For
example, locale chromaticity, elongation, and locale
texture histogram.



Initially, an image is subdivided into square tiles (e.g.,
8×8 or 16×16). While pixel is the building unit for image
segmentation, tile is the building unit for feature localiza-
tion. Tiles group pixels with similar features within their
extent, and are said to have featuref if enough pixels in
them have featuref (e.g., 10%). Tiles are necessary for
good estimation of initial object-level statistics and repre-
sentation of multiple featuresat the same location. How-
ever, locale geometric parameters are measured in pixels,
not tiles. This preserves feature granularity. Hence, feature
localization is not merely a reduced-resolution variation on
image segmentation.

After a feature localization process the following can be
true:

1. ∃f : Lf is not always connected.

2. ∃f∃g : Lf ∩ Lg 6= φ, f 6= g; locales arenon-disjoint.

3. ∪fLf 6= I, non-completeness; not all image pixels are
represented.

Locales are generated using a dynamic4× 4 overlapped
pyramid linking procedure. On each level parent nodes
compete for inclusion of child nodes in a fair competition.
Image tiles are the bottom-level child nodes of the pyra-
mid, and locales are generated for the entire image when the
competition propagates to the top level [6]. Fig. 4 shows the
color locales generated from a sample image.

4. Experimental Results

As a testbed, we developed the C-BIRD system
(Content-Based Image Retrieval from Digital libraries).
The database consists of over 1,500 test images and sev-
eral dozens of video clips. Several searching methods are
supported:

• Keyword — Keyword information is stored in the data-
base in the conventional manner. Matching is trivial if
correct keywords are provided in the query.

• Color Percentage and Layout — Similar to QBIC [8],
a color palette and a square drawing area are provided
for the user to draw a sketch of the desired color lay-
out. In addition to color percentage, color axes are also
compared. It handles images of multiple scales.

• Illumination Invariance — Illumination change can
dramatically alter the color measured by camera RGB
sensors, frompinkunder daylight, topurpleunder flu-
orescent lighting, for example. To deal with illumina-
tion change from the query image to different database
images, each color channel band of each image is first
normalized, and then compressed to a36-vector [4].

Figure 4. The Locales generated for a sample
image shown at the lower-right corner. Every
subimage shows a different Locale which is
composed of the color tiles.

• Texture Layout — Similar to color layout search, this
allows the user to draw the desired texture distribution.
Available textures are zero density texture, medium
density and high density textures.

• Model — User can browse through the selection of
models and make a choice, or use the drawing tool
to select an example from any part(s) of the images
in the database. The multi-level recognition kernel of
the model is matched against images in the database.
Locale-based match is also supported.

4.1. Search using recognition kernel

Fig. 5 shows some results from Search by Model for one
of the white books in C-BIRD. Features at all three levels of
the Recognition Kernel are used. Not only the book but also
its color and edge distributions and orientations are located.
The last two outputs are a similar book, although listed,
their certainty factors are very low (in the 20% range).

4.2. Search using locales

The screening tests that are applied to locales in order to
generate assignments and validate them are:

• Color locale-based screening tests:

– Illumination Color Covariant Screening



Figure 5. Search Using Recognition Kernel.

– Chromaticity Voting

– Elastic Correlation

• Estimation of Image Object Pose

• Texture Support

• Shape Verification

The idea of color covariant matching is to realize that
colors may change, from model to target, since the light-
ing may easily change. A diagonal model of lighting
change states that the entire Red channel responds to light-
ing change via an overall multiplicative change, as do the
Green and Blue channels each with its own multiplicative
constant [4].

Localesvoteon the correct lighting change, since each
assignment of one model locale color to a target one implies
a diagonal lighting shift. Many votes in the same cell of a
voting space will imply a probable peak value for lighting
change. Using the chromaticity voting scheme, all image
locales are paired with all model locales to vote for lighting
change values in a voting array.

The feasibility of having an assignment of image locales
to model locales is evaluated using the estimated chromatic-
ity shift parameters by a type ofelastic correlation[6].

The pose estimation method uses geometrical relation-
ships between locales for establishing pose parameters. For
that reason it has to be performed on a feasible locale as-
signment. Locale spatial relationships are represented by
relationships between their centroids. The number of as-
signed locales is allowed to be as few as two, which is
enough geometry information to drive estimation of a rigid
body 2D displacement model with four parameters to re-
cover:x, y translation, rotationR, and scales [4].

Results of pose estimation are both the best pose parame-
ters for an assignment and the minimization objective value,
which is an indication of how well the locales assignment

(a)

(b)

(c)

Figure 6. Search result for the pink book
model with illumination invariance support.
(a): search results using pose estimation
only; (b): search results using pose estima-
tion and texture support; (c): search results
using GHT shape verification.

fits using the rigid-body displacement model. If the error is
within a small threshold, then the pose estimate is accepted.

The texture support screening test is utilizing a variation
of histogram intersection technique, where the texture his-
tograms of locales in the assignment are intersected. If the
intersection measure is higher than a threshold then the tex-
ture match is accepted.

The final match verification process is shape verification
by the method of Generalized Hough Transform (GHT) [2].
The GHT is robust with respect to noise and occlusion. Per-
forming a full GHT search for all possible rotation, scale
and translation parameters is computationally very expen-
sive and inaccurate. Such a search is not feasible for large



databases. However, after performing pose estimation we
already know the pose parameters, and we can apply them
to the model reference point to find the estimated reference
point in the database image. Hence, the GHT search re-
duces to a mere confirmation that the number of votes in a
small neighborhood around the reference point is indicative
of a match. This GHT matching approach takes only a few
seconds for a typical search. The reference point used is
the model center since it minimizes voting error caused by
errors in edge gradient measurements.

Once we have shape verification, the image is reported
as a match, and its match measureQ returned, ifQ is large
enough. After obtaining match measuresQi for all images
in the database, theQi measures are sorted according to
decreasing value. The number of matches can further be re-
stricted to the topk if necessary. An estimate of the correct
illumination change follows from correct matches reported.

Fig. 6 shows some search results for the pink book in
C-BIRD.

4.3. Video locales

We have also extended the notion of image locales to
video locales[1].

Definition: A video localeis a sequence of image feature
locales that share similar features in the spatio-temporal do-
main of videos.

Like locales in images, video locales have their color, tex-
ture and geometric properties. Moreover, they capture mo-
tion parameters such as the motion trajectory and speed, as
well as temporal information such as the life-span of the
video locale and its temporal relationships with respect to
other video locales. Since video proceeds in small time
steps, we can also expect to develop new locales from ones
already known from previous video frames more easily than
simply starting from scratch in each frame.

Fig. 7 shows that in fact while speeding up the generation
of locales substantially, very little difference occurs in gen-
eration of locales from each image (“Intra-frame”) and from
predicting and then refining the locales (“Inter-frame”).

It was shown [1] that the Inter-frame algorithm is always
much faster than the Intra-frame one. Moreover, video lo-
cales provide an effective means towards real-time video
object segmentation and tracking.

5. Conclusion

Content-based image retrieval (CBIR) is an important
issue in the research and development of digital libraries
which usually relies on large multimedia databases. This
paper presented two methods for CBIR using a multi-level
recognition kernel and locales for feature localization. The

(a) (b) (c)

Figure 7. Intra-frame and Inter-frame video lo-
cales algorithm results: (a) original images;
(b) intra-frame results; (c) inter-frame results.

deployment of recognition kernel and locales in a pyramidal
(multiresolution) framework facilitates multi-level abstrac-
tion of the model and is shown to improve the matching
efficiency and quality.
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