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Analysis of Disparity Gradient 
Based Cooperative Stereo 

Ze-Nian Li, Member, IEEE, and Gongzhu Hu, Member, IEEE 

Abstract- This paper argues that the disparity gradient sub- 
sumes various constraints for stereo matching, and can thus 
be used as the basis of a unified cooperative stereo algorithm. 
Traditionally, selection of the neighborhood sulpport function 
(NSF) in cooperative stereo was left as a heuristiic exercise. We 
present an analysis and evaluation of three families of NSF’s 
based on the disparity gradient. It is shown that an exponential 
decay function with a conveniently selectable parameter is well 
behaved in that it yields the least error, converges steadily, and 
produces correctly located weak-winners. The discovery of the 
well-behaved function facilitates the success of the disparity gra- 
dient based approach. It is suggested that this function will help a 
two-pass algorithm in resolving the dilemma of siirface continu- 
ity and discontinuity/occlusion. In our experiments, the unified 
cooperative stereo-matching algorithm is tested on random-dot 
stereograms containing opaque and transparent surfaces. It is 
also shown to be applicable to both area matching and contour 
matching in real-world images. 

I. INTRODUCTION 
ARR and Poggio [I]  presented a cooperative stereo M correspondence algorithm, which is essentially an it- 

erative relaxation process where uniqueness and continuity 
constraints are employed. Their seminal experiment result 
from random dot stereograms (RDS’s) remarkably resembles 
human stereopsis. An important advantage of the cooperative 
stereo is its suitability for massively parallel implementations, 
since only local interactions between nodes in a parallel 
network are required. The Drumheller-Poggio algorithm 121 
is an attempt for parallel stereo. One of the major criticisms 
to the Mar-Poggio algorithm has been its reliance on the 
assumption of surface continuity. As a result, the constraint 
of jigural continuity [3] is often viewed as a more acceptable 
alternative, especially in the domain of feature (contour) based 
stereo. 

Burt and Julesz [4] pointed out that disparity gradient 
dictates binocular fusion when several objects occur near one 
another in the visual field. They argue that there is a disparity 
gradient limit of approximately 1 for most human subjects 
in their experiments. Furthermore, order reversal occurs in 
two potential matches when the disparity gradient is allowed 
to be 22. There have been numerous articles exploiting the 
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Fig. 1. Defining disparity gradient in stereo vision. 
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Fig. 2. Forbidden zone of point PI in 3-D scene. 

constraints of disparity gradient limit and nonreversal ordering 
[5]-(71. Pollard et al. [7] pointed out the intrinsic relationship 
between the disparity gradient and the surface orientation and 
depth in three-dimensional (3-D) scenes. The PMF algorithm 
by Pollard, Mayhew, and Frisby [6],  [7] was one of the early 
stereo-matching algorithms that extended the Man-Poggio 
algorithm by introducing the disparity gradient. Based on the 
observation [4] on human vision system, a disparity gradient 
limit of 1 was imposed. Only neighboring nodes with their 
disparity gradient within the limit were allowed to contribute 
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(and contribute homogeneously), although it was recognized 
171 that the disparity gradient might vary in the range of 0 to 
2. More recently, Stewart [SI proposed a new support equation 
for stereo matching based on the analysis of the probability of 
disparity changes and depth changes. 

Although various constraints for stereo matching have been 
widely explored and proven powerful, most of them have been 
used in an ad hoc manner. We argue that, to various degrees, 
the disparity gradient subsumes the constraints of continu- 
ity, figural continuity, uniqueness, nonreversal ordering, and 
disparity-gradient limit. Therefore, a unified algorithm for the 
cooperative stereo matching based on the disparity gradient 
can be developed. What is needed is a systematic way of 
determining the neighbor support as a function of the disparity 
gradient. 

This paper presents an analysis and evaluation of three 
families of neighborhood support functions (NSF’s) based on 
the disparity gradient. For the purpose of comparison, the first 
family includes several ad hoc functions. The second family is 
adapted from the support function commonly used in simulated 
annealing [9]. The third family is a group of exponential decay 
functions. It will be shown that the exponential decay function 
with a single conveniently selectable parameter yields the least 
error. 

Little and Gillett [lo] studied the issue of surface dis- 
continuity in the context of occlusion. They observed that 
the pixels near the occlusion boundaries receive conflicting 
(positive and negative) supports from neighbors on two sides. 
As a result, “weak-winners” are generated at locations of 
susface discontinuity. The relaxation process can be greatly 
improved if there is some knowledge of the potential surface 
discontinuity. They suggested that a two-pass algorithm could 
be designed to alleviate the dilemma of surface continuity 
and discontinuitylocclusion in cooperative stereo. During the 
second pass, the neighborhood would be carefully chosen as 
not to cross the surface discontinuity. The crucial point is 
thereby a reliable identification of the potential surface dis- 
continuities after the first pass. Because the relaxation process 
with our exponential decay function converges steadily, the 
“weak-winners’’ will usually gain their strength at a slower 
pace. They can readily be identified and be exploited by the 
two-pass matching algorithm. 

Transparent surfaces in RDS’s are often used to illustrate the 
effectiveness of the cooperative stereo algorithm 1111, [ 121. In 
a way, the transparent situation is an extreme case of occlu- 
sion-the common assumption of smooth and opaque surfaces 
is no longer valid and occlusions can occur everywhere in the 
image. Prazdny [ 111 developed an algorithm that employs the 
coherence principle. Global support is sought according to a 
disparity similarity function. Unlike most conventional relax- 
ation approaches, the algorithm is noniterative and excludes 
inhibitory inputs. It is reported to have nearly 100% accuracy 
for opaque surfaces. When transparent surfaces are present, 
its accuracy drops to about 75%. Szeliski and Hinton [I21 
present a similar support function that is the difference of two 
heat equations. The function can be implemented in a locally 
connected parallel network. The resulting accuracy is almost 
as good as Prazdny’s. Our analysis shows that, with a more 

(d) 

Fig. 3. (a) Random-dot stereogram (64 x 64) for a floating rectangle. 
Disparity value for the rectangle is d l  = 6, for the background is 112 = 2 .  
(b) Random-dot stereogi-am (1 28 x 128) for a hemisphere on the background. 
Disparity value for the top of the sphere is 9, for the background is 1. (c) 
Iterative relaxation result for (a). Grey-level is used to represent disparity 
values. From iteration 0 to 45, every third iteration result is shown in order 
(row-major). (d) Iterative relaxation result for (b). 
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Function 
f i a  

f i b  

fiC 

f i d  

f 2 a  

f 2  b 

f2c 
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Parameters 
p = 1.5, C1 = 1.0, C 2  = -1.0 
p = 1.5, c1 = 0.0, c2 = -1.0 
p = 1.5, C1 = 0.0, C2 = -0.5 
p = 2.0, c1 = 0.0, (22 = -1.0 

p = 1.0, T = 0.1 
p = 1.0, T = 0.3 
p = 1.5, T = 0.3 

Fig. 4. 
.f2h ( p  = 1.0,T = 0 .3 ) ,  dashed; (c) f2d ( p  = 1.8,T = 0.5), solid. 

Several f z ( 6 d )  functions: (a) f z a  ( p  = 1.0,T = O . l ) ,  dotted; (b) 

... 
f3(4.0) 

careful choice of the NSF and its parameter, the accuracy 
of matching in the presence of transparent surfaces can be 
maintained at a level comparable to that of opaque surfaces. 

In recent years, there has seen a surge of interest in 
single-image random-dot stereograms (SIRD’s) [ 131. [ 141. The 
SIRD’s are based on the same principle of stereopsis as 
discussed in this paper, except the left and right images of the 
RDS are now cleverly merged into a single image [14]. The 
reduced separation of the two images of the RDS makes fusion 
(viewing) of the stereogram much easier, so a vast majority 
(over 90%) of viewers are now able to appreciate the 3-D 
visual effect with little practice. The algorithm presented in 
this paper is readily applicable to the SIRD’s, which has found 
its increasing use in scientific visualization and multimedia 
applications. 

The organization of this paper is as follows. Section I1 
reviews basics of the disparity gradient. Section 111 introduces 
the disparity gradient based cooperative stereo algorithm. 
Section IV describes the search for a good NSF, and the 
analysis and evaluation using RDS’s. Section V presents 
results from RDS’s containing transparent surfaces. Section 
VI describes experimental results using real-world images. 
Section VI1 concludes the paper. 

... 
T = 4.0 

11. BASICS OF DISPARITY GRADIENT 

A. Dejinition 

Fig. 1 depicts the camera geometry for stereo vision where 
the camera optical axes are parallel to each other and perpen- 
dicular to the baseline connecting the two cameras L and R. 
For a point P ( X ,  Y,  2) in the 3-D scene, its projections onto 
the left image and the right image are p’ (2’ , yl) and p‘ ( zT,  y‘) . 
Because of this simple camera geometry, y’ = yT and the 
disparity d is inversely proportional to the depth 2. 

where f is the focal length of the camera lens and b is the 
separation of the two cameras. 

-M / T  f 3 ( 6 d ) = 2 e  - 1.0 

6d 

T = 3.0 

T = 1.5 
T =0.5 
T =0.1 

Fig. 5. 
1.5, and 3.0 respectively. 

Function f3(6d): the curves depict the function when T = 0.1, 0.5, 

T = 0.5 

Given two points P1(X, Y, 2) and P z ( X ,  Y ,  Z ) ,  
their disparity gradient ( S d )  can be defined as 
Sd = d i f  f erence-in_dispari t ies /cyclopeun-se~arut i~n,  
where cyclo~ean-sepuratiorL is the average distance between 
PAP;, and PLP; ~71. 

1 1 1  S d  = 2  x I(.; - xi) - (z1 - 2;)1/1I(pz -p1) 

= 2  x I(& -xi) - (Zi - 2;)l/ll(p; -pi)  
+ (Pi - P a  (2) 

+ (Pi - PT)II ( 3 )  

where ) I  . 1 )  denotes the vector norm. Note, from its definition 
Sd is always a nonnegative number. 

Suppose a virtual camera is placed in the middle of the 
cameras L and R, i.e., at the position of the origin. Since 
pt = (p i  + py)/2 and p$ = (pi + p‘5)/2, it follows that 

(4) 6d = I(& - xi) - (xi - z;)1/11(P; -PT)II 

ad = I(& - ddl/ll(PP -Pall. 

or 

(5)  

Equation ( 5 )  offers a clearer Sd definition based on the view 
of the middle virtual camera. 
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(i) f3(0.1) (8 f3(0.5) (k) f3(1.0) (I) f3(1.5) (m) fs(2.0) f3(3.5) 

Fig. 6.  Grey-level coded disparity maps from the cooperative stereo-matching algorithm. (a)-(n) Results from three families of NSF’s. 

B. Relationship Between Sd and Suface Orientation 

It was pointed out [4] that order reversal occurs when 
Sd 2 2. In Fig. 2, imagine that the current fixation point is P1 
and there is another point Pz somewhere in the scene. From 
(3), it can be readily shown that the order reversal occurs 
when P2 is located in one of the two oblique circular cones 
tipped at point P I .  Assuming surfaces of objects in the scene 
are opaque, it can be said that the point P1 creates a cone- 
shaped “forbidden zone” in the 3-D scene ( X Y Z  space). The 
center line of the cone is the line of the sight, i.e., the line 
that connects 0 and P I .  

Similarly, for each potential match ( 2 1 ,  y1. dl) in the myd 
space as used by the Man-Poggio algorithm [l], two right 
circular cones tipped at ( 2 1 ,  yl  , d l )  also form a “forbidden 
zone” where the slope of the cone surface is 2 with respect 
to the zy plane. 

It is important to remember that, in general, the shape of 
the forbidden zones in the myd space and in the X Y Z  space 
are different. Nevertheless, these two “forbidden zones” are 
clearly related. The mapping between these two cones reflects 
an important relationship between the disparity gradient and 
the slope of the surface in the 3-D scene. From Fig. 1 and (4), 
it can be shown that 

Sd = b ‘  (22 - 211/2/(21X2 - 22x1)’ + (Y221 - YIZ2)’. 

( 6 )  
When Y1 = Y2 = 0, (6) degenerates to 

b 
21 

Sd = b .  122 - Z1I/IZ1X2 - 22x11 M - 1  tan01 (7) 

where tan 6, is the slope of the small surface patch connecting 
PI and P,. 

As shown in Fig. 2, Pz on the Z = 2 1  pliine yields Sd = 0 
(as 2 1  = 22). Also, other circular cone surfaces (tipped at P I )  
between the forbidden zone and the Z = 2 1  plane represent 
the locations where Sd = c(0 < c < 2). In this sense, we have 
obtained the “bd map.” 

The Sd map can be used to reveal various stereo-matching 
constraints. It is thus used as the basis of the unified cooper- 
ative stereo algorithm. A brief summary folllows. 

0 Sd > 2 - violation of nonreversal order constraint 
0 Sd = 2 - violation of uniqueness constraint 

Sd < 1.1 or 1.2 - disparity-gradient limit 
Sd << 1 - continuity and figural continuity constraints 

Finally, it is worthwhile to visualize what 3-D surface would 
yield Sd  = 1, since the earlier psychological study [4] seemed 
to suggest this to be approximately the limit of the disparity 
gradient for binocular fusion. We shall examine a simple 
situation in which Y1 = Y2 = 0. If bd = 1, b = 2.5 inches and 
Z1 = 25 inches, then 1 tan H I  E 10, which indicates that the 
small surface patch is 84.3’ to the X-axis---a surface almost 
along the line of sight. 

C. Terrain Map 

Since bd is defined from the view of the middle virtual 
camera, an ideal terrain map can be built from this (cyclopean) 
view. That is why the origin of the X Y Z  space is chosen in 
the middle, not at the right or left camera position. The 2- 
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coordinates of matched features from the left and right images 
can simply be averaged to produce the mid-z-coordinate, and 
the disparity (or depth) value would be registered there. This 
terrain map is more natural to human observers and more 
useful for robotic navigators. 

111. COOPERATIVE STEREO ALGORITHM 
BASED ON DISPARITY GRADIENT 

A. The Original Marr-Poggio Algorithm 

The framework of cooperative algorithms for computa- 
tion of stereo disparity is defined by Marr and Poggio [I] .  
To eliminate false targets in the correspondence process, a 
network of several layers of neurons is constructed. Each 
neuron corresponds to a disparity value d at location ( 2 ,  y) ,  
and has connections to its neighbors in the xyd  space. The 
original Mam-Poggio algorithm suggests the examination of a 
neighborhood for each potential match in the z y d  space in an 
iterative relaxation process. Based on the continuity constraint, 
neighboring neurons provide unit-positive (excitatory) support 
if they have the same d and their own strength is nonzero. 
Based on the uniqueness constraint, neurons associated with 
different disparity values at the same location (z,y) inhibit 
each other by providing --F (inhibitory) support. In terms of 
6d. the former deals with Sd = 0 and the latter Sd = 2. 

B. A Unijied Disparity Gradient Based Algorithm 

The disparity gradient will be used as the basis of our stereo- 
matching algorithm. A larger range of continuous 6d  values 
will be taken into account. The support from neighboring 
nodes is defined as a function of the disparity gradient f (bd ) ,  
whose value can be either positive or negative. 

An initial matching of two stereo images will likely produce 
multiple candidate d values at (x,y) (on the virtual middle 
zy-image plane). Each candidate match can be assigned with 
some initial strength So according to the quality of the match. 
During the iterative relaxation process, the amount of support 
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that node ~ ( 2 ,  y, d )  receives from its neighbor ~ ’ ( x ’ ,  y’, d’) 
in the s y d  space is inversely proportional to the distance 
between (5 ,  y) and ( d ,  y’) on the image plane (denoted as 
rZY = J(d - x )2  + (y’ - y)”. The support is proportional 
to the neighbor’s strength and the f ( S d )  value (where Sd = 

A special treatment is given to the nodes where rzy = 0. 
Since Sd = Id’ - d1/0 = 00 and f (m)  is usually assigned to 
- 1, the support will be proportional to 7 x (- 1) , where r/ is an 
adjustable coefficient whose value is >l. Moreover, as in [7], 
“winner-take-all” is implemented to enforce the uniqueness 
and convergence of the network. 

The procedure found at the bottom of this page describes 
the unified algorithm. 

RDS is used for testing the cooperative algorithm as in 
[l]. Fig. 3 shows the result of a floating rectangle and a 
hemisphere. The supporting neighborhood is chosen as a 7 
x 7 x 7 cube (i.e., a = h = c = 3) ,7  = 8,S(’) = 128, 
and max strength = 255. The relaxation process is iterated 
for 45 times. 

Id’ - dl/rz:y). 

I v .  SEARCH FOR A WELL-BEHAVED 
NEIGHBORHOOD SUPPORT FUNCTION (NSF) 

The behavior of the NSF is crucial to the performance and 
convergence of the cooperative stereo-matching process. As in 
[l], [7], and [8], the value of the NSF is usually a function 
of Sd. The NSF by Marr and Poggio [l] has a value of 1 
when 6d = 0, and -6 when 6d = 2. The support function 
by Pollard et al. [7] has a value of 1 when 6d is less than a 
chosen limit and zero otherwise. These functions are basically 
step functions with some heuristic control parameters. 

Determining values of the several parameters for the ad hoc 
functions is not an easy task. For example, some seemingly 
reasonable NSF’s actually produce poor matching result. One 
such example is f ( 6 d )  = 1 if Sd 5 1, -1 otherwise. The 
problem is the excessive support assigned to the potential 
matches while Sd is close or equal to 1. 

PROCEDURE cooperative-stereo; 
begin 
(1) Initial match: potential matching candidate (:I;, y, d )  is assigned strength So. 
(2) Repeat until no change 

(a) for each T = (x, y, d )  
for each of its neighbor T’ = (d, y’, d’) 

Apply the neighborhood support function, such that at k + 1 iteration 
S@+1)(T) = S(”(T) + f ( S 4  . S(‘)(r’) - 7 .  S(k)(TI) ,  

T’ E RI  (T)  TXY T’ERZ(T) 

where T , ~  = 2/(d - z ) ~  + (y’ - Y ) ~ ,  6d = Id’ - d[rZy, 
RI ( T )  = { ( d ,  ?j’, d’)  IZ - CL 5 2’ 5 2 + U ,  y - b 5 y’ 5 y + b, 

d - c 5 d’ 5 d + c, -(d = 2,  y/ = y)}, 
R2(T) = { ( : E ’ ,  y’, d’)lz’ = IC, y’ = y, d’ # d } .  

(b) /*  Winner-take-all * / 
If S(‘+’) ( T )  reaches max -strength 

then S(’+’)(T’) = O I T ~ E ~ R a ( T )  
end 
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Fig. 7.  Solutions for the “hemisphere” RDS. (a) Initial match. (b) fl, . (c) f 2 b .  (d) .f 2 d .  (e) f r ( ”  ,I. (0 f 3 ( ”  3 ) .  (g) f:3(l 5 ) .  (h) f 3 ( 3  5) 

Since changes of the surface orientation and depth are 
continuous, it would suggest that a continuous f ( 6 d )  is fa- 
vorable over an ad hoc step function. AS pointed out in 
Section 11-B, the slope and depth of 3-D surfaces have an 
intrinsic relationship with 6 d .  Given the maximum f ( 6 )  to be 
at , f ( O )  = 1! the following criteria can be used: 

f ( 6 d )  should have a negative value when 6d 2 2, since 
this is a “forbidden” situation; 
f ( S d )  should not be a significantly positive value when 
1 5 Sd < 2, since the related surfaces in the 3-D scene 
are severely away from the sight, and the probability of 
having these surfaces is not very high; 

0 f ( h d )  should start to decline when 6 d  approaches 1 
(from 0), since the related surfaces are tuming away 
from the sight, fusion becomes increasingly difficult and 
decreasingly useful. 

In this study, the following three families of functions are 
tested. Table I lists the parameter values of the chosen test 

functions. Figs. 4 and 5 show graphically the curves for some 
of the functions. 

( 1  0 5 6 d < 1 . 0  

The output grey-level coded disparity maps of the “hemi- 
sphere” RDS using three families of NSF’s are shown in 
Fig. 6. The spherical surface is shown to be representative 
and challenging for testing arbitrary 3-D surfaces [15], since it 
offers a variety of surface orientations. In this case, it provides 
a whole range of disparity gradients. 

Fig. 7(a) shows initial matches (including false targets) at 
the 12 layers ( d  E [0, 111; displayed in row major) of the z y d  
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Function 

f i a  

f i b  

fie 

f1d 

f2a  

f 2 b  

f2c 
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Parameters Percentage of Errors Percentage of Correct Matches 
T y p e A  Type B 

p = 1.5, C1 = 1.0, C2 = -1.0 29.17 0 70.83 
p = 1.5, c 1  0.0, c2 = -1.0 9.01 0 90.99 
p = 1.5, C 1  = 0.0, C2 = -0.5 9.53 0 90.47 
p = 2.0, c1 = 0.0, c2 = -1.0 9.52 0 90.48 

p = 1.0, T = 0.1 6.45 0 93.55 
p = 1.0, T = 0.3 1.86 0 98.14 
p = 1.5, T = 0.3 20.45 0 79.55 

TABLE I1 
COMPARISON OF MATCHING ERRORS FROM “HEMISPHERE” RDS 

(d) (e) (f) ‘.. ’.. __----- 
-________________-- --------- 

.._ 
Fig. 9. Unsettled pixels (in white) after 95% convergence. (a) f l a .  (b) f z b .  

--- 

f 2 d  

f3(0 .1)  

f 3 ( 0 . 5 )  

f 3 ( 1 . 0 )  

f 3 (  1.2) 

f3(1 .5)  

f 3 ( 1 . 8 )  

f 3 ( 2 . 0 )  

f 3 ( 2 . 5 )  

f 3 ( 3 . 0 )  

fqa n l  
f3(3 .5)  

p = 1.8, T = 0.5 
T = 0.1 
T = 0.5 
T = 1.0 
T = 1.2 
T = 1.5 
T = 1.8 
T = 2.0 
T = 2.5 
T = 3.0 
T = 3.5 
T = 4.0 

20.00 
3.24 
2.47 
2.33 
1.81 
1.48 
1.51 
1.75 
2.52 
4.06 
6.37 
9.19 

“I 

0 
10.25 
4.30 
0.08 
0.01 

0 
0 
0 
0 
0 
0 
0 

80.00 
86.51 
93.23 
97.58 
98.18 
98.52 
98.49 
98.25 
97.48 
95.94 
93.63 
90.81 

% 

T 

Fig. 8. Performance of various fz  functions on the “hemisphere” RDS. The 
three curves indicate percentages of type A errors (dashed) and type B errors 
(dotted), and percentages of correct matches (solid), respectively. 

space. Since all possible matches are initially assigned S(O) = 
128; they appear grey. Fig. 7(b)-(h) shows the convergence 
results using some of the above NSF’s. Since false targets 
are expected to be eliminated and winners get the maximum 
strength (indicated by color white), a good convergence result 
for the ‘‘hemisphere’’ RDS should consist of layers of white 
rings and a clean background. 

Fig. 10. Random-dot stereogram (128 X 128) for two transparent surfaces. 
Disparity value for the flat surface is d = 4, and for the sloped surface ranges 
from d = 1 to 6. 

For comparison, the first family ( f l u  to E l d )  includes several 
ad hoc step functions. The parameters p :  C1 and Cz are deemed 
to be reasonable, and most of them do deliver satisfactory 

results. The variations of p and C2 do not seem to have strong 
impact. The poor result from Jla is due to the choice of 



1500 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 5 ,  NO. 11, NOVEMBER 1096 

ih) 

Fig. 11 .  
T = 1.5. (8) T = 2.0. (h) T = 3.0. 

Comparative results for transparent “slope” RDS using f3 NSF’s. (a) Initial match. (b) T = 0.1. (c) T = 0.5. (d) T = 0.8. (e) T = 1.1. if) 

C1 = 1.0. Because a fairly large portion of the neighbors is introduced to provide variable turning points. Among the 
(x‘, y‘, d‘ )  have 6 d  = 1, the large positive value of C1 is four tested functions in this family, f a 6  yields the best result, 
shown inappropriate. and f 2 d  is the worst. The main reason is that f 2 d  provides too 

The second family f 2  ( 6 d )  is inspired by the support function much positive support when Sd 2 1. 
often used in the simulated annealing [9], in which the The relative success of f 2 6  leads to the study of the 
temperature parameter T controls the process. The function third family-exponential decay functions. The function peaks 
is varied to meet our criteria, and an additional parameter p at 1 when 6d = 0 and decays to -1 when Sd 4 00. 
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% “1 
““t 

T 

Fig. 12. Performance of f n  NSF’s on the transparent “slope” RDS. The 
three curves indicate percentages of type A errors (dashed) and type B errors 
(dotted), and percentages of correct matches (solid), respectively. 

Moreover, it has a single control parameter T that facilitates a 
more conclusive analysis. It appears to have all the desirable 
characteristics. 

As shown in Fig. 6(1), f3(1,5) apparently yields the best 
disparity map. (Interestingly, it can be seen that f 2 b  in Fig. 4 
and f3(1.5) in Fig. 5 are somewhat similar in shape.) The 
convergence result of f3(1,5) is shown in Fig. 7(g) to be fairly 
clean. When T is too large, e.g., T 2 3.0, the performance 
deteriorates due to the excessive positive support for large 
6d’s. In fact, it starts to look like f2d. When T is too 
small, e.g., 0.1, several rings at the sloped locations of the 
hemisphere are not preserved (Fig. 7(e)). It is because f3(o,1) 

basically only supports frontal surfaces where Sd = 0, it overly 
suppresses surface discontinuities. As a result, the pixels at 
sloped surfaces lose strength S at all d layers (including the 
correct d) .  We call these type B errors as opposed to type A 
errors where winners emerge at erroneous d in the xyd space. 

A. Quantitative Comparison of Errors 

Because the synthetic terrain map for the RDS is known 
in advance, the exact number of type A error pixels can be 
counted when Ad # 0, where Ad is the difference between 
the output disparity and the correct disparity value. When there 
exists no winnerlsurvivor at an (x, y) position, it is counted as 
a type B error. Errors are assessed when the relaxation process 
reaches its convergence state-no more changes for over 99% 
of the total pixels in the image. 

Table I1 shows the percentages of type A and type B errors 
and correct matches from the “hemisphere” RDS. Fig. 8 is a 
graphical display of the same result. 

It should be obvious that f3(1.5) has the highest percentage 
(98.52%) of correct matches. Moreover, its errors are almost 

entirely at Ad = 1. For 1.2 5 T 5 2.0, all f3 functions yield 
comparable results. As mentioned before, f3(o.1) and fq0 .5 )  

do not give generous support even for small nonzero Sd. Con- 
sequently, many pixels at sloped surfaces are oversuppressed. 
So far, these are the only times when the type B errors occur. 

Similar results are also obtained from the RDS “floating 
rectangle.” Not surprisingly, since both foreground and back- 
ground are simply frontal planes, the functions f3(o.1) and 
f3(o.5), which almost exclusively favor Sd = 0, also perform 
fairly well; they do not suffer from type B errors in this simple 
case. 

B. Comparison in Resolving Occlusion 

Occlusion usually accompanies a relatively large surface 
discontinuity (and, hence, large Sd). As pointed out in [lo], 
a single-pass matching usually generates “weak-winners” at 
the occlusion boundaries, and a two-pass algorithm can be de- 
signed to better recover the boundaries. This section compares 
the weak-winners produced by different NSF’s to see whether 
they have the potential to be used in the two-pass algorithm. 

The relaxation process is now terminated when 95% of the 
pixels are settled. Fig. 9 shows the remaining 5% unsettled 
pixels using different NSF’s. The NSF’s are selected to 
demonstrate “good” and “bad” results. 

Apparently, f3(1.5) delivers the best result. After a couple 
dozen iterations, the interior of the relatively smooth fore- 
ground and background surfaces are almost all settled. The 
subsequent iterations are solely confined to the areas where 
large Sd occurs. At the end, the steep portion of the hemisphere 
is correctly identified as “unsettled.” It thus can be used 
in the proposed two-pass algorithm. Because the converging 
process is stable and monotonic, it does not need overly careful 
tuning. In fact, a deviation of T values in the range of 1.2 
and 2.0 for the f 3  functions does not significantly affect the 
result. 

The bad results come from two groups: One is represented 
by f 3 a ,  the effect of oversuppression destroys the near-base 
portion of the hemisphere. The others are f l a ,  f z d ,  f s g .  These 
functions provide oversupport and are again losing by scatter- 
ing unsettled pixels everywhere. 

C. A Well-Behaved NSF 

Our study concludes that the exponentially decay function 
is a well-behaved NSF for the unified cooperative stereo- 
matching algorithm, because (i) it has a single parameter 
T ,  which is easier to adjust, (ii) there exists a range 
of moderate T values that will yield good convergence 
results, (iii) it generates the least matching error, and 
(d) it has the potential to be used for resolving occlu- 
sions. 

In the above evaluations, various values are also assigned 
to other parameters, e.g., 77 and the size of the neighborhood 
( a ,  b, e ) .  The impact of 7 is somewhat insignificant. As long 
as it is significantly greater than 1 (e.g., in the range of 4 to 8), 
the convergence results are all comparable. The neighborhood 
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(c) 

Fig. 13. 
(gray levels show disparities). 

(a) Left and right stereo corridor scene images and their edge maps. (b) Initial match at sixteen possible disparity values. (c) Disparity map 

size is usually chosen according to the image resolution and 
the density of the features. In our tests, a moderate value for 
a, b, and c at 2, 3, 4, or 5 produces satisfactory (and similar) 
results. Our experiment does show that the converging speed 
of the relaxation process has a large impact on the quality 
of the result. If the amount of update is too large at each 
iteration, the quality of the result deteriorates. Unfortunately, 
using small updates at each iteration incurs an increase in the 
required number of iterations. In the above tests, the process 

converges in the range of 30-50 iterations for most functions 
for both “hemisphere” and “Boating rectangle.” 

V. TRANSPARENT RANDOM-DOT STEREOGRAMS 

Transparent surfaces are often a challenge to stereo match- 
ing. The inclusion of transparency invalidates the concept of 
the “forbidden zone.” Namely, order reversal of matching 
points becomes possible because these is no longer any opaque 
surface to prevent this from happening. In terms of disparity 
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(b) 

Fig. 14. Sequence of motion stereo images. Nine images are used; five of them (at t = t o ,  t a r  t q ,  t 6 ,  and t s )  are shown. (a) Gray-level images. (b) Edge maps. 

gradient, large values (Sd > 2) become legitimate. However, if 
the transparent surfaces are not extremely steep as is usually 
the case, then small Sd should still be favored. In this sense, the 
disparity gradient as the basis of the algorithm is still valid, 
and the above good NSF’s are expected to be applicable to 
the transparent RDS’s. 

Since surfaces are now transparent, only black dots in the 
RDS will be treated as being on the surface; the white dots 
will be viewed as transparent holes to enable the visibility of 
any black dots behind them in the 3-D scene. The implication 
of this is a small change in the matching algorithm, i.e., only 
black-black matches are now allowed. Also, since features are 
sparser, a larger neighborhood is used in the algorithm, i.e., 
a = b = c = 5 .  The other parameters are not altered. Our first 
test transparent RDS is shown in Fig. 10. 

Fig. 11 shows the result using various .f3 functions. The 
best result is obtained when T = 1.1, both the flat surface 
at d = 4 and a sloped surface ranging from d = 1 to 6 can 
be seen clearly. Again, when T is too small (e.g., T = O . l ) ,  
the surfaces are oversuppressed; whereas it is noisy when T 
is too large (e.g., T = 3.0). Fig. 12 is a graphical display of 
the matching result similar to Fig. 8. It is encouraging to see 
that the general shapes of the three curves arc similar in both 
graphs. The peak percentage value of the correct matches is 
now lower (93.60% versus 98.52% for the opaque hemisphere 
surfaces) and the peak of the corresponding curve (solid) is 
much sharper. This reflects the fact that the matching process 
is more difficult in the transparency cases, and more sensitive 
to the choice of the T value. The smaller best T value (1.1 
as opposed to 1.5 previously) seems to suggest that a slightly 
more suppressive NSF is needed under more severe situations 
of surface discontinuitylocclusion. 

An additional test was performed to further test the ro- 
bustness of the algorithm. The same two transparent surfaces 
arc used, except twice as many black dots are assigned 
to the flat surface than to the sloped surface. Since the 
survival of any individual cell in the z y d  space relies on 

the aggregated support from its neighbors, this is to create an 
adversary situation for the sloped surface for reduced support 
as compared with the flat surface. Nevertheless, the result is 
quite satisfactory, except the percentage of correct matches is 
dropped to 91.69% for the best result, now at T = 1.2. 

The same tests are performed on a “pyramid” (wedding- 
cake) transparent RDS that consists of a pyramidal surface 
penetrated by a flat surface in the middle. The success rate 
when T = 1.1 is actually slightly higher than the “slope” 
(95.51% as opposed to 93.60%) . 

VI. TEST RESULTS FROM REAL-WORLD IMAGES 

The above study employs random-dot stereograms in which 
features (dots) are perfectly matchable. However, for applica- 
tions involving real-world images, noises are inevitable. In this 
section, real-world stereo images will be used. Also, edges are 
used as the feature to be matched. The algorithm is thus tested 
for contour matching instead of area matching as in the case 
of RDS’s. Noises in edge features are inevitable during the 
image-acquisition and edge-detection processes. As pointed 
out by Grimson in [16], the success of contour matching 
algorithms relies on the constraint of figural continuity. In 
terms of disparity gradient, continuity and figural continuity 
are similar in favoring Sd << 1. It will be shown that the 
disparity gradient based cooperative stereo algorithm is equally 
effective in enforcing the figural continuity in contour match- 
ing. Contrary to [lo], the fact that features are quite sparse 
does not adversely affect the performance of the algorithm. 

A. Binocular Stereo 

The disparity gradient based cooperative stereo algorithm 
has been tested for depth recovery from various binocular 
stereo images. As an example, a pair of such images from 
an ordinary corridor scene is shown in Fig. 13(a). The first 
room is an office with sliding glass doors. A cart is placed in 
the corridor to add a little more complexity to the scene. 
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(c) 

Fig. 15. Stereo matching results using the NSF f:1(1,3). In each image, 12 
layers of the xcyd space are shown (in row major), gray levels are used to show 
the strength S. (a) Initial match. (b) After 12 iterations. (c) After 90 iterations. 

Fig. 13(b) shows the initial matching result, 16 layers ( d  = 
0..15, row major) of the zyd  space are shown. It can been seen 
that initially many edge pixels have potential matches at more 
than one disparity layer. After 90 iterations, over 95% edge 

(c) 

Fig. 16. Comparative stereo matching results after 90 iterations using (a) 
f3(0 5 ) '  (b) f 3 ( 1  3 ) ,  (cl f3(3 0). 

pixels converge to a unique and correct disparity value. The 
final dispaity map is shown in Fig. 13(c), where gray-level 
intensity is used to illustrate the disparity. Errors on disparity 
values can be observed, for example, at the edges of the posters 
at the far end of the corridor. The quality of the disparity map 
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is comparable to the result presented in [ 171, where matching 
involves a higher level feature, i.e., line. 

B. Motion Stereo Application 

In this section, a sequence of motion stereo images are used. 
The reason for the additional test on motion stereo images is 
that they often incur more false targets and, hence, provide a 
more interesting test case. 

A Brief Introduction to Motion Stereo: Consider an assem- 
bly line where a belt is moving at a relatively constant speed. 
Multiple snapshots of the moving objects on the belt can be 
taken in rapid succession by a single camera. The controlled 
belt movement provides the necessary stereo disparities. More- 
over, it guarantees that the disparities occur only along the 
line of the belt movement, e.g., on the z-dimension, and thus 
provides well-defined epipolar lines. This method is called 
motion stereo [18]. Its greatest advantage is the simplicity in 
camera control and calibration. 

Bolles, Baker, and Marimont [ 191 proposed a technique 
of epipolar-plane image analysis for determining structure 
from motion. It was pointed out that for straight-line camera 
motions, simple linear structures would be formed in the 
epipolar-planes-the zt-plane. 

The correspondence problem in the motion stereo can be 
reduced to a problem of searching for collinear points in 
the epipolar planes. Similar to the procedures for the Hough 
transform [20], a voting algorithm for accumulating multiple 
evidence can be developed [21]. In general, in the zt-plane, 
any point at t = t; can be paired with any point at t = 
t j  ( j  > i )  to form a hypothetical line segment. Its slope 
suggests a possible disparity value d. A 3-D zyd voting space 
can be created, and each hypothetical line will cast a vote at 
the position (z, y,  d )  in the voting space. Since n + 1 collinear 
points can form O ( n 2 )  hypothetical lines, and they will vote 
to the same (z, y,  d ) ,  a peak will be formed in the zyd  space 
that indicates the consensus on the correct disparity value for 
the point (z, y). 

Since many pairs of points in the epipolar plane can form 
hypothetical lines and cast votes to the zyd voting space, the 
space is cluttered with false targets. Also, due to the errors in 
digitization, edge detection, and slope calculation, peaks are 
rarely distinct and sharp. A relaxation process is thus necessary 
following the voting. 

Experimental Result of Motion Stereo: The scene of a Ru- 
bik’s cube on a moving belt in our lab is used. The cube 
is propped up on one corner. A sequence of nine images 
are taken. Fig. 14 shows five of the nine images and their 
edge maps. Edges with similar orientations (A0 < 45”) are 
matched. The correct disparity range for the cube pixels is 
d E [5.3,6.9]’. Since the sensors and wires are not moving, 
they have d = 0. The initial search range for d in our program 
is from 0 to 11. 

Fig. 15 shows the voting and relaxation results after 0, 12 
and 90 iterations using the NSF f3(1.3). In each of the images 
(a), (b) and (c), 12 layers (a! = 0 . .  . 11, row major) of the z y d  

’ This refers to the disparity in two consecutive frames. Subpixel precision 
is obtained by dividing the multiple disparity value by ( n  - l), where n is 
the number of frames in the motion stereo. 

space are shown. Gray-level intensities are used to show the 
strength S. It can be seen from Fig. 15(a) that, initially, most 
candidates have intermediate to weak strengths, and many 
cube pixels show strength at more than one disparity layer. 
After 90 iterations (Fig. 15(c)), the cube pixels are shown to 
have correctly converged to one of the three disparity levels 
d = 5,6,7.  The sensors and wires settle down to disparity 0 
or 1. 

For a comparison, Fig. 16 shows the results from three 
exponential decay functions with T = 0.5,T = 1.3 and 
T = 3.0, respectively. It confirms that f 2 ( ,  3 )  generates a 
better result. Fig. 16(a) shows an oversuppressed zyd space, 
and 16(c) is noisy and ambiguous-again a symptom of 
oversupport. 

VII. CONCLUSION 

This paper advocates a unified cooperative stereo approach 
based on the disparity gradient. We argue that the disparity 
gradient subsumes various constraints for stereo matching and, 
thus, forms a solid basis for the unified algorithm. 

To seek for a better understanding of the intrinsic re- 
lationship between the NSF and the disparity gradient, a 
comprehensive analysis and evaluation of three families of 
NSF’s is conducted. It is shown that the exponential decay 
function with a moderate T value is well behaved in that it 
yields the least error, converges steadily, and produces cor- 
rectly located weak-winners. It is suggested that this function 
will help a two-pass algorithm in resolving the dilemma of 
surface continuity and discontinuitylocclusion. 

Experimental results from random-dot stereograms (RDS’s) 
containing both opaque and transparent surfaces are analyzed. 
Results from binocular stereo and motion stereo images from 
real-world scenes are also demonstrated. The accuracy of the 
unified cooperative stereo-matching algorithm compares well 
with the best-known previous results. 
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