
A NEW ENERGY FUNCTION FOR SEGMENTATION AND COMPRESSION

Michael King, Zinovi Tauber, and Ze-Nian Li

School of Computing Science, Simon Fraser University, Burnaby, BC V5A 1S6, CANADA

ABSTRACT

We propose a new DCT-based energy function EDCT for object-
oriented segmentation and compression. By minimizing EDCT

the best possible split of the image blocks can be found which
leads to better segmentation and compression. Consistent mo-
tion vectors can be obtained by using an extended 3D en-
ergy function, in the spatio-temporal domain, which mea-
sures block motion over multiple frames. Tests on images and
videos show promising results, where still image compression
achieves over 15% improvement over JPEG and video com-
pression achieves similar improvement over MPEG-2.

1. INTRODUCTION

Object-based video encoding methods take objects, ideally
real world objects, and encode them independently [1]. These
methods have the potential to improve the compression rate
and be more scalable. However, it is known that automatic
object-based coding is difficult due to the hardship of extract-
ing objects. Digital video encoding uses the Discrete Cosine
Transform (DCT)[2]. We propose a DCT-based energy func-
tion that groups pixels into regions of similar textures. These
regions facilitate a more efficient image and video compres-
sion than global methods.

Generally, blocks within a region move in similar direc-
tions in a video. This property can be used to achieve higher
compression due to increased accuracy in temporal predic-
tion. Since each region is encoded independently, object in
the scene are scalable; Details can be sacrificed from unim-
portant objects in the scene, such as the background, while
maintaining high visual quality for important objects, such as
the main actors in a movie. Furthermore, interactivity can be
extended to allow the viewer of the digital video to manipu-
late the appearance and movements of the video objects.

2. NEW ENERGY FUNCTION FOR SEGMENTATION

Unlike traditional image encoding which consists only of square
blocks of 8 × 8 or 16 × 16, object-oriented image encoding
allows arbitrarily shaped blocks (ASBs). The central assump-
tion for DCT-based image compression is that natural objects
contain mostly low frequencies, and so the high frequencies
can be efficiently encoded using 0-runs [3]. Square blocks
can be split into ASBs of similar texture patterns by mini-
mizing combined affinity for high frequencies. These ASBs
should also correspond to separate objects. Once the ASBs
are created, a pyramidal linking scheme can be used to grow
the regions.

A DCT-based energy function is created and defined as:

EDCT =
w∑

i=1

h∑

j=1

e[(ij
wh)2−1]|DCT (i − 1, j − 1)|, (1)

where EDCT is the energy of the block, w and h are the width
and height of the block, and DCT (i, j) is the (i, j)th DCT
component when i + j > 2, and 0 otherwise.

The energy function maps the texture from a multiple-
dimensional frequency space into a one-dimensional energy
space. It assigns exponentially higher costs to higher DCT
frequencies, since we expect the highest frequencies to be
caused by a mixture of objects. The DC value is treated sep-
arately since it is color dependant and does not influence the
texture. The energy function is used to determine the likeli-
hood of pixels in a block belonging to a single region, hence
the average color does not influence it and is not considered
here.

A highly textured block of pixels produces a high energy
value from Eq. 1, due to having many high frequency values;
Conversely, a low textured block of pixels, like a block of
homogeneously colored pixels, produces very few high fre-
quency DCT values and results in a low energy value. Even
an ordered artificial texture block would produce a lower en-
ergy value than an unordered one, by generating fewer high
frequencies. Thus, we find the energy function to be broad
enough to support most man-made, synthetic, and natural scenes.

An important feature of DCT to note is that if the group of
pixels being compared is comprised of two distinct textures, it
will produce many high frequency values. For example, if the
pixels being processed are composed of a black group of pix-
els and a white group of pixels, the edge between the regions
will need many cosine waves to represent it, resulting in nu-
merous high frequency DCT components. Similarly, the en-
ergy value of an edge between any two distinct textures is ex-
pected to be significantly higher than either texture processed
separately as shown in Fig. 1. An algorithm to find the divi-
sion between textures in an image can take advantage of this
property by comparing energy values.

Finding the best block subdivision is a minimization prob-
lem over EDCT . Stated informally, we are looking for any
number of ASBs for which the combined EDCT measure is
the lowest over all configurations of the block splits. The min-
imization can be stated as:

EDCTtotal(b) = min(
∑

r∈R EDCT (r)),
for all possible sets of ASBs R ∈ RT , (2)

where R is a partition of a square block into ASBs and RT is
the set of all possible partitions of a square block. This min-
imization is computationally expensive, so we apply a series
of approximations to obtain near optimal initial conditions.

(a) Two texture regions (b) Feature energy space

Fig. 1. A 256× 256 pixel image. The gray level indicates the
relative magnitude of energy in (b). Energy is low in homo-
geneous texture regions, while high between them.

Image segmentation using the energy function can be bro-
ken into two major steps: the first step is to create ASBs by
finding region borders; the second step is to join these ASBs
into regions. The boundaries of the ASBs are calculated using
the energy function (Eq. 1) which characterizes the complex-
ity of the texture. The energy function with a block size of
8 × 8 is calculated for every pixel in the image. The energy
value is then assigned to the center pixel and a DCT energy
map is created. Edges are detected in the energy map which
vote for block division boundaries. Once the divisions are
found and refined, the ASBs generated are used as the build-
ing blocks for a region growing algorithm [4].

3. EXTENSION TO 3D ENERGY FUNCTION

3.1. 3D DCT Motion Energy

Many motions in videos can be approximated by finding a
linear motion which best fits temporally nearby frames. As
with images, it is more desirable to work in the frequency
domain than the spatio-temporal. Slow and small changes
in objects are more likely than large ones. Instead of using
mean squared error (MSE) as the measure for the accuracy,
a novel motion detection based on 3D DCT is used, using an
extension of Eq. 1,

E3DCT (MV) =
w∑

i=1

h∑

j=1

t∑

k=1

e[i2j2k2

w2h2t2
−1] ×

DCT (i + MVx(k) − 1, j + MVy(k) − 1, k), (3)

where w is the width, h is the height, t is the number of
frames, MV is the single motion vector from frame 1 to t,
MVx(k) and MVy(k) is the motion vector at frame k in the
horizontal and vertical direction, respectively, and DCT (i, j, k)
is the 3D DCT.

A low E3DCT energy indicates that either the motion vec-
tor predicted is slightly inaccurate or pixel values changed
gradually due to shading. Slow changes, like changing illu-
mination, would have very little effect on the 3D energy if
it was approximately equal across the block over time. This
energy function is well suited for gradient descent search by
virtue of phase shifts being encoded efficiently by DCT. DCT
coefficients in one dimension of shifting texture have a low
frequency pattern in the second dimension.

Motion estimation has two major phases. First, the opti-
mal motion for each individual block must be estimated, and

second the optimal motion for each region must be recovered
from the block motions estimated.

3.2. Motion Detection

We used Diamond Search to find a motion vector for each
block. We set t = 4 so the motion search has 1/4 pel preci-
sion. The energy in Eq. 3 is calculated for each motion vector
for the Diamond Search. In many cases the assumption holds
true that the energy decreases as it reaches the global mini-
mum.

Naturally, when objects move in a video all their parts
move in similar directions. To find the best motion vector for
a block in a region, all blocks in the region must be consid-
ered. This can be formalized as finding the MAP hypothesis
in a Bayesian Framework with Gibbs distribution which is
equivalent to minimizing the following,

Emotion(M) = Edata(M) + Esmooth(M), (4)

where Edata is the data term given by the energy of motion
vectors M and the blocks, and Esmooth is the smoothness
prior given by the discrepancy between neighboring motion
vectors.

Edata(M) =
∑

b∈B

E3DCT (M(b)), (5)

where B is the set of all ASBs in the region, and

Esmooth(M) =
∑

a∈B,b∈N (a)

V (M(a), M(b)), (6)

where V (Ma, Mb) is the weighted difference of the MVs of
blocks, and N is a neighborhood relation.

We use the Graph Cuts algorithm [5] to estimate the best
motion set for all the blocks in the region.

4. OBJECT-ORIENTED IMAGE ENCODING

The technique we use here essentially follows the digital im-
age compression standard JPEG. The bit stream encoded is
made up of information grouped by each region in the image.
Each region has two components: the shape of the region, and
the texture data of each block in the region. The shape is en-
coded into Binary Alpha Blocks (BABs) [7], while the texture
is encoded using DCT. An overview of the steps involved in
image encoding is shown in Fig. 2.

Region
Information

Image Divide
blocks

Partition
blocks

Encode shape
using IQTSC

Extract DC

SA-DCT

Quantize RLE

Bit stream

Entropy
encoding

Predicitve
coding

For each
region

Fig. 2. Overview of the image encoding process.

All blocks are encoded using mean corrected SA-DCT
[6]. Segmenting blocks into homogeneous textures and grow-
ing regions has the advantage of an increased compression
rate. Blocks in a region would have similar DCs, thereby de-
creasing DC prediction errors to near 0. Additionally, block
sizes can increase and represent the same texture without adding
coefficients, reducing redundancy. Lastly, accurate block di-
visions allow multiple blocks encoded with SA-DCT to have
higher compression than a single DCT encoded block.

For Shape Coding, we use Improved Quadtree-based Shape
Coding (IQTSC) [7]. In IQTSC each node needs only one bit
to represent its state. If the block size is greater than one
pixel, it is encoded as either homogeneous or heterogeneous.
If, however, the block consists of one pixel, then it is encoded
as either opaque or transparent. An improvement was added
to make the method lossless by adding a special bit code for
the case that the predictive coding is incorrect.

The image encoding algorithm is computationally more
expensive than JPEG, but scales well with size. It’s com-
putational complexity in relation to the area of an image is
equivalent to other standard compression methods, which is
O(n).

5. OBJECT-ORIENTED VIDEO ENCODING

As in standard object compression methods, two types of frames
must be encoded, I-frames and P-frames. The encoding of I-
frames essentially follows the image encoding described in
the previous section.

The bit stream encoding a P-frame is separated into re-
gions just like an I-frame. For each existing region, the mo-
tion, shape, and error need to be encoded. For each new re-
gion, the information needed is the same as for the I-frame.

The motion is generated using a multi-resolution Graph
Cuts method to increase the search area while using as few
labels as possible. The image resolution is reduced by a factor
of 4, and Graph Cuts is performed on a 9 × 9 search area,
resulting in an effective 33 × 33 search area. Once the best
label is found, Graph Cuts is applied in the 4× 4 area around
the best label in the full resolution image.

The motion vectors, except for the first one, are differen-
tially predicted. They are predicted from their top left neigh-
bors. Only pixels where an object expands or contracts need
shape coding. The shape is encoded using IQTSC. The error
of the frame is encoded as a regular image.

The average running time of the most computationally ex-
pensive operation, Graph Cuts, has been shown to be linear
[5]. Therefore, the typical computational complexity of this
encoding is equivalent to other standard video encoding meth-
ods which are O(n) in the size of the area of the video.

6. EXPERIMENTAL RESULTS

One of the test images Lena (512 × 512) is shown in Fig. 3a.
Segmentation of this image is challenging in many respects.
The feathers in the hat and the hair have many edges and vary-
ing colors. The skin, hat and parts of the background have
similar colors. There is also a strong directional light causing
widely varying skin color, noticeably on the shoulder.

The energy map is shown in Fig. 3b in which each EDCT
is calculated for a block centered in the image. Gray scale is

(a) Original Lena Image
(b) Feature (energy) extrac-
tion using an 8 × 8 window

(c) ASB division (d) Regions

Fig. 3. Lena Image and segmentation results.

used to indicate the level of energy. Afterwards, good parti-
tion of ASBs and segmentation of regions are obtained (Fig.
3c and 3d).

Our object-oriented image coding was tested on other im-
ages, and in general it achieved over 15% improvement over
JPEG. The compression results are shown in Table 1.

Table 1. Comparative image compression results in bits

Image Name Bits for shape Segmented Total JPEG
Lena 19701 608017 739408
Parrot 15671 639365 742560

Baboon 20190 856022 1169846
Test Image 1 50 5337 8224
Test Image 2 602 3568 14543

The following presents analysis for the test video shown
in Fig. 4. The MV energy for 3 blocks is shown in Fig. 5.
Although the MVs might not always consistently decrease
towards their global minimums, it is clear that even in this
large motion, they are generally decreasing until they reach
the minimum energy as shown in Fig. 6. Once the search is
within a few pixels of the true motion, the MVs indeed de-
scent faster towards the minimum energy. Fig. 7 shows the
improvement over Diamond Search.

Fig. 4. Test videos of a fast moving toy car and a coast-guard
ship.

Value of each MV No motion

Minimum energy

Fig. 5. 3D motion cost for three blocks. The higher the en-
ergy, the brighter the pixel on the 3D motion plane.

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

Motion search step

E
ne

rg
y

R
at

io

Fig. 6. This graph shows how the motion search finds the
minimum energy in Fig. 5. Each jump in the Diamond Search
lowers the Energy Ratio until it reaches the minimum energy.
The Energy Ratio is defined as the current energy minus the
minimum energy in the search window, then divided by the
maximum energy of the search window.

Fig. 8 shows MV matching results from other test video
clips. Table 2 shows some comparative results. To keep qual-
ity the same between encoding methods, a similar MSE was
used while encoding using the object-oriented video compres-
sion and MPEG methods. Here, Diamond Search was used
for MPEG-2 as well.

7. CONCLUSION

A novel DCT-based energy function is proposed for object-
oriented segmentation and compression. The results are en-
couraging. Although true object segmentation is not achieved,
the gap between image segmentation and object segmentation
is being bridged. Improved compression is achieved by seg-
mentation from compression principles.

Increased image compression may be achieved by increas-
ing block sizes within a region, as well as by predicting block
textures from neighbors within a region and encoding the er-
ror in a similar manner to motion compensation in standard
video compression. Improvements to the video compression
may also be achieved by integrating temporal information in
the segmentation.

Diamond Search on 3D energy Movement optimized for a Region

MPEG-2 (MSE Diamond search)

Fig. 7. The direction for each undivided block is shown with
a red arrow. The best direction is found using diamond search
which is unreliable in terms of true motion. When the energy
is minimized for a region, good motion vectors are found.

Table 2. Comparative video compression results in bits

Video Name PSNR Segmented Mbps MPEG-2 Mbps Frames
Toy Car 44.9 0.324 0.389 142

Coast Guard 42.5 12.9 15 138
Synthetic video 53.3 0.004 0.033 150

Fig. 8. More test video clips and the MVs between two
frames. The red outline represents a MPEG-2 (MSE Diamond
Search) tracked block, and the blue outline represents a better
tracked ASB using the 3D energy function.

8. REFERENCES

[1] Fernando Pereira and Ebrahimi Touradj. The MPEG-4 Book.
Prentice Hall, New Jersey, 2003.

[2] Al Bovik. Handbook of Image & Video Processing. Academic
Press, San Diego, 2000.

[3] James F. Blinn. What’s the deal with DCT? IEEE Computer
Graphics and Applications, 13(4):78, 1993.

[4] Ze-Nian Li, Zinovi Tauber, and Mark S. Drew. Locale-based ob-
ject search under illumination change using chromaticity voting
and elastic correlation. In Int. Conf. on Multimedia and Expo
(ICME2000), volume 2, pp. 661–664, 2000.

[5] Yuri Boykov, Olga Veksler, and Ramin Zabih. Fast approximate
energy minimization via graph cuts. IEEE Trans. on Pattern
Analysis and Machine Intelligence, 23(11):1222–1239, 2001.

[6] Paul Kauff and Klaas Schuur. Shape-adaptive DCT with block-
based DC separation and DC correction. IEEE Transactions on
Circuits and Systems for Video Technology, 8(3):237–242, 1998.

[7] Mei-Juan Chen, et al. Multi-resolution shape coding algorithm
for MPEG-4. Int. Conf. on Consum. Electr., pp. 126–127, 2000.

