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We introduce MMTrack (max-margin tracker), a single-target tracker that linearly combines constant and
adaptive appearance features. We frame offline single-camera tracking as a structured output prediction
task where the goal is to find a sequence of locations of the target given a video. Following recent
advances in machine learning, we discriminatively learn tracker parameters by first generating suitable
bad trajectories and then employing a margin criterion to learn how to distinguish among ground truth
trajectories and all other possibilities. Our framework for tracking is general, and can be used with a vari-
ety of features. We demonstrate a system combining a variety of appearance features and a motion
model, with the parameters of these features learned jointly in a coherent learning framework. Further,
taking advantage of a reliable human detector, we present a natural way of extending our tracker to a
robust detection and tracking system. We apply our framework to pedestrian tracking and experimen-
tally demonstrate the effectiveness of our method on two real-world data sets, achieving results compa-
rable to state-of-the-art tracking systems.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

Superior tracking performance can be obtained by fusing differ-
ent cues together. The main intuition behind this observation is
that better performance is achieved because the combination of
different cues help the whole tracking system overcome individual
failure mode of each single cue [5,9,11,18,25,26,30,31]. When com-
bining a set of cues, a principled framework for choosing the
parameters for the combination is desirable. In this paper, we pres-
ent MMTrack (max-margin tracker), a single-target tracker that
uses the max-margin learning framework [28] to combine cues.

As an example of a tracking system with multiple cues, consider
the scenario depicted in Fig. 1. The leftmost image shows one input
frame with the target object indicated by a red1 bounding box, and
three feature maps obtained from different cues are shown next to
the image. The cues are used to locate the target object, and they
can be based on the target’s colour histogram, object class, or mo-
tion pattern, among other information. These cues are used to
build feature maps, where a pixel in a feature map indicates how
likely the target is to be located at that pixel location. As can be
ll rights reserved.
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seen in Fig. 1, pixels corresponding to the target location have rel-
atively high values.

Given this information, our aim is to formulate a principled
framework to combine the cues by determining the relative impor-
tance of each cue. Note that we do not restrict our cues to a certain
feature class – we only require the cues to produce a mapping from
pixel locations to numeric values indicating the possibility of the
target being located at some pixel location. Indeed, the cues can
be any combination of appearance features, motion features, or
even results of other simple trackers.

Combining the cues in this case is complicated by the fact that
the cues can be a combination of different and unrelated features.
For example, it is not easy to relate a cue built from the target’s col-
our histogram to another built from the target’s dynamics, as they
are based on two seemingly independent models, namely the
appearance model and the motion model. Further, in determining
the relative contributions of the cues, ideally we should consider
all the cues jointly rather than independently, as one cue’s contri-
bution should be considered with regard to all other cues.

One approach for combining different sources of information is
to examine each cue separately, and weigh each cue according to a
reliability score that measures how well the cue performs accord-
ing to some predefined criteria. The reliability measure can be
computed online, for example based on the distance between the
cue’s current feature map response to its average response [25],
or it can be trained offline by computing an error measurement
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Fig. 1. A tracking scenario with multiple cues. (a) Input frame, (b) person detector, (c) colour template, and (d) adaptive colour model cues for tracking. We learn the
parameters to a model that combines multiple cues for tracking.

B.Y.S. Khanloo et al. / Computer Vision and Image Understanding 116 (2012) 676–689 677
between the cue’s trajectory result to some pre-labelled ground
truth [26]. Combining the reliability measures of different cues in
this setting is problematic because each measure is computed
independently and thus they are not directly comparable across
different cues.

The cues can be fused within a probabilistic framework
[30,11,18,12,17]. The simplest probabilistic method for fusing the
cues assumes conditional independence between each cue’s obser-
vation model, thus allowing the full joint observation model to be
decomposed as a product of each cue’s observation model [12,17].
More sophisticated methods model the dependencies between
appearance cues by decomposing the graphical models [30,11],
or by assuming sequential dependency between the appearance
features [18]. Inference in these models is usually approximated
with iterative sampling procedures. In contrast with this line of
work, we use a discriminative margin-based learning criterion that
aims for low tracker error.

However, developing vision algorithms to track objects such as
pedestrians in realistic scenarios turns out to be a non-trivial task.
A robust pedestrian tracking algorithm should be able to handle
changes in pedestrians’ appearance caused by human articulation
or change in illumination. This suggests that the model should be
updated to reflect changes in the pedestrian’s pose. On the other
hand, by continually adapting, there is a possibility that a small er-
ror in the pedestrian’s hypothesized location might cause incorrect
information to be absorbed by the appearance model.

Over time, the errors may accumulate, and the object model
may not accurately reflect the target pedestrian’s appearance
anymore, causing the tracker to drift to another object. Further,
because there can also be multiple pedestrians in the view at a
time, the object tracking algorithm should also be able to differ-
entiate between different instances of the pedestrians. This task
is especially difficult if the pedestrians are similar in appearance.
The pedestrians may also interact, introducing issues such as par-
tial or full occlusion. Occlusions can also occur due to interaction
between the target and background objects, for example when a
tracked pedestrian walks behind a traffic sign. Additionally, the
tracker should also be able to handle changes in scale caused
by the pedestrian’s relative distance to the camera. A fully
automatic pedestrian tracking algorithm should also be able to
automatically initialize a new track when a pedestrian enters
the scene, and to terminate an existing track when a pedestrian
exits the scene.

In general, tracking algorithms predict a target’s location by
modeling two of its characteristics: its appearance and its motion.
The target’s appearance is represented by an appearance model,
which usually describes the target’s shape or its distinctive fea-
tures such as colour or texture. Some common representation of
a target’s shape are its silhouette [32] or simple shapes such as
ellipses [7,4] or rectangles [6,2]. Appearance features that can be
used to describe a target include colour histograms [7,4], texture
[24,2], and edges [22].
Whereas the appearance model describes what a target looks
like, the motion model, on the other hand, encodes prior knowl-
edge or assumptions about the target’s movement patterns. A mo-
tion model serves to restrict the range of possible target’s
movement, and is useful because a target’s positional state usually
does not change abruptly between consecutive frames. An example
of a motion model is the Brownian motion model adopted by Ross
et al. [23], which models the targets dynamics as Gaussians cen-
tered on its previous state. Babenko et al. [2] use a simpler motion
model that assumes the target to be equally likely to appear at any
location within a certain radius from its previous location. Another
example of a motion model is the constant heading model used in
[1] that assumes the target does not change its direction between a
pair of consecutive frames.

Most object tracking algorithms treat appearance and motion
models independently. The two models are usually integrated by
using the motion model to guide the search for the location that
provides the best match to the appearance model [2,6,7,4].

Switching methods can also be used to select the best cues out
of a fixed pool of features at every frame. A common formulation of
this approach estimates the foreground–background discriminabil-
ity of the cues, and selects the most discriminative cues either by
quantifying their discriminative power with a Fisher-like criterion
[6], or through an online boosting mechanism [2]. It should be
noted that the feature pools in both works are composed of a single
feature class, namely linear combination of RGB channels [6] and
Haar-like features [2].

In this paper we describe a method for building an automated
detection and tracking system from multiple cues. The method
uses max-margin learning for structured output to learn weights
that combine features for tracking. This learning can be used with
a variety of features, and unlike previous work jointly learns
appearance and motion models in a unified framework. An initial
version of this work described the MMTrack approach [15]. In this
paper we include additional experiments and a fully automatic hu-
man detection and tracking system built on top of MMTrack.

The rest of this paper is organized as follows. In Section 2, we
explain our choice of features that provide us with cues for track-
ing. In Section 3, we introduce our tracking framework called max-
margin track (MMTrack) in the context of pedestrian tracking. Sec-
tion 4 describes the details of our margin-based parameter estima-
tion. In Section 5, we show how MMTrack can be extended to build
an automatic detection and tracking system. Section 6 presents our
qualitative and quantitative experimental results and Section 7
concludes the paper and discusses further work.
2. Features for tracking

The main focus of this paper is on a principled combination of
multiple cues for offline single target tracking. In order to ground
the discussion of the learning framework (Section 3) we first present
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the set of cues we use in our system. However, the framework is
general, and can be used with a variety of cues. For our system
we choose a representative set of cues that could be used in an off-
line tracker. These cues include an object detector (HOG pedestrian
detector), an offline colour model (clustered colour histograms),
and online appearance models (templates). In this section we
motivate and describe this particular choice of features. We note
that this combination is effective in practice, with experiments
demonstrating that it can obtain high quality tracks (Section 6).

2.1. Object detector: HOG score

The first cue we consider contains knowledge of the object of
interest, in this case pedestrians. We use information from a reli-
able detector that can assist in localizing a pedestrian that is being
tracked. In particular, we use the Histogram of Oriented Gradients
(HOG) [8] trained for human detection as we are interested in
pedestrians in this work.

We expect the HOG feature to be of help to the system in dis-
criminating between pedestrians and non-pedestrian objects (e.g.
car, tree, etc.). A generic object detector such as this one can poten-
tially reduce tracker drift, focusing the tracker on the known class
of object. However, the generic detector is not tuned to a particular
person, and should be used in concert with a variety of other per-
son-specific cues. In our framework, we will learn how much to
rely on each individual cue, in this case deciding on the relative
importance of a generic object detector versus other tracking cues.

We use the output of a linear SVM classifier that operates on
HOG [8] as a feature to help our system differentiate between
pedestrians and other objects. The detection is performed on a pyr-
amid built on the input image with varying scale. For each pixel,
we take the maximum SVM score over all scales resulting in a score
map where the peaks vote for presence of pedestrians. We then
normalize these scores so they fall within the range [0,1] and use
the final map as our feature. Fig. 2 illustrates an input image along
with the corresponding normalized HOG score map.

2.2. Offline colour model: clustered histograms

Although HOG scores can help the system differentiate
between pedestrians and other objects, they are not informative
in distinguishing among different pedestrians, as many pedestri-
ans will potentially have high HOG scores. Thus, features that
convey identity, i.e. features that try to uniquely respresent the
appearance of a pedestrian, are needed. We incorporate such fea-
tures using a static colour histogram for each person obtained
from clustering. The main idea here is that by clustering the his-
tograms obtained from bounding boxes around the pedestrians
throughout the video, we can gain a good insight into the average
appearance statistics of each of the people. Thus, we will be able
Fig. 2. A frame and its corresponding HOG feature map. HOG pedestrian det
to model the changes instead of trying to learn the appearance
and so we would be able to obtain a simple yet effective appear-
ance model. Note that these appearance features in our tracker
contribute towards gaining resistance against drift that often oc-
curs in tracking systems which only consider dynamically-updated
appearance models.

This feature is motivated by the work of Ramanan et al. [21],
who learn appearance models of articulated objects (animals, peo-
ple) based on detection, and then use them for tracking. Searching
for targets and learning their appearance as done in [21] is not
practical in our problem because we neither can assume a constant
appearance nor can we get a reliable segmentation or pose like in
[27,19] as pedestrians are far away from the camera. Instead, we
build rough descriptors and try to discriminate the object of inter-
est from surroundings. We use trackers built on top of hierarchical
colour histograms that describe how the histograms of different
parts of the bounding box enclosing the pedestrian deviate from
their mean over time.

The generation of the colour histogram distance features is as
follows. We start by running a HOG person detector over the entire
video, and uniformly sampling a set of detections. Based on the im-
age evidence inside the bounding box obtained from a HOG detec-
tion, nine histograms are computed over different sections of a
pedestrian’s body as depicted in the second column of Fig. 3. Each
histogram consists of 30 bins with 10 bins for each of the R, G and B
channels. These nine histograms are then concatenated together to
give one histogram characterizing the person’s appearance. Next,
we cluster the sampled instances of histograms of all the people
in the video using the mean-shift clustering algorithm. We then
represent the target pedestrian using the mean of the cluster to
which it belongs. This is done using a simple search that measures
the distance between the initial appearance and cluster centers
since we assume that the initial location of the pedestrian is given.
Finally, we compute one histogram distance map for each of the
nine body sections by computing, at each pixel location, the v2-dis-
tance between the histogram built using the image observation
within the corresponding section of the bounding box centered
at that pixel and the mean of the cluster to which the target be-
longs. The resulting maps have low values in areas with similar
colour to the target person’s and high values elsewhere. We effi-
ciently compute the histogram distance maps using the integral
histogram technique [20].

In summary, these colour histogram distance features enforce
the similarity of a tracked person to a global fixed, offline colour
model. They measure the similarity of a target location to a colour
model obtained by mapping an initial pedestrian location to a clus-
ter. These features can be used to combat drift, and weights on
these features will be learned in our algorithm. However, these fea-
tures do not adapt to changes in target appearance, which will be
handled by the final feature set.
ection responses are used as a feature in the combined tracking model.



Fig. 3. Colour histogram distance features generation: (a) Nine histograms are computed over sections of the detected person’s bounding box and the resulting histograms
are concatenated to give a hierarchical description. (b) All sampled histograms are clustered. (c) Histogram distance maps are then generated for every frame by sliding a
window and computing the v2-distance between the histogram of each of the sections of the window to the cluster mean to which the target belongs.
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2.3. Online appearance model: templates

We use an online feature that models the target’s appearance.
This appearance template feature will give clues about a particular
pedestrian at a finer level than the histogram distance features. We
use two templates: a template obtained from the image patch in-
side the bounding box surrounding the given location of the target
in the initial frame of the trajectory, and another template obtained
from the previous frame of the trajectory.

The initial template implements a constant appearance model
which is used to provide a fixed reference to the person’s appear-
ance, similar to the cluster center of the colour histograms. How-
ever, the initial appearance template describes the person’s
appearance at a finer level of detail than the histogram distance
features. This template acts as a memory template, which is stable
by definition and ensures that the tracker does not completely for-
get about the appearance of the target when it first showed up.

On the other hand, the previous frame template incorporates
the idea of adaptive appearance modeling because it mimics the
appearance adaptation mechanism by encoding the expected
amount of frame-to-frame change of the tamplate during the infer-
ence, which helps the system cope with some degree of object
appearance changes over time.

Distance maps are computed for each template by sliding a
window over the current frame and computing the sum of absolute
pixel value differences in all three colour channels of each pixel
belonging to that template, which is efficiently performed using
a modified integral image technique [29]. These maps are normal-
ized so the values fall in the range [0,1].

3. MMTrack: learning to combine cues for single target tracking

In this section, we explain the details of our tracking algorithm
in the context of pedestrian tracking. Our tracker is comprised of
three main components: constant appearance model, adaptive
appearance model, and motion model. The constant appearance
model is used to memorize the appearance of the target pedestrian
in two different detail levels whereas the adaptive model is used to
model the change in appearance. Finally, the motion model favors
specific movement patterns from one frame to another. These
components will be used to describe the object of interest, and
the margin-based learning described in Section 4 will be used to
combine them.

The rest of this section is organized as follows. Section 3.1 pro-
vides details of our model for describing trajectories. Section 3.2
outlines our trajectory representation and Section 3.3 explains
our inference scheme for tracking.

3.1. Trajectory modeling

As noted earlier, we are interested in offline tracking where the
goal is to obtain the whole trajectory in the entire sequence at
once. This is in contrast to online tracking algorithms that greedily
pick the next best location of the object at each frame. Thus, the
tracking problem in this setting is formulated as one of finding
the optimal trajectory y = (y(1), . . . ,y(T)) with the image sequence
x = (x(1), . . . ,x(T)) given. This general setting, illustrated graphically
in Fig. 4a, requires us to build a template s to model the appear-
ance of the object while trying to find the best trajectory. We build
a model for only a single target, and do not explicitly consider joint
tracking of multiple targets in our model. Further, if there are mul-
tiple instances of the object of interest we identify and track them
one by one. For now, we assume that the initial location of the tar-
get is provided in the first frame of the sequence. This assumption
will be relaxed in Section 5, when we describe a fully automatic
detection and tracking method.

We further assume that the appearance of the object in the ini-
tial frame is representative and reliable. Also, we further assume
that an upper bound for the length T of the track is given. More-
over, in general s is a high dimensional continuous variable and
learning and inference for this loopy graph is intractable.

Instead of reasoning over the entire space of appearance models
for s, we use the clustering and discretization procedure for colour
models described in Section 2.2. The procedure is as follows: we
use the detector to find D detections (all instances) of objects in
the video segment of interest and group them into K clusters. Note
that variable s is now discretized to K distinct vectors, i.e. cluster
centers each of which ideally represents an individual object. Given
that the initial location is reliable, we find for each object the clus-
ter ŝ 2 s0 ¼ fs1; . . . ; sKgwhich is the closest to the appearance tem-
plate built in the first frame for that object. With the average
appearance template ŝ given, we end up with a tree-structured
model for which learning and inference is practical. These simple
steps, when done in sequence, aim at approximating the original
problem. The steps are shown in Fig. 4b–d. Note that step (b) is
performed once whereas steps (c) and (d) are repeated indepen-
dently for each object.

Our scoring function, which measures the goodness of trajecto-
ries, is a mapping in the form of Fðx; y; wÞ : X T � YT !R that maps
a sequence of frames x = (x(1), . . . ,x(T)) and a trajectory
y = (y(1), . . . ,y(T)) to a real number. Each location y(t) is a discrete
variable which is to be assigned to one of the image pixels and w
is a set of weights that parameterize the features extracted from
the frames. The scoring function is decomposed into two contribu-
tions: transition model and observation model. The transition model
in our problem is summarized by the motion model which de-
scribes the spatial relationship between the locations of the target
in two consecutive frames. The observation model is a measure of
compatibility between a location and the observed features at that
pixel location. We define the score of a trajectory as

Fðx; y; w; sÞ ¼
XT

t¼2

FT ðyðt�1Þ; yðtÞ; wT Þ

þ
XT

t¼2

FOðxð1Þ; xðt�1Þ;xðtÞ; yð1Þ; yðt�1Þ; yðtÞ; wO; sÞ; ð1Þ



Fig. 4. (a) Generic tracking approach where we build an appearance template s for the target object while tracking. (b–d) Our method: clustering and a simple search
followed by inference in a tree-structured CRF with shared parameters where the initial position, colour (appearance) template and all the inputs given a priori. The plate
notation refers to replicates of the same structure. The rectangles stand for the factors of the model. We are showing only three frames of our temporal model for simplicity of
presentation.
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where FT ð�Þ and FOð�Þ are linear models describing transition and
observation contributions respectively. These potential functions
are parameterized by wT and wO whose concatenation we denote
by w.

3.1.1. Observation model
The observation model includes several features whose

weighted combination votes for the presence of the target pedes-
trian. These features include HOG score that helps with discrimi-
nating between humans and other objects, and colour histogram
distance and appearance templates that describe how the pedes-
trian looks like and how its appearance varies over time. Thus,
the observation model at time t decomposes into the following
contributions:

FOð�; wO; sÞ ¼ wT
HUHðxðtÞ; yðtÞÞ þwT

CUCðxðtÞ; yðtÞ; sÞ
þwT

PUPðxðt�1Þ;xðtÞ; yðt�1Þ; yðtÞÞ
þwT

FUF ðxð1Þ;xðtÞ; yð1Þ; yðtÞÞ; ð2Þ

where we have defined

UCðxðtÞ; yðtÞ; sÞ ¼ dv2 ðWCðxðtÞ; yðtÞÞ; sÞ; ð3Þ

and UHð�Þ; UCð�Þ; UPð�Þ and UF ð�Þ denote the joint feature represen-
tation functions that return HOG score, v2 distance between differ-
ent parts of the colour histogram WC and their corresponding part of
mean appearance s, and the difference between appearance templates
of the previous frame and the first frame to the current frame
respectively. We concatenate all the observation weights to give
wO ¼ ½wC; wH; wF ; wP�T . Intuitively, wO weighs the observation fea-
tures i.e. the trackers at each pixel to give a map that ideally peaks
at the body center of the target pedestrian.
3.1.2. Transition model
Similar to the observation model, we define the transition mod-

el as

FT ðyðt�1Þ; yðtÞ; wT Þ ¼ wT
TUT ðyðt�1Þ; yðtÞÞ; ð4Þ

where FT ð�Þ is a symmetric motion model. The motion model dis-
cretizes the distance travelled between two consecutive frames into
a number of bins that represent concentric circles centered at the
previous location. So, we have

UT ðyðt�1Þ; yðtÞÞ ¼ binðkyðt�1Þ � yðtÞjj2Þ; ð5Þ
binkðd0Þ ¼ 1½bd0c¼k�; k ¼ 0; . . . ; bdmaxc; ð6Þ

in which we bin the Euclidean distance between the 2d image loca-
tions of y and y0; 1½�� is the indicator function and bin (�) acts as a
selection operator that generates a vector of length dmax + 1 with
all the elements set to 0 except one being 1. The upper bound dmax

on the travelled distance from one frame to the next one is esti-
mated from the data. Note that the symmetric motion model results
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in wT being a disk-like, constant position motion prior which is
learned jointly with all other parameters.

3.2. Trajectory representation

As noted earlier, we require a combined feature representation
in order to build our scoring function. We encode a trajectory-vi-
deo pair (x,y) using a function U(�), whose components we intro-
duced previously, that compactly represents their statistics.
Recall that this representation is decomposed in the same way that
the model parameter vector does, namely U ¼ ½UH; UC; UP ; UF ; UT �.

This final combination of all cues, aggregated over all frames of
a trajectory, form the representation U(�) for a trajectory. The
weights w needed to score a trajectory will be set using the learn-
ing procedure. We next describe how to perform inference in this
model – which is necessary to apply it to tracking as well as the
aforementioned learning.

3.3. Tracking as inference

In our setting, tracking amounts to performing inference in our
conditional temporal model given the video and parameters w, i.e.
finding the highest scoring trajectory. Note that if we were to solve
the general problem shown in Fig. 4a, we would need to find

ŷ ¼ argmax
y;s

F 0ðx; y; s; wÞ; ð7Þ

where F0(�) would be a scoring function that requires describing the
appearance of a particular object and finding the optimal trajectory
simultaneously. However, we do not do so. Instead, we perform
inference using the sub-models in Fig. 4c and d for each object:

ŝ ¼ argmin
s2s0

kWCðxð1Þ ;yð1ÞÞ � sk2
2; ð8Þ

ŷ ¼ argmax
y

Fðx; y; w; ŝÞ: ð9Þ

Obviously, exhaustive search for the optimal trajectory is not rea-
sonable. We efficiently solve this problem using a modified version
of the Viterbi algorithm which is given by the following dynamic
program

MðtÞ
ðlC Þ ¼ max

lN
Mðt�1Þ
ðlNÞ þ FT ðŷðt�1Þ ¼ lN ; ŷðtÞ ¼ lCÞ

� �

þ FOð�; ŷðtÞ ¼ lCÞ; t ¼ 2; . . . ; T; lN 2 NðlCÞ;
Mð1Þ
ðlinitÞ
¼ 0; 8l – linit; Mð1Þ

ðlÞ ¼ �1: ð10Þ

In fact, back to our CRF model depicted in Fig. 4a, we are inter-
ested in maximizing the conditional

pðyjx; w; sÞ / expðFðx; y; w; sÞÞ ð11Þ

namely finding the maximum of the log-posterior of the paths (i.e.
terminating pixels marginalized over time) given the parameters
with the prior for initial location y(1) set to 1 and all other pixels
set to 0. Note that we are using a binding prior that sets to zero
the posterior over trajectories that do not start from the initial loca-
tion. Each element MðtÞ

ðpÞ corresponds to a pixel and indicates the
score of the highest scoring trajectory that originates at the initial
location linit and terminates at pixel p at time t. A traceback from
the final most scoring location is done to recover the track. In our
notation, lC and lN refer to the current hypothesized location and
its neighboring location(s) respectively. We just search the neigh-
borhood NðlCÞ when trying to find the next possible location in-
stead of doing a full search. Note that this local search is valid
since it complies with the nature of the movements of humans as
a pedestrian is not expected to jump to a pixel which is far away
from the current location. Namely, we are finding an exact solution
in the space of ‘‘valid’’ trajectories.
As we will point out later, we need to run our tracker in the ori-
ginal resolution since all the trackers to which we will be compar-
ing our system are doing the same. However, performing inference
in high resolutions turns out to be computationally prohibitive
even with local search and integral histogram optimizations. Thus,
we resort to approximate inference. So, we perform beam search
and only consider the H top-scoring hypotheses and discard the
rest. This allows us to produce the tracking results in the original
resolution while keeping the inference feasible. Obviously, beam
search will return suboptimal results because it does not explore
the whole hypothesis space. However, experimental results show
that our approximate inference scheme works well in practice.

4. Margin criterion for learning

The learning task is to find a set of parameters that can discrim-
inate between a compatible video-trajectory pair and all other tra-
jectories. Learning the model parameters in this problem setting is
challenging since we do not have negative examples. In other words,
we do not know how a ‘‘bad’’ trajectory looks like and more impor-
tantly, how it differs from a ‘‘good’’ one as this information is not
included in the dataset. Moreover, as considering all possible
‘‘bad’’ trajectories is intractable – the number of these grows expo-
nentially with the length of a track.

However, recent advances in structured output prediction [28]
provide a principled method for choosing parameters in this set-
ting. We can find parameters w that maximize the score of N given
ground truth tracks while pushing down the score of potential run-
ner-up negative examples, modulated by a measure of how ‘‘bad’’
the negative examples are:

min
w;n

1
2
kwk2

2 þ
C
N

XN

i¼1

ni;

s:t: 8i ¼ 1; . . . ;N; ni P 0;

ð12Þ

Fðxi; yiÞ � Fðxi; yÞP Dðyi; yÞ � ni 8y 2 Y: ð13Þ

The constant C > 0 specifies the relative importance of margin max-
imization and error minimization which is determined by cross val-
idation. Note that we are considering the margin rescaling
formulation [28], i.e. requiring the score of ground truth yi to be
at least as far away from the score of a possibly incorrect trajectory
y as the loss D(yi,y) incurred when predicting y. The averaging is
performed to make examples with different lengths comparable
since in an unnormalized representation, the location of joint repre-
sentations of both positive and negative examples with respect to
the hyperplane(s) and hence the shape and location of the feasible
region would also depend upon the length of the sequence.

A common loss function would measure the total squared
Euclidean distance between corresponding locations in two
trajectories:

Dðyi; yÞ ¼
XT

t¼1

yðtÞi � yðtÞ
��� ���2

2
: ð14Þ

In tracking, a target is often considered to be ‘‘lost’’ if the tracker is
off by more than a predefined number of pixels q. So, we also define
a bounded loss function which is again additive and is expressed as:

DBðyi; yÞ ¼
XT

t¼1

min q2; yðtÞi � yðtÞ
��� ���2

2

� �
ð15Þ

As discussed earlier, we need to generate negative examples so we
can try and solve for them only to make the optimization tractable.
So, for each training pair example (xi,yi) we seek to find

ŷ ¼ argmaxy–yi
ðFðxi; yÞ þ Dðyi; yÞÞ: ð16Þ
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This is an iterative procedure: we solve for w then we find ŷ (for all
examples) given w and, having maintained a small nonredundant
set of negative examples, repeat until a desired stopping criterion
is met. We use the SVMstruct framework [28] to solve this problem.

We can imagine two main types of negative examples: (1)
Tracks that start from initial location and drift to background i.e.
anything other than an instance of object category of interest. (2)
Tracks that start from initial location but get hijacked by distrac-
tor(s) i.e. other instances from the same object category that are
similar and close enough. Further, any mistrack would be either
of the above or a combination of them.

Let us now consider the rationale behind our bounded loss func-
tion and the semantics of negative examples that we generate
using Eqs. (15) and (16). We consider the tracker to be lost if, at
any time point, it is off by at least q pixels. But as long as it is lost,
our loss term turns into a constant and all such trajectories are
equally invalid (as far as loss is concerned) since they are false
tracks anyway and we will just keep track of the amount of time
they were lost. Therefore, it will be up to the scoring function to
determine bad examples and this amounts to finding the most con-
fusing trajectory among all wrong ones according to the current
model parameters w. In contrast to unbounded loss, we believe
that a bad trajectory is useful not for being as far as possible but
for being close to the ground truth yet being wrong, i.e. belonging
to background or distractor(s). Note that, a mistrack will necessar-
ily spend some time in the background and for the case of drift this
is going to be considerable which makes them less challenging.
Such examples will, after a few iterations, become easy (especially
if we use detector features such as HOG) and hence distractors are
the most informative negative examples in this setting. We call a
negative example informative if it contributes to discriminative
power of our tracker by identifying an important and representa-
tive failure mode. Features such as transition features might be
similar in both classes (e.g. distractors in this case) which would
then help find suitable weights for them relative to other features.
Note, however, that considering our assumption about non-over-
lapping objects, a distractor will spend some time in background
and therefore is expected to have sufficiently distinguishable
features.

Some notable stages of the optimization procedure using un-
bounded loss and a suitable constant C are illustrated in Fig. 5.
Green indicates ground truth trajectory and red is the negative
example. We can observe that, among the generated trajectories
for this particular training sample, some examples can be thought
of as being important failure modes. For instance, Fig. 5b shows a
trajectory that corresponds to drift. Also, Fig. 5c shows a distractor
negative example where the tracker is learning to avoid tracking
other people whose appearance is similar to the target pedestrian.
Note that examples generated using bounded loss tend to make
more sense, i.e. drifting to nearby similar objects instead of going
to the farthest corner as in Fig. 5a. Obviously, the quality of the fea-
tures corresponding to a trajectory does not necessarily degrade if
it is shifted away from the ground truth.
Fig. 5. Iterations in optimization. Green is the ground truth and red is the ‘‘worst’’
negative example.
5. Automatic detection and tracking with MMTrack

We have described MMTrack for a single target with known ini-
tial location. For most applications, simultaneous detection and
tracking is of vital importance. In this section we relax the assump-
tion of known initial target location, and show how to use
MMTrack in this setting. We demonstrate that this system can be
used to automatically detect and track pedestrians.

In order to extend MMTrack to a fully automatic detection and
tracking system, we have to add capability to detect entering and
exiting pedestrians to MMTrack. We use the HOG pedestrian
detector to automatically initialize our tracker, running it over
the entire video sequence. Because HOG is also used as one of



Fig. 6. A chunking procedure is used for computational reasons. We divide the video into a number of overlapping sequences each of which contains three blocks of length
T = 500.
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our appearance features, using it to initialize MMTrack inference
has an additional benefit of not incurring additional computational
cost. Since a detection can occur at any arbitrary point in the pe-
destrian’s trajectory, searching only forward in time is unreliable.
Therefore, we run MMTrack forward and backward in time from
these detections. Finally, since the length of the trajectory is un-
known, we need to decide when to stop the tracker and choose
an upper bound based on the expected length of stay (using aver-
age speed) such that the computations are practical. We then clus-
ter these trajectories to find person tracks.

Using a detector to initialize tracks is a common strategy, for
example detectors used to initialize object tracking algorithms in-
clude hand detector [16], foreground object detector in the form of
background subtraction [3], and pupil detection [10]. Note that we
are dealing with a variable number of objects because we cannot as-
sume that a group of people enter and exit at the same time. Further,
we cannot necessarily define any specific entrance point (e.g. frame
borders), since state-of-the-art detectors may miss pedestrians.

For computational reasons and track termination, we resort to a
chunking procedure to process the entire video. The procedure can
be summarized as follows (see Fig. 6). We divide the whole footage
into some fixed length blocks and use HOG pedestrian detector to
locate the people in three consecutive blocks. We initialize one
tracker per detection every L frames (we used L = 100) and perform
tracking forward and backward in time and merge the two so we
get an approximation of full trajectory optimization for all pedes-
trians in the middle block. The trajectory is terminated once all H
hypotheses for the target exit a predefined region of interest
(ROI) in the image. If, once out of the ROI, the target returns we will
introduce a new trajectory for him. Via this process, we get poten-
tially many trajectories belonging to the same person that differ
only in their initial temporal location of detection. Finally, we clus-
ter all the trajectories using bottom-up agglomerative clustering,
prune the outliers and use the cluster centers as the final tracking
results. Note that, in order to recover all trajectories, we need to
consider overlapping consecutive blocks (red rectangles) as we
are proceeding to generate the tracks for the next block. To sum-
marize, for each of the D detections in a block, we run our tracker.
This inference has computational complexity OðDTHNÞ, where T is
the temporal length of a block in frames, and N the search neigh-
bourhood size, as above. Feature computation near hypotheses is
required, as is a mean-shift clustering on the D detections in the
block. Finally, an agglomerative clustering on the D tracks with
complexity O(D2) is performed.

False alarms from the detector can still result in non-pedestrian
objects being tracked. Further failures would be caused by people
with very similar appearance who occlude each other. Also track
‘‘hijacks’’ that do not include a sufficient amount of stay in back-
ground to result in a low model score will cause problems. In spite
of these potential issues, this procedure was successful in practice
and we could track almost all the pedestrians successfully in our
experiments.

This automatic detection and tracking framework is similar to
that in [3]. However, Berclaz et al. use a ranking procedure which
greedily picks the most promising i.e. highest quality trajectory
based on their scoring function and removes those pixels from
their hypothesis/search space so no other trajectory would ever
be able to steal that space–time location. In contrast, our method
independently clusters tracks, without a greedy, approximate con-
sideration of space–time overlap.

Fig. 7 demonstrates the result of our tracking system on one pe-
destrian. The image on the left shows MMTrack forward–backward
inference results as red trajectories and the HOG detections as
shadows with green borders. Three trajectory clusters are detected
after clustering, and the membership of the clusters are shown in
the middle image with trajectories coloured according to the clus-
ter to which they belong. The means for the clusters are shown in
the rightmost image with the width of a cluster trajectory being
proportional to the number of trajectories belonging to that clus-
ter. The blue cluster has the most members whose center is se-
lected as recovered trajectory and other (singleton) clusters that
belong to hijacks are discarded. Interestingly, almost all discarded
trajectories in our experiments were the ones that were badly and/
or untimely initialized namely observations that are not long en-
ough to be disambiguated.
6. Experimental results

In this section, we present our experiments on two real-world
data sets. We start by introducing these data sets and the challang-
es in each of them along with our implementation details. We
present qualitative results on long sequences and a demonstration
where we provide empirical justification for our feature combina-
tion strategy. Next, we report quantitative results obtained on both
datasets and show how the choices of loss function and inference
scheme affect the performance.
6.1. Descriptions of datasets

6.1.1. UBC Fireworks dataset
This dataset consists of clips at 1440 � 1080 resolution using

a stationary camera installed on top of a building in downtown
Vancouver which was initially recorded for transportation engi-



Fig. 7. Trajectory clustering result for one pedestrian. (a) Time lapse of all tracks containing the pedestrian. (b) Three clusters of trajectories. (c) Largest cluster, in blue, is
correct cluster containing the pedestrian.
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neering data collection [13]. It contains both daytime and night-
time sequences. A top-down view of a moderately crowded scene
is captured with a variety of moving objects typical to an urban
setting. This includes cars, bicyclists, and pedestrians. The amount
of change in illumination, scale and pose is not significant but one
needs to deal with background clutter and partial occlusions. The
main challenges in the dataset are the presence of crowded blobs
of moving pedestrians that introduces many potential distractors
and background change that occurs when people move from side-
walk to street area and vice versa (an example frame is shown in
the left side of Fig. 2).

6.1.2. PETS09 dataset
We use the S2.L1 dataset taken from the PETS 2009 competi-

tion. The dataset consists of a 794-frame video recorded at about
seven frames per second from a pedestrian path at a university
campus. Unlike UBC Fireworks, this dataset has significant scale
variations due to perspective effects. The viewpoint also introduces
occlusion issues with occasions where pedestrians are completely
occluded for a long time either by a background object or other
pedestrians. Other challenges include the presence of many people
dressing similarly in the frames and considerable pose change.

We use a portion of the UBC Fireworks as our training dataset,
and the weights obtained are then used for testing of both UBC
Fireworks (disjoint subset) and PETS09 datasets.

6.2. Implementation details

The main bulk of computation time comes from the feature
extraction. To reduce training time, we precompute HOG and col-
our histogram distance features prior to training and testing.
Appearance templates, however, must be generated online since
they are pairwise potentials and we compute them efficiently
using integral images. We significantly reduce the space of possible
trajectories in training by running the Viterbi algorithm in steps of
nine pixels in both horizontal and vertical directions so the actual
working resolution is 160 � 120. We define the neighborhood N ðlC Þ
to be the area within a radius of two pixels centered at the current
location lC. This choice is made based upon empirical statistics of
the dataset which is in fact a function of the camera angle, average
walking speed of pedestrians and frame rate. Similarly, we set the
dmax in the motion model and q in the bounded loss to the same
constant. Note also that because the testing processes images at
different resolution from training, the motion model obtained from
training must be adapted for testing. So, a simple nearest neighbor
interpolation of the motion model is performed using the same
number of discretization bins as in training and the weights are
used directly.

For the histogram distance feature, we use the integral histo-
gram optimization technique [20] to efficiently compute the histo-
gram of any rectangular window in the image. With the integral
histogram technique, all nine histograms representing the different
body sections can be computed with a few arithmetic operations
once the integral histogram is built. We also optimize computation
of the appearance template features by computing the sum-of-
absolute difference with a modified integral image technique
[29]. However, due to the high resolution of the datasets
(1440 � 1080 and 768 � 576 respectively), full inference in the ori-
ginal resolution turns out to be computationally prohibitive even
with optimized feature generation. Therefore, we resort to pruning
strategies for inference at test time by performing beam search.
With beam search, we only evaluate the H highest-scoring trajec-
tories at each time step (H is set to 3 in our experiments). Beam
search allows us to perform inference in the original resolution
at the expense of suboptimality as it only considers a small subset
of the hypothesis space. However, applying beam search at training
phase hurts the results since performance guarantees for the re-
lated learning algorithms build upon exact inference. Although
both beam search and input subsampling explore only a subset
of the whole space, our experimental results show that both
approximations work well in practice.

The HOG detection window size for UBC Fireworks is set to
48 � 112 and the detection is performed on a pyramid whose scale
varies up to 130% of the original resolution. The bounding box size
that we use for computing other features is also fixed as scale and
angle do not change substantially. This is not the case for PETS and



Fig. 8. Sample tracking results on crowded conditions.

Fig. 9. An example illustrating the intuition behind our model design. The tracked
‘‘objects’’ throughout the trajectories are shown in red insets and also superim-
posed along the trajectories. (a) HOG + histograms, (b) HOG + templates, (c)
HOG + histogram + templates.

B.Y.S. Khanloo et al. / Computer Vision and Image Understanding 116 (2012) 676–689 685
we used the camera calibration information provided with the
detaset to map 2D pixel coordinates to 3D world coordinates and
vice versa. We assume q = 1.8 m, pedestrian height of 1.6 m and
height:width ratio of 4:1 to rescale the bounding boxes and the
motion model (measured in meters) appropriately. For the colour
histogram distance feature, this means computing the histograms
over sections of the rescaled bounding box. For appearance tem-
plate features, both the template and the hypotheses are rescaled
to a fixed resolution at which the sum of absolute differences is
then computed.

6.3. Qualitative evaluation

We first describe qualitative detection and tracking results on
the two datasets. We reiterate that training is done using a subset
of the UBC Fireworks dataset, with testing on a disjoint subset as
well as transfer of these parameters to the PETS09 dataset.

6.3.1. UBC Fireworks qualitative evaluation
We use three UBC Fireworks dataset clips for our qualitative

evaluation. The three video clips are recorded at 25 frames per sec-
ond, with durations of 6 m:18 s, 6 m:46 s, and 3 m:20 s. The first
two clips were taken in daytime, the latter in nighttime. The same
set of weights are used in all our experiments. To generate the tra-
jectories, we run our automatic detection and tracking system as
described in Section 5. Fig. 8 shows our performance on a daytime
clip. We observe that our tracker does a decent job even in
crowded conditions. We could identify two rare sources of error
in our tracking system as being HOG false alarms resulting in
non-pedestrian objects such as cars to be tracked, and pedestrian
full occlusion that occurs when they walk behind another object
such as a tree. All demo videos are available at our project
website.2

Fig. 9 is an example demo from the UBC Fireworks dataset that
illustrates the importance of our cue combination strategy. As ob-
served in the subfigures, our tracker with only HOG and histogram
distance features drifts to a nearby distractor at some parts of the
track as it does not know about the initial appearance of the per-
son. The jitter in the trajectory is mostly due to lack of fine details
of the appearance which roughly makes the neighbors become
equally good according to the model. On the other hand, with
HOG and appearance templates, the tracker gets stuck in back-
ground area at the boundary between the sidewalk and the street.
The reason is that the significant change in appearance template
from frame to frame which occurs at this boundary is rare and
hence not supported by the average statistics encoded by the
model. So, the tracker is not robust against sudden changes in
2 http://www.cs.sfu.ca/research/groups/VML/MMTrack.html.
appearance. Also, since information about average appearance
and average background is lacking, drift is inevitable and the role
of initial template breaks as background pixels make the stay in
sidewalk more rewarding than moving toward the street. The com-
bination of HOG, distance maps and appearance templates man-
ages to track the person correctly. In this case, the system is
stable against rapid changes while being reasonably accurate. Note
that the same situation happens for PETS. However, the role of fea-
tures in that data set depends on how clean the features we obtain
are in practice after performing the rescaling.

http://www.cs.sfu.ca/research/groups/VML/MMTrack.html


Fig. 10. Sample tracking results on PETS dataset.

Table 1
Comparison of results on UBC Fireworks dataset. Higher # CDT and MOTP are better,
lower Avg. Err. is better.

Tracker # CDT MOTP Avg. Err.

MMTrack:All 21 0.67 7.01
MMTrack:Hist + Templates 20 0.61 12.74
MMTrack:HOG + Templates 14 0.52 22.24
MMTrack:HOG + Hist 10 0.47 14.40
MILTrack 19 0.61 19.87
Collins-Liu 14 0.54 21.24

Bold denotes the best value in each column.
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6.3.2. PETS qualitative evaluation
We also conduct qualitative evaluation on the PETS 2009 S2.L1

dataset where we use the same weight parameters obtained from
our Fireworks experiment. Generally, the tracker can track most
pedestrians when they are not occluded. Two main causes of occlu-
sions in the dataset are the signpost located in the middle of the
image and close interaction with people with similar appearance.

In the PETS video, 44 trajectory clusters are displayed sequen-
tially in descending order according to the ratio of the number of
members to the length of the cluster mean. The results show
promising performance, with only one mistrack in the first 10
trajectories and five mistracks in the first 20 trajectories. Two
full-trajectory tracking results are shown in Fig. 10. In the figure,
target pedestrians are indicated by red bounding boxes, the track-
er’s resulting trajectories are shown in red trajectories, and snap-
shots from various points during the trajectories are shown in
the blue insets. In the top image, the tracker managed to track
the target when he was partially occluded by a signpost, but drifted
when the target was occluded by a similar-looking pedestrian. The
bottom image shows a successful long-duration tracking even on
occasions of full occlusion. In this example, the target pedestrian’s
appearance is different from other pedestrians he interacts with
and the tracker can still find him after occlusion as he never moves
farther than the limit of the motion model.

6.4. Quantitative results

We compare our single-target tracker with algorithms proposed
by Collins et al. [6] and Babenko et al. [2]. We used the MIL-tracker
software provided by the authors and implemented our own ver-
sion of Collins et al. [6] which we call the Collins–Liu tracker. We
only use the Fireworks dataset as these methods are not designed
to handle scale variations. We use 10 manually-labeled trajectories
from different sequences for training. Both training and test examples
are of length 350–500 and contain easy, moderate and hard se-
quences ranging from a solitary person going through the scene
to a pedestrian walking within a crowd with partial occlusions.
We chose 22 other trajectories and manually labeled them for eval-
uating the performance. We run independent instances of the
tracker forward and backward in time in order to get complete tra-
jectories starting from the fixed set of selected detections. Trackers
are terminated once they are within a certain number of pixels
from image borders. We use the same procedure to extract trajec-
tories using other methods so we can make a fair comparison.

Besides the usual average pixel error measure (Avg. Err.), we use
two other performance measures proposed in [33,14]. Correct De-
tected Track (CDT) indicates the number of correct trajectories. A
track is defined as a CDT if the amount of spatial and temporal
overlap with the ground truth exceed thresholds Tov and TRov

respectively, where Tov and TRov are both set to 0.5 in our experi-
ments. This roughly means that at least half of a CDT must tempo-
rally coincide with its ground truth, its length cannot be less than
half of its ground truth, and the average spatial overlap must be at
least 0.5. Multiple Object Tracking Precision (MOTP) [14] or Closeness
of Track (CT) [33] is defined as the average spatial overlap between
a ground truth and a system track in the temporally coincident
portion of the track. Its value ranges from 0 to 1, with 1 indicating
that the track is exactly the same as the ground truth in the tem-
porally coincident section of the track. More detailed explanation
of the measures are provided in [33,14]. Note that since we are fo-
cused on single target tracking, other performance measures from
[14] are not applicable.
6.4.1. UBC Fireworks quantitative evaluation
To gain more insight into the importance of our feature combi-

nation, we design experiments on both datasets with groups of fea-
tures turned off. For this purpose, we learn different sets of
parameters for each combination of the features independently.
Table 1 presents the results on Fireworks.

The second set of experiments, also shown in Table 1, compare
our tracker with other trackers on the same test set. As we can see
in the table, our tracker outperforms the MIL-tracker [2] and Col-
lins–Liu tracker [6] in this dataset. These results provide a sys-
tem-level comparison, since these trackers build upon different
feature sets. Also, both [6,2] are only concerned with appearance
modeling and do not include a parameterized motion model. One
can explain this promising performance by reasoning about the
role of different cues in our system. Specifically, the HOG feature
helps the tracker eliminate areas belonging to non-pedestrian ob-
jects, the histogram distance maps provide a rough description of
the pedestrian and helps alleviate drift whereas appearance tem-
plates provide finer levels of the appearance, with the previous
frame appearance template allowing some degree of adaptability
to appearance change over time.

Table 1 shows that removing some of the features significantly
reduces the performance indicating that the combination of HOG,
histogram distance and template appearance features is essential



Table 2
Quantitative results on 25 targets from PETS 2009 dataset. Higher # CDT and MOTP
are better, lower Avg. Err. is better.

Tracker # CDT MOTP Avg. Err.

MMTrack:All 21 0.61 10.37
MMTrack:HOG + Hist 20 0.64 13.48
MMTrack:HOG + Templates 15 0.56 22.16

Bold denotes the best value in each column.

Table 3
Our tracking results with different learning schemes and loss functions on 22 test
samples from UBC Fireworks.

Learning Loss type # CDT MOTP Avg. Err.

Exact D 15 0.56 11.38
Exact DB 21 0.67 7.01
Approx. D 17 0.61 9.90
Approx. DB 20 0.64 12.24

Bold denotes the best value in each column.
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in achieving good performance. While each feature group is
responsible for avoiding certain types of failures, interactions be-
tween groups accounts for difficult situations. Hence, when a fea-
ture group is discarded, not only the corresponding failure modes
show up but also more complicated failure modes occur as feature
groups are not independent.

Table 1 indicates that the most important components of our
tracker are colour histograms and appearance templates. The sec-
ond row, which corresponds to the system with the second best re-
sults, does not include HOG score which implies that our tracker
does not really depend on a detector although a good one would
slightly improve the performance.

Note that our MMTrack approach uses more features, and hence
is computationally more demanding. Running on a 2.4 GHz Intel
Core2 Q6600 workstation with 8 GB RAM, MMTrack takes on aver-
age 1253 ms to process a frame, compared to 385 ms for our Col-
lins–Liu implementation and 493 ms for MILTrack. These times
exclude HOG detection, which takes �100 s on an entire
1440 � 1080 frame using the code provided by the authors.

6.4.2. PETS quantitative evaluation
We also consider PETS data for our quantitative evaluations.

This experiment is done with the parameters learned using the
Fireworks dataset and serves as an evaluation for our method on
unseen data. Reported tracking results on PETS datasets are all
multi-target tracking algorithms and our method, as a single-target
tracker, is not directly comparable to them. Moreover, there is no
publicly available state-of-the-art single-target tracking software
that handles scale change. Therefore, we do not perform compari-
sons with other trackers for this dataset. Because full occlusion is
very common in this dataset and our single-target tracker has no
inherent mechanism to perform occlusion reasoning, we split the
ground truth to segments that do not contain such instances,
resulting in 25 ground truth tracks.

Table 2 summarizes the results on PETS. Again, the same obser-
vations about feature combinations apply – adding features im-
proves performance.

6.4.3. Learning scheme and loss functions
We also tried exact and approximate learning schemes as well

as bounded and unbounded loss while keeping the inference the
same for all the experiments. Table 3 shows the performance of
our tracker. As seen in the table, exact training using bounded loss
achieves the best result in all measurements among all the config-
urations of MMTrack. Theoretical guarantees of the optimization
algorithm explains the superiority of the exact training over
approximate training. We believe that bounded loss better
matches the nature of our measurements as it is closer to the over-
lap criterion in CDT and stops (over) penalizing as soon as the over-
lap becomes zero and so performs better compared to unbounded
loss in all settings as expected.
7. Conclusion

In this paper, we introduced an offline tracker that employs a
large margin learning criterion to effectively combine different
trackers. Although MMTrack is used for pedestrian tracking in this
work, we believe that our framework is general and can be used to
track other objects provided that features can reliably describe the
target object and handle situations of interest while avoiding con-
fusions for our discriminative classifier. For instance, one could
model articulated objects in the same way as we included our
set of features.

The version of MMTrack we have described is a single-target
tracker and thus it has no capability to reason about full occlusions.
We believe that rather than adding occlusion handling capability
to a single-target tracker, better results can be achieved by using
a multi-target tracking framework. In contrast to single-target
trackers that assign a trajectory to each target without considering
other objects, multi-target trackers jointly consider the state of all
targets in determining their trajectories. We believe that extending
this framework to multiple target tracking would be fruitful
ground for future research.

Our tracking system has limitations in handling severe occlu-
sion and track hijacks caused by significant change in appearance
or situations where the background patch is very similar to the
appearance of the target. Incorporating mechanisms that would
enable single target trackers to explain long-term occlusions while
avoiding distractor hijacks turns out to be very challenging. Again,
incorporating long term occlusion into the model and learning pro-
cedure would be interesting future research.

Another assumption in our current model is that the same lin-
ear weights are valid throughout the tracking. One could also de-
fine variants of our model that have non-linear weights, or
weights that are functions of properties of the scene or tracking sit-
uation. For example, learning different parameters for different
locations in the scene may also be of interest. Such a tracking sys-
tem would be able to deal with location specific situations that are
difficult to handle for a generic tracker. This is motivated by the
intuition that the relative importance of the features is likely to
be affected by the statistics of background patches and particular
occlusions at different locations. On the other hand, designing
trackers with more complicated statistics or background models
could result in better performance. Finally, defining suitable prob-
lem-specific loss functions that directly optimize for benchmark
measurements is desirable.
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