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a b s t r a c t

Imitation is considered to be a kind of social learning that allows the transfer of
information, actions, behaviors, etc. Whereas current robots are unable to perform as
many tasks as human, it is a natural way for them to learn by imitations, just as human
does. With the humanoid robots being more intelligent, the field of robot imitation has
getting noticeable advance.

In this paper, we focus on the pose imitation between a human and a humanoid robot
and learning a similarity metric between human pose and robot pose. In contrast to recent
approaches that capture human data using expensive motion captures or only imitate the
upper body movements, our framework adopts a Kinect instead and can deal with
complex, whole body motions by keeping both single pose balance and pose sequence
balance. Meanwhile, different from previous work that employs subjective evaluation, we
propose a pose similarity metric based on the shared structure of the motion spaces of
human and robot. The qualitative and quantitative experimental results demonstrate a
satisfactory imitation performance and indicate that the proposed pose similarity metric
is discriminative.

& 2014 Elsevier B.V. All rights reserved.
1. Introduction

With the development of robotics, robots are getting
much smarter than they used to, especially for humanoid
robots. However, they are not ready to perform many tasks
as naturally as human beings. Imitation is considered as an
effective solution to the problem. Specifically, imitation is
an advanced behavior whereby an individual observes and
replicates the behaviors of others. Robots have replaced
humans in the assistance of performing repetitive and
dangerous tasks in some fields, such as construction
industry, medical surgery, toxic substances cleaning and
,

space exploration, where they can take advantage of
imitating human to some degree.

Imitation is about generating stable humanoid move-
ments from the human motions, an overview and compu-
tational approaches to this problem can be found in [1].
Many of the imitation researches focus on the upper body
and employ complex system setting. In [2], an analytical
method was proposed to transfer the upper body motion
from human to humanoid robot. Riley et al. [3] made use
of some colored marks on a human upper body in order to
be abstracted by a vision system based on external
cameras and a head-mounted one of a humanoid. These
marks were used to estimate the angular range of some
joints with a kinematic model of the human to perform
the imitation. Similar to [3], with the help of 34 markers
placed on the human upper body and 2 markers attached
on a conductor stick, Ott et al. [4] applied the data
obtained by a motion capture system to allow a humanoid
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robot to mimic the human motion regarding to a Cartesian
control approach. Aleotti et al. [5] adopted neural net-
works to learn a mapping between the positions of a
human arm and an industrial robot arm. Based on Aleotti's
work, Stanton et al. [6] extended it to a humanoid robot by
training a feed forward neural network with particle
swarm optimization for each degree of freedom (DOF). In
the data collecting process, a robot was used to lead a
human operator through series of paired synchronized
movements captured by a motion capture, which was
time-consuming and tedious. As they were mentioned, in
order to ensure robot stability, the position of the robot's
ankles did not employ neural networks. Since the neural
networks could not always output ideal angles, the robot,
as a rigid body, was apt to lose its balance. Meanwhile, a
unified neural network training for the whole body was
infeasible, considering convergence trouble. Whereas
training with separate networks would cause correlation
loss among the DOFs. Other imitation researches are
mainly dedicated to humanoid gait or walking movements
[7–9]. In conclusion, existing works have the following
limitations:
�
 Imitation of the upper body or a single part is insuffi-
cient to meet the needs of humanoid robot [2–5].
�
 With requiring motion capture equipment, it is expen-
sive and inconvenient for general use and unnatural for
human–robot interaction [5,6,10].
�
 Lack of balance control and the whole body control
[3,4,6].
�
 The imitation results are not qualitatively evaluated
[6,10,11].
… 
Kinect 

Balance Control 
Single pose balance control 
Pose sequence balance control 

Adjusted  pose 

Fig. 1. Overview of our human to humanoid robot imitation system.
After performing the pose imitation, another important
issue is “how can we evaluate the imitation similarity
between a robot slave and the master”. In [11], Zuher et al.
gave a subjective evaluation by taking persons to mark the
quality of an imitation with bad, poor, fair, good and excellent.
Other existing research efforts are basically concentrated on
the pose similarity of a single agent. The simplest metric is L 2
distance, which does not sufficiently utilize the data depen-
dency between DOFs. In [12], different weights were learned
for DOFs, in correspondence with the fact that some DOFs had
more influences on determining the similarity. Chen et al. [13]
proposed a new rich pose feature set to effectively encode the
pose similarity by utilizing features on geometric relations
among body parts. Based on the pose feature set, a distance
metric was learned in a semi-supervisedmanner. Bymatching
the related DOFs of a robot and a human, we can apply these
methods to evaluate the imitation similarity. However, robots
and humans are different in DOF dimensions and physical
constrains, i.e., they have different motion spaces. It is
inappropriate to compare them directly.

The problem we are facing here can be regarded as a
metric learning problem. Learning a good distance metric
in feature space is crucial in real-world applications. Good
distance metrics are important to many computer vision
tasks, such as image classification [14–16], content-based
image retrieval [17,18] and their applications [19,20]. Many
useful algorithms and ideas were proposed in these papers
to combine multiple feature sets, such as high-order
distance-based multiview stochastic learning (HD-MSL
[14]) and semi-supervised multiview distance metric
learning (SSM-DML [16]). In our case, we believe that the
human poses and the humanoid robot poses have much in
common for their highly similar skeleton structures. Their
differences depend on the number of DOFs and physical
constrains. As a consequence, the shared motion space
between the two agents can be a good metric space to
study the pose similarity.

This paper proposes a novel humanoid robot imitation
framework with pose similarity metric learning between
human pose and robot pose, using a consumer camera (the
Microsoft Kinect) and a humanoid robot (the Aldebaran
Nao H25). The proposed framework summarized in Fig. 1
adopts dynamic balance control with realtime imitation
performance. A shared representation of both robot pose
and human pose is learned to evaluate the imitation
similarity. Both qualitative and quantitative experimental
results demonstrate a satisfactory imitation performance
and indicate that the proposed pose similarity evaluation
is discriminative.

Our main contributions are the following: (a) we
propose a novel framework to perform pose imitation on
the whole body motions rather than the upper body.
(b) We actively keep single pose balance and introduce
transient poses to achieve smooth pose sequence balance.
(c) We demonstrate how shared structure can provide a
quantitative evaluation to define the similarity between a
human pose and a robot pose.

2. Humanoid robot imitation

2.1. Pose representation

The Kinect consists of a RGB camera, a depth sensor and
provides 3D human skeleton tracking at 30 frames
per second. Based on the position data obtained, we can
calculate 20 DOF angles listed in Table 1, which are angles
between pairs of related vectors. For example,

θH
HeadPitch ¼ 〈DVðPosSpine; PosShoulderCenterÞ;

DVðPosShoulderCenter ; PosHeadÞ〉 ð1Þ



Table 1
List of DOFs. The DOFs with a star symbol belong to the Nao robot pose
only. Both the human pose and the Nao robot pose have the rest 20 DOFs.

Body Part DOFs

Head HeadYaw, HeadPitch
Left Arm LShoulderPitch, LShoulderRoll,

LElbowYaw, LElbowRoll, LWristYawn

Right Arm RShoulderPitch, RShoulderRoll,
RElbowYaw, RElbowRoll, RWristYawn

Left Leg LHipPitch, LHipRoll, LKneePitch,
LAnklePitch, LAnkleRoll

Right Leg RHipPitch, RHipRoll, RKneePitch,
RAnklePitch, RAnkleRoll

Hip LHipYawPitchn, RHipYawPitchn

HeadYaw, HeadPitch 

LShoulderYaw, LShoulderPitch 

LElbowYaw, LElbowRoll 

LWristYaw 

Pitch 

LHipYawPitch, LHipPitch, LHipRoll 

LKneePitch 

LAnklePitch, LAnkleRoll 

Yaw 

Roll 

LHand 

Fig. 2. The DOFs of a Nao robot, showing the head and the left body
part only.
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where DV stands for the direction vector of two 3D points.
Then we get 20 angles in total for a skeleton (or a human
pose), denoted as θH ¼ fθH

d g where d is the name of a DOF.
The Nao robot owns 26 DOFs (Fig. 2), where we exclude

the “LHand” and “RHand” DOFs and choose the rest 24
DOFs, as listed in Table 1, to represent a Nao pose, denoted
as θN ¼ fθN

d g. As we transfer different DOF configurations,
the Nao robot can display varied poses.

We choose DOF angles instead of position data to
represent a pose mainly for two reasons:
�
 The output values of a Kinect are specified in relation to
its origin coordinates in 3D space, and are easily
affected to different human agents.
�
 Since a Nao robot is equipped with position sensors
only on the endpoints of the limbs, the robot is easier to
be driven by DOF angles rather than position data.

2.2. Support leg

Balance is an important issue to be considered when
preforming imitation on humanoid robot. At every point in
time, we need to ensure the robot is in a statically stable
configuration. Specifically, the ground project of the center
of mass (COM) should lie within the convex hull of the foot
contact points (or support polygon for short) [21].

The support leg should be figured out before control-
ling the balance. There are three situations, i.e. LLeg, RLeg,
and Legs, short for the left leg, the right leg and both legs,
respectively. Since the positions of both feet in a human
pose are known from the Kinect, we have

SL¼
Legs : jPosYFootLeft�PosYFootRight jrλ

LLeg : PosYFootLeft�PosYFootRightoλ

RLeg : PosYFootLeft�PosYFootRight4λ

8>>><
>>>:

ð2Þ

where SL is short for support leg and λ is a threshold for
smoothing.

Due to the noise in Kinect data, a single threshold will
fail in some cases. To deal with the data noise, a fixed-size
queue is kept in advance to record the SLs of a small
sequence starts at the pose to be imitated, then we scan
the queue to find outliers and update them according to
the SL before and after them. After imitating the first pose,
we read in the next one and move the queue forward.

2.3. Transient poses

In the experiment, we noted that the Nao robot was
unable to transfer from some poses to others directly in a
safe way, while the human can achieve that easily, espe-
cially when the two poses were not supported by the same
leg. This is because the physical constrains of humans and
Nao robots are different. To solve this problem, we
introduce three transient poses, as shown in Fig. 3. By
inserting the transient poses into the original sequence
where the adjacent poses do not belong to the same
supporting case, a stable pose transfer can be achieved.

The “StandInit” pose is a built-in pose in the Nao robot
system and can be regarded as a very stable pose for the
two legs supporting situation. The “LeftLeaning” pose is
obtained by transferring weight from the center to the left
leg and can be considered as the critical pose between Legs
supporting and LLeg supporting. Likewise, the “RightLean-
ing” pose can be considered as the critical pose between
Legs and RLeg. All the three transient poses are prestored
and can be transferred to the Nao robot when needed.

2.4. Balance control

To avoid falls of the robot that might occur when using
direct imitation of the joint angle trajectories due to the
different weight distributions, we developed a strategy to
actively balance the COM. Our balance control is consti-
tuted of two parts, the single pose balance control and the
pose sequence balance control.

The single pose balance control aims at adjusting a
human pose to the robot pose according to the balance
rule. Given a human pose θH , we choose the 20 corre-
sponding angles and set the rest four angles as 0 to form a
target pose of the Nao robot. Denote XCOM as the COM
position of the robot, θr as the current angle vector, i.e. the
angles of the current pose the Nao robot is performing, θd



Fig. 3. Transient poses. (a) StandInit. (b) LeftLeaning. (c) RightLeaning.
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as the target angle vector, and θc as the corrected angle
vector, i.e., the angles obtained after balance control. To be
simple, the superscript N for Nao is ignored in this section.
Following [22], we can calculate the Jacobian matrix JG
which represents the relations between COM and all the
DOF angles. By transferring θd to the Nao robot, a support
polygon is obtained. If the projection of Xd

COM does not lie
within the support polygon, the robot is going to fall. We
can make the support leg fixed and let the projection of
the COM position be the center of the support polygon,
thus getting a corrected COM position Xc

COM . Now the
problem is converted into solving the correction values
for all angles, i.e. Δθc. Then we have

ΔXCOM ¼ JGΔθc ð3Þ
where ΔXCOM ¼ Xc

COM�Xr
COM and Δθc ¼ θc�θr .

Since JG is not square matrix, the solution to Eq. (3) is
not exclusive. As we need the error between θc and θd as
small as possible, the question can be interpreted to a
quadratic problem

min 1
2 ðΔθd�ΔθcÞTW Δθd�Δθc

� �
s:t: JGΔθc ¼ΔXCOM ð4Þ
where Δθd ¼ θd�θr and W is a weighting matrix. We can
rewrite Eq. (4) as follows:

W JTG
JG 0

" #
Δθc

λ

" #
¼ WΔθd

ΔXCOM

" #
ð5Þ

where λ is the co-state matrix of Δθc. Solving Eq. (5), we
get

Δθc ¼ΔθdþW �1JTGðJGW �1JTGÞ�1

�ðJGΔθd�ΔXCOMÞ: ð6Þ
Now, we could achieve the stable pose given W .

The pose sequence balance control focuses on the fact
that there may not exist feasible solution for Eq. (5) when
the current pose and the target pose are supported by
different legs. This is caused by the physical constraints of
the Nao robot, making it unable to find a safe way to
perform the transfer. In order to solve the problem, we
insert a transient pose between the two poses according to
the support leg of the current pose. In this way, the
original transfer is spitted into two instead. For instance,
suppose we have two contiguous poses in a sequence θt1

and θt2 for imitation. However, θt1 and θt2 have different
support leg situations, assume that they are Legs support-
ing and LLeg supporting respectively. According to
Section 2.3, the “LeftLeaning” pose should be inserted
between the two poses for the reasons mentioned above.
Therefore, we replace the desired transfer process with
transfer from θt1 to θLeftLeaning at first, and then transfer
from θLeftLeaning to θt2.

The whole pose transfer process with balance control is
summarized in Algorithm 1.

Algorithm 1. PoseTransferWithBalanceControl.

Input:
� The 3D skeleton data obtained from the Kinect,
Pos¼ fPosjointg.
Output:
� Stable Nao robot pose θN ¼ fθN
d g.
� Perform a transfer from the current pose to θN on the Nao
robot.
1:
 Get the support leg (SL) from Pos (Eq. (2)).

2:
 Get the human pose θH from Pos (Section 2.1).

3:
 Get the target Nao pose θN

target from θH (Section 2.4).

4:
 if SL¼¼LSL (The support leg of the last transferred pose) then

5:
 Get the stable pose θN from θN

target (Section 2.4).

6:
 Transfer pose θN to the Nao robot.

7:
 else

8:
 Load transient pose θN

transite based on LSL (Section 2.3).

9:
 Transfer pose θN

transite to the Nao robot.

10:
 Get the stable pose θN from θN

target .

11:
 Transfer pose θN to the Nao robot.

12:
 end if

13:
 LSL¼SL

14:
 return θN
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3. Pose similarity metric learning

3.1. Motion space

As mentioned before, we believe the motion spaces of
humans and Nao robots are different and it is inappropri-
ate to compare human pose with robot pose directly. The
reasons can be roughly concluded as follows:
�
 The bones of humans are pliable while those of Nao
robots are not.
�
 The weight distributions of the two agents are
different.
�
 Compare with Nao robots, humans are better at coor-
dinating the whole body to keep balance, thus getting
more flexibility.

Here is the question will be asked, that is “How can we
express the motion space for an agent?”. With the high
dimension of DOFs and complex physical constraints, it is
hard to model the motion space explicitly. As a conse-
quence, we choose to model it implicitly.

Similar to sparse coding [23], we choose N human
poses as anchor points in the motion space, thus other
Fig. 4. Some chosen anc
poses could be a representation of them. Meanwhile, by
setting the Nao robot in the animation model, an operator
could change its DOF values according to a human pose
and record the pose. Then the corresponding (similar) N
robot poses are generated.

To make the chosen poses be representative as possible,
we design the poses in the full range of an agent (refer to
as boundary poses) by considering the static DOF domains.
After that, a number of intermediated poses from the
initial pose to each boundary pose are selected (Fig. 4).
3.2. Shared latent space

Now, we have a representation of each agent motion
space and the correspondence between the N anchor point
pairs. Our objection is to give a quantitative evaluation to
define the similarity between a human pose and a
robot pose.

To begin with, we note that when a human is asked to
evaluate the similarity, he/she pays more attention to
several DOFs than others in different poses. For example,
given a human pose and a Nao robot pose showing
standing, many people would think a good correspondence
hor poses of Nao.



Fig. 5. Shared latent space model.

Table 3
Values of parameters in the experiment.

Parameter Value Ref.

‖θH‖ 20 Section 2.1

‖θN‖ 24 Section 2.1
λ 35 mm Eq. (2)
W I (Identity) Eq. (4)
N 50 Section 3.1

‖XH‖ 2 Fig. 5

‖XN‖ 2 Fig. 5

‖XS‖ 10 Fig. 5

Table 2
Important notations used in this paper.

Notation Description Ref.

Pos Skeleton data (3D positions) Eq. (1)
SL Support leg Section 2.2
LSL The support leg of the last

transferred pose
Algorithm 1

θH Human pose (angles of 20 DOFs) Section 2.1

θN Nao pose (angles of 24 DOFs) Section 2.1

θNtransite A transient pose Section 2.3

θNr or θr The current Nao pose Section 2.4

θNd or θd The target Nao pose Section 2.4

θNc or θc The corrected Nao pose Section 2.4

JG The Jacobian matrix Section 2.4
Xr

COM The COM position of θr Section 2.4

Xd
COM

The COM position of θd Section 2.4

Xc
COM The COM position of θc Section 2.4

H The human motion space Section 3.2
N The Nao robot motion space Section 3.2

XH The private latent space of human
motion

Section 3.2

XN The private latent space of Nao
robot motion

Section 3.2

XS The shared latent space of both
agents

Section 3.2
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of “LKneePitch” is more important than “LShoulderRoll”.
Based on the phenomenon, we have an idea that the human
motion space and the Nao robot motion space can be
reduced to a combination of a shared space and a personal
space. The hyper plane dimensions in the shared space are
more discriminative in determining the pose similarity
while those in the personal space are less discriminative.
Then the problem can be regarded as a dimension reduc-
tion problem.

To be further, the original motion spaces can be two
observations of the shared space. Inspired by the work in
[24,25], the whole shared latent space model is shown in
Fig. 5. Denote H as the human motion space, N as the Nao
robot motion space and XS as the shared latent space. XH

and XN are the private spaces. Thus, the original H and N
are reduced to the lower dimension space XH;S and XN;S

respectively.
The aim of our model is to find a shared latent

representation X ¼ fXH ;XS;XNg that relates corresponding
pairs of H and N. Following [26], a shared latent space
between the two motion spaces is learned by using the
shared GP-LVM (Gaussian process latent variable model),
which is modified from the GP-LVM [27] to learn separate
sets of Gaussian Processes of different observation spaces.
The latent space is learned by maximizing the joint
marginal likelihood of the two observation spaces:

PðH;NjX;ΦSÞ ¼ PðHjX;ΦHÞPðNjX;ΦNÞ ð7Þ
where ΦH and ΦN are the hyper-parameters in each GP-
LVM and ΦS ¼ fΦH ;ΦNg. All the important notations used
in this paper are listed in Table 2.

Given new poses of each motion space, θH
test and θN

test ,
we could find their representations in the shared space by
the model. The similarity distance of the two poses is then
compared in XS space, normalized by its dimensions

Dis θH
test ;θ

N
test

� �
¼ ‖XS

H;test�XS
N;test‖2

‖XS‖
: ð8Þ

4. Experimental results

The values of parameters used in the experiment are
summarized in Table 3. We record a human pose sequence
of 1066 frames using one Kinect at a rate of 0.1 s per frame.
The Kinect device can provide color frames, depth frames
and skeleton frames in ordinary scenes. The 3D joint
positions of the skeleton data are used in our framework
as an input, i.e., Pos. Considering the movement speed of
the Nao robot, we preform the imitation with an interval
rather than continuous frames. In the qualitative analysis,
a sequence of 97 poses (refer to as Data 97) is sampled
uniformly from the original sequence, with ignoring the
unstable frames at the beginning. In the similarity metric
evaluation, another sequence of 450 poses (refer to as Data
450) is sampled in the same way with smaller frame
interval.

4.1. Qualitative analysis

The qualitative experiment is conducted on Data 97,
some of the imitation results that are varied in support
legs and motion ranges are shown in Fig. 6. As we can
observe, the balance control is devoted to maintain bal-
ance by keeping the actual pose of the Nao robot be similar
to the target human pose.

To be further, we make a comparison between the
direct imitation poses and the balanced poses to indicate
the balance control is effective, as shown in Fig. 7. Mean-
while, we demonstrate the angle trajectories of four DOFs
(RHipPitch, RHipRoll, RKneePitch, RAnklePitch) in Fig. 8. As
observed from Fig. 8, we aim at keeping balance with
ensuring the change between the corrected pose and the
target pose as small as possible.



Fig. 6. Some imitation results.
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4.2. Quantitative analysis

As mentioned before, asking a person to evaluate the
quality of works of imitation is hard to be quantitative. We
use the similarity metric described in Section 3 to calculate
an accumulated distance for Data 97

DisfData97g ¼ ∑
frame

DisðθH
frame;θ

N
frameÞ ð9Þ

which equals to 5.58817 in the experiment, then the
average single pose similarity distance is 0.05761.
4.3. Similarity metric evaluation

To further investigate the validity of similarity metric,
we select a human pose and a few Nao robot poses to be
evaluated, both from Data 97. The process is repeated for
several times with varied test cases. The candidate Nao
robot poses are chosen by a human according to their
differences from the human poses, including the corre-
sponding Nao pose obtained from our framework. We aim
to see if the similarity metric accords with the subjective
judgement of humans. An example is shown in Fig. 9. As



Fig. 7. Comparisons of the balanced poses with the direct imitation poses. The first column shows human poses, while the second and the third columns
show the balanced poses and the direct imitation poses respectively.
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Fig. 8. Angle trajectories of four DOFs (RHipPitch, RHipRoll, RKneePitch, RAnklePitch). The blue and red curves show the angles of human and Nao robot
respectively. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)

Fig. 9. Compare a human pose with the selected Nao robot poses, where (b) shows the corresponding Nao pose obtained by our imitation framework. The
distances between (a) and each (b)–(f) are 0.090922, 0.167751, 0.147825, 0.282243 and 0.133542 respectively, measured in the shared latent space.
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Table 4
The discrimination of the similarity metric in local neighbors.

K R Data 97 (%) Data 450 (%)

1 5 61.86 69.11
2 5 71.13 74.67
3 5 85.57 81.33
1 10 57.73 62.00
2 10 63.92 65.78
3 10 71.13 71.33
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expected, the corresponding Nao pose (Fig. 9b) achieves
the best similarity. Meanwhile, the symmetric Nao robot
pose (Fig. 9c) is distinguished from the human pose
(Fig. 9a). Moreover, since the poses shown in Fig. 9d and
f are similar, their distances to the human pose are
approximate and the least similar pose (Fig. 9e) has the
furthest distance.

Finally, an experiment is conducted on Data 97 and
Data 450. For each human pose θH

i , we refer to the
corresponding Nao pose obtained by our framework as
θN
i . Then we take a range of R Nao robot poses before and

after θN
i into consideration in order to know if θN

i is among
the nearest K poses of θH

i in the ð2Rþ1Þ poses in total. To
be noted, the frame interval of Data 450 is about 0.2 s, thus
it maybe unable to discriminate between the contiguous
poses for humans. By applying different R and K, the result
is summarized in Table 4. It can be concluded that the
similarity metric has a stable ability to distinguish the pose
from similar neighbors.

5. Conclusion

In this paper, we propose a novel framework for
humanoid robot imitation with pose similarity metric
learning. DOF angles are used to represent poses. Given a
human pose, we adopt the related angles as the target
pose of a Nao robot. Through whole body balance control,
the stable pose is achieved. To solve the physical con-
straints of the Nao robot, we apply three transient poses to
the original pose transfer, thus making some failure cases
feasible. To be further, a latent structure model is applied
to study the shared information between human motion
space and Nao robot motion space, where the similarity
metric is learned. Experimental results demonstrate that
the imitation is satisfied and the similarity metric is
discriminative.

Regarding to future works, we would like to explore a
safe way to deal with self-occluded and auto-collision
poses and make use of motion segmentation algorithms
to find the key poses to be transferred, thus improving the
smooth of the movements.
Acknowledgement

This work was supported in part by the National
Natural Science Foundation of China (61170142), by the
National Key Technology R&D Program under Grant
2011BAG05B04, and by the Program of International S&T
Cooperation (2013DFG12840).
References

[1] M. Lopes, F. Melo, L. Montesano, J. Santos-Victor, Abstraction levels
for robotic imitation: overview and computational approaches, in:
From Motor Learning to Interaction Learning in Robots, Springer,
2010, pp. 313–355.

[2] A.R. Ibrahim, W. Adiprawita, Analytical upper body human motion
transfer to naohumanoid robot, Int. J. Electr. Eng. Inf. 4 (4) (2012).

[3] M. Riley, A. Ude, K. Wade, C.G. Atkeson, Enabling real-time full-body
imitation: a natural way of transferring human movement to
humanoids, in: IEEE International Conference on Robotics and
Automation, 2003. Proceedings. ICRA'03, vol. 2, IEEE, New York,
2003, pp. 2368–2374.

[4] C. Ott, D. Lee, Y. Nakamura, Motion capture based human motion
recognition and imitation by direct marker control, in: Eighth IEEE-
RAS International Conference on Humanoid Robots, 2008. Huma-
noids 2008, IEEE, New York, 2008, pp. 399–405.

[5] J. Aleotti, A. Skoglund, T. Duckett, Position teaching of a robot arm by
demonstration with a wearable input device, in: International
Conference on Intelligent Manipulation and Grasping (IMG04),
2004, pp. 1–2.

[6] C. Stanton, A. Bogdanovych, E. Ratanasena, Teleoperation of a
humanoid robot using full-body motion capture, example move-
ments, and machine learning, in: Proceedings of the Australasian
Conference on Robotics and Automation, 2012.

[7] S. Wehner, M. Bennewitz, Humanoid gait optimization based on
human data, Automat.: J. Control Meas. Electron. Comput. Commun.
52 (3) (2011).

[8] T. Sugihara, Y. Nakamura, H. Inoue, Real-time humanoid motion
generation through zmp manipulation based on inverted pendulum
control, in: IEEE International Conference on Robotics and
Automation, 2002. Proceedings. ICRA'02, vol. 2, IEEE, New York,
2002, pp. 1404–1409.

[9] B. Stephens, C. Atkeson, Modeling and control of periodic humanoid
balance using the linear biped model, in: Ninth IEEE-RAS Interna-
tional Conference on Humanoid Robots, 2009. Humanoids 2009,
IEEE, New York, 2009, pp. 379–384.

[10] J. Koenemann, M. Bennewitz, Whole-body imitation of human
motions with a nao humanoid, in: 2012 Seventh ACM/IEEE Interna-
tional Conference on Human–Robot Interaction (HRI), IEEE, New
York, 2012, pp. 425–425.

[11] F. Zuher, R. Romero, Recognition of human motions for imitation and
control of a humanoid robot, in: Robotics Symposium and Latin
American Robotics Symposium (SBR-LARS), 2012 Brazilian, IEEE,
New York, 2012, pp. 190–195.

[12] T. Harada, S. Taoka, T. Mori, T. Sato, Quantitative evaluation method
for pose and motion similarity based on human perception, in: 2004
Fourth IEEE/RAS International Conference on Humanoid Robots, vol. 1,
IEEE, New York, 2004, pp. 494–512.

[13] C. Chen, Y. Zhuang, F. Nie, Y. Yang, F. Wu, J. Xiao, Learning a 3d
human pose distance metric from geometric pose descriptor, IEEE
Trans. Vis. Comput. Graph. 17 (11) (2011) 1676–1689.

[14] J. Yu, Y. Rui, Y.Y.Tang, D. Tao, High-order distance-based multiview
stochastic learning in image classification, IEEE Transactions on
Cybernetics, http://dx.doi.org/10.1109/TCYB.2014.2307862, 2014.

[15] J. Yu, D. Tao, M. Wang, Adaptive hypergraph learning and its
application in image classification, IEEE Trans. Image Process. 21
(7) (2012) 3262–3272.

[16] J. Yu, M. Wang, D. Tao, Semisupervised multiview distance metric
learning for cartoon synthesis, IEEE Trans. Image Process. 21 (11)
(2012) 4636–4648.

[17] J. Yu, D. Tao, J. Li, J. Cheng, Semantic preserving distance metric
learning and applications, Inf. Sci. (2014), http://dx.doi.org/10.1016/j.
ins.2014.01.025.

[18] P. Li, M. Wang, J. Cheng, C. Xu, H. Lu, Spectral hashing with
semantically consistent graph for image indexing, IEEE Trans. Multi-
med. 15 (1) (2013) 141–152.

[19] M. Wang, R. Hong, X.-T. Yuan, S. Yan, T.-S. Chua, Movie2comics:
towards a lively video content presentation, IEEE Trans. Multimed.
14 (3) (2012) 858–870.

[20] M. Wang, B. Ni, X.-S. Hua, T.-S. Chua, Assistive tagging: a survey of
multimedia tagging with human–computer joint exploration, ACM
Comput. Surv. (CSUR) 44 (4) (2012) 25.

[21] N. Naksuk, C.G. Lee, S. Rietdyk, Whole-body human-to-humanoid
motion transfer, in: 2005 Fifth IEEE-RAS International Conference on
Humanoid Robots, IEEE, New York, 2005, pp. 104–109.

[22] T. Sugihara, Y. Nakamura, Whole-body cooperative balancing of
humanoid robot using cog Jacobian, in: IEEE/RSJ International

http://refhub.elsevier.com/S0165-1684(14)00394-6/sbref500
http://refhub.elsevier.com/S0165-1684(14)00394-6/sbref500
http://refhub.elsevier.com/S0165-1684(14)00394-6/sbref5007
http://refhub.elsevier.com/S0165-1684(14)00394-6/sbref5007
http://refhub.elsevier.com/S0165-1684(14)00394-6/sbref5007
http://refhub.elsevier.com/S0165-1684(14)00394-6/sbref13
http://refhub.elsevier.com/S0165-1684(14)00394-6/sbref13
http://refhub.elsevier.com/S0165-1684(14)00394-6/sbref13
http://dx.doi.org/10.1109/TCYB.2014.2307862
http://refhub.elsevier.com/S0165-1684(14)00394-6/sbref15
http://refhub.elsevier.com/S0165-1684(14)00394-6/sbref15
http://refhub.elsevier.com/S0165-1684(14)00394-6/sbref15
http://refhub.elsevier.com/S0165-1684(14)00394-6/sbref16
http://refhub.elsevier.com/S0165-1684(14)00394-6/sbref16
http://refhub.elsevier.com/S0165-1684(14)00394-6/sbref16
http://dx.doi.org/10.1016/j.ins.2014.01.025
http://dx.doi.org/10.1016/j.ins.2014.01.025
http://refhub.elsevier.com/S0165-1684(14)00394-6/sbref18
http://refhub.elsevier.com/S0165-1684(14)00394-6/sbref18
http://refhub.elsevier.com/S0165-1684(14)00394-6/sbref18
http://refhub.elsevier.com/S0165-1684(14)00394-6/sbref19
http://refhub.elsevier.com/S0165-1684(14)00394-6/sbref19
http://refhub.elsevier.com/S0165-1684(14)00394-6/sbref19
http://refhub.elsevier.com/S0165-1684(14)00394-6/sbref20
http://refhub.elsevier.com/S0165-1684(14)00394-6/sbref20
http://refhub.elsevier.com/S0165-1684(14)00394-6/sbref20


J. Lei et al. / Signal Processing 108 (2015) 136–146146
Conference on Intelligent Robots and Systems, 2002, vol. 3, IEEE,
New York, 2002, pp. 2575–2580.

[23] H. Lee, A. Battle, R. Raina, A.Y. Ng, Efficient sparse coding algorithms,
Adv. Neural Inf. Process. Syst. 19 (2007) 801.

[24] A.P. Shon, K. Grochow, R.P. Rao, Robotic imitation from human motion
capture using Gaussian processes, in: 2005 Fifth IEEE-RAS Interna-
tional Conference on Humanoid Robots, IEEE, New York, 2005,
pp. 129–134.

[25] V.A. Prisacariu, I. Reid, Shared shape spaces, in: 2011 IEEE Interna-
tional Conference on Computer Vision (ICCV), IEEE, New York, 2011,
pp. 2587–2594.
[26] A. Shon, K. Grochow, A. Hertzmann, R.P. Rao, Learning shared latent
structure for image synthesis and robotic imitation, in: Advances in
Neural Information Processing Systems, 2005, pp. 1233–1240.

[27] C.H. Ek, P.H. Torr, N.D. Lawrence, Gaussian process latent variable
models for human pose estimation, in: Machine Learning for Multi-
modal Interaction, Springer, 2008, pp. 132–143.

http://refhub.elsevier.com/S0165-1684(14)00394-6/sbref23
http://refhub.elsevier.com/S0165-1684(14)00394-6/sbref23

	Whole-body humanoid robot imitation with pose similarity evaluation
	Introduction
	Humanoid robot imitation
	Pose representation
	Support leg
	Transient poses
	Balance control

	Pose similarity metric learning
	Motion space
	Shared latent space

	Experimental results
	Qualitative analysis
	Quantitative analysis
	Similarity metric evaluation

	Conclusion
	Acknowledgement
	References




