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ABSTRACT

We aim to solve the object recognition problem by a novel
contour feature called Deformable Edge Set (DES). The DES
consists of several Deformable Edge Features (DEF), which
is deformed from an edge template to the actual object con-
tour according to the distribution model of pixels. Then the
DES is constructed based on the combination of DEF, where
the arrangement and the deformable parameters are learned in
a subspace. The RealAdaBoost algorithm is further utilized
to select meaningful DES to localize the object. Experimen-
tal results show that the proposed approach not only locates
the object bounding boxes but also captures the object con-
tours well. It also achieves performance competitive with the
commonly-used algorithms.

Index Terms— Deformable edge, Edge template, Match-
ing score, PCA, RealAdaBoost

1. INTRODUCTION

Object recognition using shape information is a fundamen-
tal problem of computer vision. To describe the object shape,
some researchers utilized local shape templates. Shotton et al.
[3] built a class-specific codebook of local fragments of con-
tours using a novel formulation of chamfer matching. Li et
al. [8] designed the omega-shape features to describe peo-
ple’s head-shoulder parts for efficient pedestrian detection.
Marszalek et al. [1] proposed an object recognition approach
that is based on the generalizations of segmentation masks,
which carried information about the extent of objects. Other
researchers designed the global shape model which consid-
ered the whole object silhouette as the descriptor. Bai et al.
[4] used the skeleton information to capture the main structure
of the object with a tree-union structure, which had particu-
lar advantage in modelling articulation and non-rigid defor-
mation. Toshev et al. [5] proposed a bilayer segmentation
method for extraction of image regions that resembled the
global properties of a model boundary structure. Eslami et
al. [2] adopted a type of deep Boltzmann machine for the task

of modelling foreground/background and parts-based shape
images.

The local shape features are relatively consistent to illu-
mination variance, occlusions and background noises, so that
they are able to classify the target object with the background.
In the ideal case, the local shape features should be able to not
only describe the object contour, but also classify the back-
ground edges with the foreground edges. Most of the tradi-
tional deformable edge features solve the matching problem
in a local region, so that it may mismatch to inner contours or
background edges. In addition, the geometric relationship be-
tween the deformable edge features is also important. Group-
ing the deformable edges has certain advantage because it is
consistent with the perceptual grouping and recognition of hu-
man vision. It will also contribute to the description ability of
continuous contours.

Inspired by these issues, we propose the Deformable Edge
Set (DES). The key idea is to encode the local shape using de-
formable templates and then to group them to capture higher
level shape characteristics. Our contributions are two folds.
Firstly, the Deformable Edge Feature (DEF) is designed based
on a set of edge templates and the distribution model of pix-
els [6]. In addition, the DES is constructed encoding the ge-
ometric relationship between neighboring DEFs. This pro-
cess is achieved by efficiently learning the DEF arrangement
and model parameters in a subspace. Compared to traditional
shape features, the DES focuses on the continuous contours
rather than general shape characteristics. The resulting clas-
sifier trained by RealAdaBoost algorithm works well on both
the objects bounding boxes localization and the contour de-
tection. The experimental results on ETHZ shape dataset [7]
show that the proposed method achieves promising perfor-
mance on all the 5 object categories.

2. DEFORMABLE EDGES

In this section, we will introduce how to represent the local
shape information by DEF. DEF extraction consists of two
steps, template matching and edge deformation. In the tem-



Fig. 1. Illustration of DEF. (a) Edge template (blue lines) and matched edges (green lines) in 5 swans.(b) and (c) show the
deformation of the first and second principal components (the eigenvalue increases from pink to red lines).

plate matching procedure, we generate a set of edge templates
by sampling the lines from 6 pixels to 1/3 of the object win-
dow size. Given an input edge image E, each template t is
matched to the edges in E to get the best matching result e∗

following

e∗ = argmin
|e|=|t|,e∈E

D(e, t), . . . (1)

where |e| is the length of edge e, D(e, t) is the normalized
distance between two edges e and t with the same length

D(e, t) =
1

|e|

|e|∑
i=1

(d(ei, ti)+

α|O(ei)−O(ti)|). . . . (2)

In (2), ei and ti are the ith pixel of e and t respectively,
d(ei, ti) is the Euclidean distance between these two pixels,
O(·) is the normalized orientation, and α is the constant to
balance the weight of the geometric location and the orien-
tation. Fig. 1(a) shows two edge templates and the matched
contours on 5 swans images in ETHZ database.

In the edge deformable procedure, the distribution model
of the pixels in the matched edges is utilized. For each edge
template, denote the matched edge e∗ by a 2|e∗| dimensional
vector based on its coordinate {e∗1,x, e∗1,ye∗2,x, e∗2,y, . . .}, for
each input image, there will be such a 2|e∗| dimensional vec-
tor. Then the DEF f is generated by applying PCA on these
vectors

fa1,...,ap = µ+

p∑
i=1

aivi, . . . (3)

where µ is the mean edge over all samples, v is the eigenvec-
tor, the parameter ai is bounded by |ai| ≤ 2

√
λi, and λ is the

eigenvalue. The equation (3) means that DEF encodes the de-
formation of edges by v with the weight ai. Fig. 1(b) and Fig.
1(c) show the deformation described by the first two compo-
nents. It could be seen that the edge deforms from pink lines
to red lines, which corresponds to the ai varying from −

√
λi

to
√
λi.

In our implementation, we utilize the first three compo-
nents so that it allows us to keep at least 95% energy. Given
an input edge graph E and a DEF fa1,...,ap , the matching cost
is calculated by

C(E, f) = min
i,j,k,e∈E

D(e, fai,aj ,ak). . . . (4)

We quantize the ai, aj , ak to 15 bins, 10 bins, and 6 bins re-
spectively. The distance transform [3] is utilized to calculate
the optimal a∗i , a

∗
j , a
∗
k efficiently.

3. DEFORMABLE EDGE SET

3.1. Constructing DES

The Deformable Edge Set (DES) is defined as a set of DEF

F = {f1, f2, . . . , fn}, . . . (5)

where the DEFs in DES are arranged in a chain to describe
the continuous contour. Each f i, 1 < i < n is adjacent to
f i−1 and f i+1, which leads to two constraints. Firstly, the
two adjacent DEFs should not lay far away from each other.
In addition, they should not construct a circle. We formulate
these constraints as

d(µi|µi|, µ
i+1
1 ) ≤ 6

d(µi1, µ
i+1
|µi+1|) ≥

1

4
(|µi|+ |µi+1|), . . . (6)

where µi is the mean of f i over all images, µij is the jth pixel
of µi, |µ| is the length of µ.

Given an edge map E and a DES F, the matching cost of
DES is the sum of the matching cost of each DEF (4) and the
cost of all adjacent DEFs

C(E,F ) =

n∑
i=1

C(E, f i) + β

n−1∑
i=1

C(f i, f i+1), . . . (7)

where



Fig. 2. Illustration of DES. (a) a DES which consists of 3 DEFs (green lines). (b) and (c) show the deformation of the first and
second principal components (the eigenvalue increases from pink to red lines).

Fig. 3. Examples of bounding boxes location and boundary location result in ETHZ database.

C(f i, f i+1) = |D(f i, µi)−D(f i+1, µi+1)|, . . . (8)

β is the weight of the adjacent cost, set as 1.25 in our experi-
ments. The adjacent cost (8) is calculated by accumulating the
deformation differences of two adjacent DEFs. This cost will
be small in a well-matched object since the adjacent edges
in any objects has similar deformations. Fig. 2(a) gives the
example of a DES which consists of 3 DEFs.

3.2. Using DES for recognition

Because we utilize 3 components in DEF extraction, min-
imizing equation (7) requires us to solve the optimization
problem with 3n parameters. Using brute force to enu-
merating the possible solutions is not realistic. For a DES
F = {f1, f2, . . . , fn}, we consider the 3n−dimensional
parameter space M = {a1,i, a1,j , a1,k . . . an,i, an,j , an,k}.
Similar to the strategy use in section 2, we move the op-
timization problem to the subspace by PCA. The model
parameters of DES are estimated by

Mb1,...,bp = µ′ +

p∑
i=1

biv
′
i, . . . (9)

where µ′ is the average parameters for all training samples,
v′i is the eigenvector, the parameter bi is bounded by |bi| ≤
2
√
λ′i, and λ′ is the eigenvalue. We still use the top three

principal components and quantize them to 15 bins, 10 bins,
and 6 bins respectively. As a result, the learning process of
DES parameters takesO(15×10×6) time, which is far more
efficient than the brute force strategy.

In the training process, we begin with an initial DEF
and incrementally grows it into a DES. In each iteration, we
search all adjacent DEFs following the constraint (6). For
each candidate DEF, the matching cost function (7) of the
DES is updated. Then the model parameter M is calculated
to update the parameter subspace (9). The DEF with the
minimum cost will be added to current DES. This process is
repeated until the subspace fail to keep 95% of the energy or
the total number of DEF exceeds 12. Fig. 2(b) and Fig. 2(c)
illustrate a DES deformed by the first and second principal
component.

We utilize DEF and DES as shape features for object
recognition in RealAdaBoost [9] framework. The minimum
matching cost (7) is utilized as the feature response. The
objects are detected using the classifier trained to 10−6 false
positive rate. Given a pixel x in a detection window, the prob-
ability of x being in any edges is the sum of the confidence of
DEFs including x

P (x) =
∑
x∈fi

W+
Cx

W+
Cx

+W−Cx

, . . . (10)

whereCx is the matching score corresponding to x of f i,W±

is the distribution on positive samples and negative samples
respectively. The final contours are obtained by averaging
(10) in the sliding windows of multiple scales.

4. EXPERIMENTS

We show the performance of the proposed method using the
ETHZ shape dataset [7], which consists of 5 classes includ-
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Table 1. Comparison of Average Precision (AP) with commonly-used algorithms on ETHZ shape database.
Felzenszwalb [13] Ma [14] Wang [11] Srinivasan [12] Li [15] DEF DES

Applelogos 89.1 88.1 88.6 84.5 82.3 90.1 92.0
Bottles 95.0 92.0 97.5 91.6 90.0 92.0 97.5
Giraffes 60.8 75.6 83.2 78.7 69.2 80.4 81.8
Mugs 72.1 86.8 84.3 88.8 98.0 86.8 89.8
Swans 39.1 95.9 82.8 92.2 81.0 88.2 92.6
Mean 71.2 87.7 87.3 87.2 84.1 87.5 90.2

‘

Table 2. Accuracy of localized object boundaries. Each entry is the AC/AP.
Bounding boxes [6] Ferrari [6] DEF DES

Applelogos 42.5/40.8 91.6/93.9 91.4/91.5 92.7/93.2
Bottles 71.2/67.7 83.6/84.5 83.7/83.1 84.5/87.2
Giraffes 26.7/29.8 68.5/77.3 65.0/75.2 73.3/79.2
Mugs 55.1/62.3 84.4/77.6 82.7/77.6 83.9/80.1
Swans 36.8/39.3 77.7/77.2 74.3/75.2 80.2/84.4

ing applelogo, bottle, giraffe, mug and swan. This dataset is
challenging since the objects appear in a wide range of scales
with intra-class shape variations. We follow the training and
testing protocol in [7]. For applelogos and giraffes, 80 × 80
windows with 6,154 edge templates are utilized. For mugs,
100 × 90 windows with 6,982 edge templates are adopted.
100 × 60 windows and 5,610 edge templates are used for
swans, while 40 × 100 windows and 2,772 edge templates
for bottles. The α in equation (2) are set to 4 for applelogos,
swans and giraffes, 6 for mugs, and 3 for bottles.

In table 1, we compare the Average Precision (AP) of our
algorithm with the commonly-used algorithms [11][12][13]
[14][15]. These algorithms achieve the state-of-the-art results
on this database. It could be seen that DEF shows comparable
result with these algorithms. The DES achieves 3% better
accuracy compared to DEF, which also shows the best result
on 2 categories, and the second best results on the other 3
categories. This signifies the advantage of grouping DEF to
capture the continuous contour information.

In table 2, we compare the performance of the boundary
location with [6] using both the AP and the Average Cover-
age (AC) as the evaluation protocol. It shows that only using
DEF, the accuracy is slightly lower than [6]. Combining DEF
to DES, the accuracy is significantly improved, especially for
the swans and giraffes. This result is reasonable since com-
pared to DEF, DES is able to filter some false matches on the
inner or background edges. For the swans images which in-
clude a lot of background edges in the water surface, or the
giraffes images where the giraffes are surrounded by the for-
est and prairie, the advantage of using DES is clear. Fig. 3
shows some recognition examples and localized contours.

5. CONCLUSION

In this paper, we propose a novel local shape features set DES
which consists of several deformable edge features DEF for
object recognition. The local shape information is encoded by
the pixel distribution model and further grouped based on the
geometric relationship to describe continuous contour. The
experimental results show that the boosted classifiers trained
on DEF and DES work well on both the object recognition
and boundary localization tasks.
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