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Abstract

We propose a novel mapping method to improve the train-

ing accuracy and efficiency of boosted classifiers for object

detection. The key step of the proposed method is a non-

linear mapping on original samples by referring to the basis

samples before feeding into the weak classifiers, where the

basis samples correspond to the hard samples in the cur-

rent training stage. We show that the basis mapping based

weak classifier is an approximation of kernel weak clas-

sifiers while keeping the same computation cost as linear

weak classifiers. As a result, boosting with such weak clas-

sifiers is more effective. In this paper, two different non-

linear mappings are shown to work well. We adopt the

LogitBoost algorithm to train the weak classifiers based on

the Histogram of Oriented Gradient descriptor (HOG). Ex-

perimental results show that the proposed approach signif-

icantly improves the detection accuracy and training effi-

ciency of the boosted classifier. It also achieves high per-

formance on public datasets for both pedestrian detection

and general object detection tasks.

1. Introduction

Object detection of a special class is a fundamental problem

of computer vision. One of the major challenges in this field

is that the object appearances may vary greatly due to many

factors, such as different illuminations, view points, poses,

etc. This has motivated inventions of various approaches.

Among them, a widely used paradigm is to train a classifier

on local features [17][30] or descriptors [5][23] using algo-

rithms of boosting family. For example, Viola et al. [30]

build an efficient face detector using AdaBoost based on

Haar-like feature. Zhang et al. [36] propose an improved

version of Haar feature based on up-right human body and

further select them to construct a cascade pedestrian detec-

tor. Cabrera et al. [25] investigate the use of boosted domi-

nant orientation templates to learn a binary mask that allows

to remove background clutter and include relevant context

information. Dollar et al. [11] exploit the correlation of

neighboring detection windows in boosted classifier and use

fast feature pyramids on pedestrian detection [10].

Boosting family algorithms achieve considerable perfor-

mance for some object detection tasks. However, since the

boosting procedure focuses on the hard samples gradually,

it gets more and more difficult to find the weak classifiers

that can efficiently improve the classification power of the

strong classifier. For those more complicated objects such

as the multi-view and multi-pose pedestrian, the problem

becomes much more serious that in later training rounds

the current classification task might be beyond the ability of

the weak classifier [34]. As a result, the training may con-

verge very slowly or can not converge at all. In this paper,

we propose a novel basis mapping approach in the boost-

ing framework to solve the above problem. The basis map-

ping maps the original samples into a constrained region re-

ferring to the current hard-to-classify samples (namely ba-

sis sample) in each boosting round, which makes positive

patterns with less inner-class variation and easier to be dis-

criminated from negative patterns. As a result, boosting on

such mapped region is much more effective than that on the

original sample space. In addition, we show that the weak

classifier based on basis mapping is an approximation of

using kernel methods, while keeping the computation cost

same as the linear methods, so that both the detection accu-

racy and the training efficiency of the boosted classifier will

be improved. In our case, the mapping is realized by the

proposed Histogram Intersection Mapping (HIM) and the

CHi-square Mapping (CHM). The LogitBoost algorithm is

adopted to train the cascade classifier with the mapped HOG

descriptor. Several experiments on public datasets are used

to evaluate our method. The results show that our method

improves both the accuracy and the training efficiency of the

boosted classifier. It also achieves comparable performance

with the commonly-used approaches in both pedestrian and
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general object detection tasks.

The rest of our paper is structured as follows. Section 2

gives the related works on object detection. Section 3 de-

scribes the proposed basis mapping method and two differ-

ent non-linear mappings to enhance the boosting. Section

4 shows the relationship of the basis mapping and kernel

method. Section 5 gives details of the LogitBoost algorithm

with the proposed basis mapping. Section 6 shows the ex-

perimental results on INRIA pedestrian, Caltech pedestrian

and PASCAL VOC 2007 datasets. Conclusions are in the

last section.

2. Related Work

There have been a wide variety of approaches developed for

object detection. Most of them focus on designing more dis-

criminative local descriptors and using appropriate machine

learning methods.

There are many local features and descriptors proposed

for various object detection tasks. Most of them reflect

the characteristic of some pre-defined local patterns, e.g.,

Haar [30][36], covariance matrix [28][29], and contour-

based descriptor [21]. In these years, HOG descriptor

[9][10][12][22][35][37] becomes one of the most popular

local descriptors in object detection due to its high discrim-

ination ability. Dalal & Triggs [9] propose the basic form of

the HOG descriptor with 2×2 cells. Multi-size versions are

developed in [3][12][37], and further extended to pyramid

structure [4][8][10][22][24][35]. HOG descriptor is also

combined with other low-level features. Levi et al. [20] uti-

lize an accelerated version of the Feature Synthesis method

on the low-level description of multiple object parts. Bar-

Hillel et al. [2] design an iterative process including feature

generation and pruning using multiple operators for part lo-

calization. Chen et al. [6] propose Multi-Order Contex-

tual co-Occurrence (MOCO), to implicitly model the high

level context using solely detection responses from the ob-

ject detection based on the combination of HOG and LBP.

Paisitkriangkrai et al. [26] utilize new features built on the

basis of low-level visual features combination and spatial

pooling, which improves the translational invariance and

thus the robustness of the detection process.

Boosting framework is widely used in training the cas-

cade classifier for fast object detection. Conventional boost-

ing algorithms such as AdaBoost is well performed on

the object classes with small intra-class variation, e.g., the

frontal-view faces [30]. However, it shows poor result for

more complicated objects with large inner-class variations

such as multi-view and multi-pose pedestrians. In order

to solve this problem, some previous approaches use more

powerful weak classifiers. For example, Zhu et al. [37]

apply linear SVM on HOG descriptor as the weak classi-

fier to build a cascade detector. Laptev [19] utilizes Fisher

Linear Discriminative Analysis (FLDA) to project the his-

togram feature onto one principal direction for AdaBoost

training. In consideration of the efficiency, most of these

weak classifiers are linear weak classifiers, so the perfor-

mance improvement is still limited. Other approaches fol-

low the divide-and-conquer strategy to build strong classi-

fiers with more complex structures. For example, Huang et

al. [18] utilize the vector boosting to train the predictors for

the branching nodes of the tree that have multi-components

outputs as vectors for face detection. Wu et al. [34] propose

the cluster boosted tree method, in which the sample space

is divided by unsupervised clustering based on discrimina-

tive image features selected by boosting algorithm. Heng

et al. [16] design a shrink boost method solving a sparse

regularization problem with two iterative steps. First, a

boosting step uses weighted training samples to learn a full

high dimensional classifier on all features. Next, a shrink-

age step shrinks least discriminative classifier dimension to

zero to remove the redundant features. Unfortunately, these

algorithms increase the computation complexity of both the

training and testing procedure. It is also relatively difficult

to tune the parameters in order to achieve a better perfor-

mance. Compare to these algorithms, the proposed basis

mapping is relatively efficient. It is also more intuitive and

easier to be implemented.

3. Basis Mapping

3.1. Basis Mapping

During the boosting procedure, the weak learner is forced to

focus on the hard samples in the training set. This makes it

more and more difficult to find weak classifiers. Therefore,

the key issue of improving the effectiveness of boosting is

how to facilitate the weak classifier training on these hard

samples.

A reasonable method is to restrict the current classifica-

tion problem within a constrained region, rather than con-

sidering the whole sample space. In this paper, we propose

to map the original samples into the constraint region sub-

ject to the hard samples. Intuitively, such mapping “moves”

the original samples into a region “around” the hard sam-

ples, so that the weak learner can specifically learn the clas-

sification hyperplane within the region. This learning task

should be much easier than that in the whole sample space.

We define the basis mapping as a process that condenses

the sample space into a region by referring to a hard sam-

ple, namely basis sample. Formally, we formulate the basis

mapping which maps the original space Rm to a new space

at the same dimension

Φ(x) = ϕ(x,xbasis) ϕ : Rm ×Rm → Rm, (1)

where x ∈ Rm is an original sample vector and xbasis ∈
Rm is a basis sample vector.
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3.2. Construction of Basis Mapping

Based on equation (1), we present a kind of mapping that

restricts the mapped samples to a “hypersphere” around the

Φ(xbasis) with radius 2||Φ(xbasis)|| as

∀x ∈ Rm : ||Φ(x)− Φ(xbasis)|| ≤ 2||Φ(xbasis)||, (2)

where || • || represents the sum of absolute x(i) as (3), and

x(i) is the ith dimension of x

∀x ∈ Rm : ||x|| ≡

m∑

i=1

||x(i)||. (3)

We further give (4), which is a sufficient condition of (2) to

constrain the mapping function

||Φ(x)− Φ(xbasis)|| ≤ ||Φ(x)||+ ||Φ(xbasis)||

≤ ||2Φ(xbasis)||.
(4)

Therefore, we use (5) as a constraint of the mapping func-

tion

∀x ∈ Rm : ||Φ(x)|| ≤ ||Φ(xbasis)||. (5)

Substituting ϕ into (5), it can be seen that ||ϕ(•, •)|| is a

kind of similarity measure for vectors in Rm. In our case,

the histogram features are used. Therefore, we adopt two

similarity metrics of histograms, the Histogram Intersec-

tion and the Chi-Square Distance respectively to conduct

the function ||ϕ(•, •)||.
Histogram intersection [22] is usually used as a similar-

ity metric for histogram-based representations of images. It

can be calculated as

SHI(x,xbasis) =

m∑

i=1

min(x(i),x
(i)
basis). (6)

Defining the basis mapping based on this measurement has

certain advantage because the L-1 distance based measure-

ment is more robust to outliers compared to L-2 distance.

According to (6), we define the Histogram Intersection

Mapping (HIM). Each dimension of the mapped vector can

be calculated as

Φ(i)(x) = ϕ
(i)
HIM (x,xbasis) = min(x(i),x

(i)
basis). (7)

To evaluate the effectiveness of the HIM, we train a clas-

sifier using HOG descriptor and LogitBoost algorithm (See

details in Section 5) on INRIA pedestrian dataset (See de-

tails in Section 6.1). The sample distributions on the first

selected HOG descriptor are plotted in Fig. 1. The X-axis

and the Y-axis represent the two most important dimensions

Figure 1. Sample distribution before and after HIM

of the HOG descriptor respectively. They correspond to the

two largest weights in the linear regression. Fig. 1(a) and

1(c) show the positive and negative sample distributions be-

fore the HIM. Fig. 1(b) and 1(d) show the distributions after

the HIM referring a basis sample at (9, 10) in original space.

The HIM maps the original samples into a condensed space,

where the pattern distributions become much more separa-

ble. So that it is easier to learn a classification hyperplane

in the mapped space.

Besides the HIM, we also propose another mapping in-

spired by the Chi-Square Distance. The Chi-Square Dis-

tance is another distance metric between histograms [1], as

formulated in (8)

SCHI(x,xbasis) = C −

m∑

i=1

w(m) (x
(i) − x

(i)
basis)

2

x(i) + x
(i)
basis

. (8)

We construct the CHi-square Mapping (CHM) by setting all

the w(m) to 1 and omitting the constant C

Φ(i)(x) = ϕ
(i)
CHM (x,xbasis) =

(x(i) − x
(i)
basis)

2

x(i) + x
(i)
basis

. (9)

Similarly, the sample distribution of CHM on INRIA

dataset is shown in Fig. 2, where the basis sample is (2,

2). It can be seen that the CHM also maps the original sam-

ples into a more condense space around the basis sample,

which makes the mapped space more appropriate for learn-

ing a classification hyperplane. These results show that the

CHM also plays the similar role as the HIM.

4. Basis Mapping and Kernel Method

Kernel methods map the original samples into an implicit

high-dimension space, where the linear classification is sub-

sequently applied. As a result, boosted classifier using ker-

nel weak classifiers achieves better performance compared
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Figure 2. Sample distribution before and after CHM

to traditional boosted classifier based on linear methods. In

this section, we will show that the basis mapping defined in

section 3 is an approximation of applying additive kernels

methods as weak classifiers in the boosting algorithm.

Generally, linear classification in the implicit space can

be implemented in the original space through the kernel

trick. Given two m-dimension samples x, z in the origi-

nal space and a kernel function K(x, z) that satisfies the

Mercer’s Condition, there exists a function ψ

K(x, z) = ψ(x) • ψ(z), (10)

where • is the dot product of two vectors.

In boosting training, learning weak classifier f could

be considered as a finding an optimal classification hyper-

plane based on the training samples in original m-

dimensional space. If the kernel method is applied, de-

note the optimal classification hyper-plane in the implicit

n-dimension space by w∗, given a sample in the original

m-dimension space by x = [x(1), . . . ,x(m)], the optimal

classification function f∗(x) is the dot product of the ψ(x)
and w∗

f∗(x) = w∗ • ψ(x). (11)

In the extreme case, if there is a vector x∗ ∈ Rm satisfies

ψ(x∗) = w∗, equation (11) can be implemented by (12)

f∗(x) = w∗ • ψ(x) = ψ(x∗) • ψ(x) = K(x,x∗). (12)

Using (12) for classification is relatively convenient. So the

only problem is to find out such an x∗. Unfortunately, in

most of the cases, ψ is not invertible or even ψ itself could

not be explicitly described, so it seems to be impossible to

find such an x∗. But in boosting framework, we could ap-

proximate x∗ by selecting one of the current training sam-

ples x′. The optimal f∗ is then approximated using the clas-

sification function f in (13)

f∗(x) ≈ f(x) = w′ • ψ(x) = K(x,x′), (13)

where w′ = ψ(x′). This implies that by referring to an ap-

propriate sample x′, the linear classification in the implicit

space could be approximated by the above kernel function.

Then we turn back to the basis mapping proposed in Sec-

tion 3. In HIM and CHM, each dimension is independent

with each other, so equation (1) could be written as

Φ(x) = ϕ(x,xbasis)

= [ϕ(x(1),x
(1)
basis), . . . , ϕ(x

(m),x
(m)
basis)].

(14)

Notice that the HIM corresponds to the histogram in-

tersection kernel, and CHM corresponds to the Chi-Square

kernel. Both of these kernels are additive kernels (15)

K(x,x′) =

m∑

i=1

k(x(i),x
′(i)). (15)

So the ϕ in equation (14) is exactly the same as the k in (15)

for HIM and CHM. Then the kernel classification function

(13) could be written as

f(x) = K(x,x′) =

m∑

i=1

ϕ(x(i),x
′(i)). (16)

As mentioned above, in the boosting framework, we could

use x′ to approximate x∗. This is achieved by evaluating

different hard samples in current training stage to get the

best one xbasis. Then (16) is achieved by (17)

f(x) =
m∑

i=1

ϕ(x(i),x
′(i)) =

m∑

i=1

ϕ(x(i),x
(i)
basis). (17)

We further fit a linear classifier based on (17) as the final

weak classifier

f(x) =

m∑

i=1

a(i)ϕ(x(i),x
(i)
basis) + b. (18)

According to (14), (18) is the linear classification on the

mapped space Φ(x) around the basis sample. The kernel

classification (13) is finally transformed to a linear classi-

fication. So we get the conclusion that the basis mapping

Φ : Rm → Rm is an approximation of additive kernel

classification in the original space, which significantly has

better discrimination power than simple decision stump or

linear weak classifiers. In general, the performance of a

boosted classifier mainly depends on the weak classifiers

[27]. So the proposed basis mapping will contribute to the

overall accuracy of the boosted classifier. Because the basis

mapping does not increase the feature dimension, the com-

putation cost will not increase much compared to the linear
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weak classifiers. In our implementation, the a and b in (18)

are learned by regularized least square.

5. LogitBoost based on Basis Mapping

In this section, we start with a brief description of the Log-

itBoost algorithm [15] and then introduce how to use the

basis mapping under LogitBoost framework.

For a binary classification problem, suppose the training

data as (x1,y1), . . . , (xN ,yN ), where xi is the ith training

sample and yi ∈ {0, 1} is the class label. The probability

of sample xi being a member of class 1 is represented by

p(xi) =
eF (xi)

eF (xi) + e−F (xi)
, (19)

where F is the classification function

F (x) =
1

2

T∑

j=1

fj(x). (20)

The LogitBoost algorithm treats the weak classifiers as

a set of regression functions fj(xi)j=1,2,,T by minimizing

the negative binomial log-likelihood of the training samples

l(y, p(xi)) through Newton iterations

l(y, p(xi)) = −

N∑

i=1

[yilog(p(xi))+

(1− yi)log(1− p(xi))]. (21)

(21)

This regression function fj(xi)j=1,2,,T fits the training

samples xi to response values zi

zi =
y − p(xi)

p(xi)(1− p(xi))
. (22)

After regression, F (xi) and p(xi) are updated according to

(20) and (19). Then the sample weights are updated as

wi = p(xi)(1− p(xi)). (23)

The proposed basis mapping is integrated into the Log-

itBoost framework as an independent module in each train-

ing round. The key process is how to select a hard sam-

ple as the basis sample. We know that the hard sample

should be the sample close to the classification hyperplane,

i.e. F (xi) ≈ 0. It can be seen from (19) that those sam-

ples with p(xi) ≈ 0.5 result in F (xi) ≈ 0, which can be

considered as the “hard samples”. According to (23), the

weight wi gets the maximum value when p(xi) is 0.5, so

we consider the samples with top 20% weights as candidate

basis samples and randomly select one at each time for the

basis mapping. This procedure repeats for Nb = 10 times

and the best basis mapping is selected. To learn the best

feature, the most intuitive way is to look through the whole

Parameters
N number of training samples

Nb number of basis samples per iteration

Nf number of features per iteration

T maximum number of weak classifiers
θ threshold of false positive rate (fpr)

Input: Training set {(xi, yi)},xi ∈ Rm, yi ∈ {0, 1}

1. Initialization wi = 1/N, F (xi) = 0, p(xi) = 0.5
2. Repeat for t = 1, 2, . . . , T

2.1 Compute zi (22) and wi (23)

2.2 For m = 1 to Nf

For n = 1 to Nb

2.2.1 Randomly select a basis sample xbasis with

top 20% weights

2.2.2 Calculate the original feature vectors xi

2.2.3 Calculate the mapped vectors

Φ(xi) = ϕ(xi,xbasis)
2.2.4 Fit the function f (18) by weighted least

square regression from Φ(xi) to zi
2.2.5 Select the best feature and basis sample

with minimum regression error

2.2.6 Calculate the fpr. If it is lower than θ, break

2.3 Update F (xi) and p(xi) using (20) and (19)

3. Output classifier F (x) = sign[
∑T

j=1 fj(x)]

Figure 3. LogitBoost training with basis mapping

feature pool, which is rather time consuming. So we re-

sort to a sampling method to speed up the feature selection

process. More specifically, a random sub-sample of size

Nf = log0.05/log0.95 = 59 will guarantee that we can

find the best 5% features with a probability of 95%. Fig. 3

illustrates the detailed algorithm.

6. Experiments

In this section, we show the effectiveness of the proposed

method on INRIA pedestrian, Caltech pedestrian and PAS-

CAL VOC 2007 dataset.

6.1. Experiment on INRIA pedestrian dataset

We first evaluate the basis mapping using the INRIA pedes-

trian dataset [9]. Detection on INRIA dataset is challenging

since it includes subjects with a wide range of variations in

pose, clothing, illumination, background and partial occlu-

sions. HOG descriptors from 4× 4 to 28× 56 cell size and

2× 2 cell arrangement are utilized. 5,672 HOG descriptors

are generated for 64× 128 scanning window.

In the experiments, we first follow the training and test-

ing protocols proposed by Dalal & Triggs [9]. In Fig. 4,

the performances of the boosted classifiers with different

basis mappings and without the basis mappings using the

same HOG feature are compared. All classifiers are trained
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Figure 4. FPPW evaluation on INRIA pedestrian dataset

to 10−6 false positive rate. The number of weak classi-

fiers and convergence issue will be discussed in section

6.4. It can be seen that all the algorithms with basis map-

pings clearly outperform the algorithms without basis map-

ping. The HIM and CHM consistently achieve about 3%

less miss rates at all FPPW, which is similar to the curve

’HOG+LogbitBoost(k)’ with HIKSVM as weak classifier.

This result shows that the weak classifier based on basis

mapping is a good approximation of kernel weak classifier.

In addition, we also notice that the HIM using hard samples

as basis samples achieves better accuracy than randomly

picking basis samples. This also happens on CHM. So it

shows the effectiveness of concentrating the classification

on the hard samples.

Furthermore, we evaluate our method under the criteria

of the detection rate versus False Positive rate Per Image

(FPPI) [32]. The average miss rate of these curves are il-

lustrated in Fig. 5. It could be seen that the basis mapping

(HOG+HIM, HOG+CHM) clearly improves the detection

accuracy of the object detector using the same HOG feature

and traditional boosting algorithm (HOG+LogitBoost). The

best one, HOG+HIM, reduces the miss rate greatly from

35.7% to 15.3%, to a similar level to using HIKSVM as

weak classifier. But the efficiency is much better for both

the training and the testing procedure. The accuracy is also

comparable with some boosted algorithm with more com-

plicate features (Crosstalk, ACF, Veryfast, Wordchannels),

which implies that using kernel weak classifiers with simple

features is also effective.

6.2. Experiment on Caltech pedestrian dataset

Next, we evaluate the proposed basis mapping using the

Caltech pedestrian dataset [13]. This dataset is one of the

largest public available pedestrian dataset. It offers a large

number of samples, which consists of approximately 10

hours of 640 × 480 30Hz video taken from a vehicle driv-

ing through regular traffic in an urban environment. About

Figure 5. FPPI evaluation on INRIA pedestrian dataset

Figure 6. FPPI evaluation on Caltech pedestrian dataset

250,000 frames with a total of 350,000 bounding boxes and

2,300 unique pedestrians are annotated. The individuals in

these datasets appear in many positions, orientations, and

background variety.

We follow the training and evaluation protocol proposed

by Dollar et al. [13]. The training sample size and HOG

feature pool are the same as used in INRIA dataset. The

pedestrians at least 50 pixels tall under no or partial oc-

clusion are evaluated. Fig. 6 illustrates the experimental

results of our approach and the state-of-the-art algorithms.

It could be seen that the accuracy of HOG feature is sig-

nificantly improved, where the miss rate is greatly reduced

from 46.9% (HOG+LogitBoost) to 28.3% (HOG+HIM) and

30.4% (HOG+CHM), and it is similar to the LogitBoost

with HIKSVM as weak classifier (28.4%). This significant

improvement proves the effectiveness of the proposed ba-

sis mapping. Our method also performs better than the al-

gorithms using HOG feature (MT-DPM) and some compli-

cated features (WordChannels, ACF+SDT).
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6.3. Experiment on PASCAL VOC 2007 dataset

Moreover, we employ the standard benchmark object detec-

tion dataset, PASCAL VOC 2007, to test our detector. The

PASCAL dataset contains images from 20 different cate-

gories with about 5,000 images for training and validation

and a test set of about 5,000 images. The object detection

performance is measured using the standard protocol: aver-

age precision (AP) per class, as well as the mean AP (mAP)

across all classes. For both measures, we consider that a

window is correct if it has an intersection-over-union ratio

of at least 50% with a ground-truth object instance.

The training sample size and HOG feature pool are dif-

ferent for different object categories. For the aeroplane,

bird, boat, bottle, chair, diningtable, person, pottedplant,

sofa, and TV monitor, all the samples are placed together

to train a single detector. For all other categories, the train-

ing samples are divided into the front/rear view samples

and side-view samples based on the aspect ratio, and then

trained into two detectors respectively. The final detection

result is based on the voting of these two detectors. The

sample size (w, h) used to train these classifiers are listed

in the second column of Table 1. The size of the HOG cell

ranges from 4×4 to w′×h′, where w′, h′ are the maximum

multiple of 4 which is smaller than w/2 and h/2. As a re-

sult, the size of the HOG feature pool ranges from 1,764 to

5,672 for different object categories.

In Table 1, we compare our method with the state-of-the-

art algorithms [6][7][14][33] in terms of detection AP on the

test set. From the results we could find that the basis map-

ping significantly improves the mAP at 12% using the same

HOG feature, which is similar to directly applying kernel

SVM as weak classifier. The HIM achieves the best result

on 6 categories, while CHM achieves the best result on 3

categories. This result is reasonable because it is difficult to

solve the general object detection problem by linear classi-

fiers. Using kernel classifier clearly contributes to the over-

all accuracy. In addition, we find that if the difficulty of the

detection task is beyond the description ability of HOG de-

scriptor, the HIM and CHM will fail to locate the object. In

the experiments, we notice that some of the false positives

of HIM and CHM are exact the same as HOG+LogitBoost.

This is similar to [31], where the false positives are due

to the insufficient description ability of features rather than

the classifiers. Our performance is better compare to the

SIFT fisher vectors [7], pyramid HOG [14], heterogeneous

features [33] and co-occurrence features [6]. Although the

features used in these algorithms are stronger than us, this

blank could be compensated by the proposed basis mapping

which enhances the classification to the kernel level. These

results show that the detectors trained on basis mapping are

effective for general object detection tasks.

Figure 7. Convergence speed of INRIA pedestrian dataset

6.4. Speed analysis

Finally, we compare the convergence speed of the train-

ing process. Fig. 7 plots the false positive rate against the

number of weak classifiers for detectors trained on INRIA

dataset. This figure shows that it is difficult for the con-

ventional training using LogitBoost with HOG descriptor

to converge, especially when the FPPW is lower. On the

other hand, the algorithms with HIM and CHM converge

faster. Among them, the HIM algorithm is found to be

the fastest, at the rate of approximately three times faster

than the conventional training without any basis mapping.

The convergence speed is a little slower than LogitBoost

with HIKSVM, which is due to the fact that the basis map-

ping is an approximation rather than exact equivalence. We

also notice that using hard samples for basis mapping con-

verges faster than using random training samples. In gen-

eral, the performance of boosted classifier is shown to be

positively proportional to the convergence speed in training.

This signifies that the proposed basis mapping can consis-

tently enhance the training accuracy and the training speed

of boosted classifiers.

We test the training and detection speed of different

methods on an Intel I7 dual core PC with 8GB memory. The

results are listed in Table 2. It could be seen that the train-

ing speed is greatly improved using the basis mapping com-

pared to using conventional linear weak classifiers, while

the testing speed is still the same. Compared to the Log-

itBoost utilizing efficient HIKSVM [22] as weak classifier,

both the training speed and testing speed are far better. So

we can get the conclusion that the basis mapping contributes

to the accuracy and efficiency at the same time.

7. Conclusion

In this paper, we proposed a basis mapping method that

is capable of improving accuracy and training speed of

boosted classifiers. The original samples are mapped to a
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Table 1. Experimental results on PASCAL VOC 2007 dataset. In the second column, the ‘f’ denotes the sample size for front/rear images.

There is only one detector for this category without ‘f’ label
Sample size HOG+LogitBoost HOG+HIM HOG+CHM Chen [6] Cinbis [7] Wang [33] Felzenszwalb [14]

aeroplane 128x64 27.8 55.5 53.7 41.0 56.1 54.2 36.6

bicycle 128x64

40x100(f)

52.3 61.9 54.4 64.3 56.4 52.0 62.2

bird 100x100 19.9 25.6 22.9 15.1 21.8 20.3 12.1

boat 100x100 17.2 25.3 26.9 19.5 26.8 24.0 17.6

bottle 40x120 18.3 31.4 27.2 33.0 19.9 20.1 28.7

bus 128x64

100x100(f)

31.0 57.2 56.6 57.9 49.5 55.5 54.6

car 100x60

100x100(f)

47.9 62.4 61.2 63.2 57.9 68.7 60.4

cat 100x60

100x100(f)

23.5 42.9 43.8 27.8 46.2 42.6 25.5

chair 100x100 18.3 23.7 21.4 23.2 16.4 19.2 21.1

cow 100x60

60x100(f)

23.2 35.2 34.7 28.2 41.4 44.2 25.6

dining ta-

ble

100x60 22.1 45.1 49.1 29.1 47.1 49.1 26.6

dog 100x60

80x100(f)

19.2 29.6 29.3 16.9 29.2 26.6 14.6

horse 100x100

60x100(f)

39.0 58.4 56.1 63.7 51.3 57.0 60.9

motorbike 128x64

40x100(f)

46.0 55.6 50.6 53.8 53.6 54.5 50.7

person 60x100 30.1 45.1 47.2 47.1 28.6 43.4 44.7

plant 60x100 17.2 20.9 20.0 18.3 20.3 16.4 14.3

sheep 100x100

60x100(f)

23.4 36.8 37.1 28.1 40.5 36.6 21.5

sofa 100x100 24.4 42.5 41.9 42.2 39.6 37.7 38.2

train 128x64

100x100(f)

42.1 49.0 49.0 53.1 53.5 59.4 49.3

tv 100x100 38.3 52.8 49.1 49.3 54.3 52.3 43.6

mAP - 29.1 42.8 41.6 38.7 40.5 41.7 35.4

Table 2. Training and testing speed of methods w/o basis mapping

Approach Training speed Patches/sec

HOG + LogitBoost 47 hours 167k

HOG + LogitBoost(k) 242 hours 8k

HOG + HIM 14 hours 181k

HOG + CHM 15 hours 174k

closed, restricted local region defined by identified hard-to-

classify samples. Such mapping modifies the distribution

of the samples so that classification performed on mapped

space is enhanced over classification on original un-mapped

space. This results in more efficient boosting. In addition,

we also show the relationship of the basis mapping and ker-

nel method. The linear classification in the mapped space

achieves similar performance with the non-linear classifi-

cation in the original space. Two basis mappings (namely

HIM and CHM) are proposed and shown their effectiveness

on INRIA, Caltech, and PASCAL VOC 2007 dataset.

The algorithms proposed in this paper are promising and

they will be further studied. Histogram-based features are

widely used in object detection. The proposed algorithm

is effective for other histogram-based descriptors such as

LBP histogram and co-occurrence histograms. We will also

attempt to utilize the proposed mapping in other machine

learning algorithms.
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