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Abstract

We set out an object localization scheme based on a
convex programming matching method. The proposed ap-
proach is designed to match general objects, especially ob-
jects with very little texture, and in strong background clut-
ter; traditional methods have great difficulty in such situa-
tions. We propose a convex quadratic programming (CQP)
relaxation method to solve the problem more robustly. The
CQP relaxation uses a small number of basis points to rep-
resent the target point space and therefore can be used in
very large scale matching problems. We further propose
a successive convexification scheme to improve the match-
ing accuracy. Scale and rotation estimation is integrated as
well so that the proposed scheme can be applied to general
conditions. Experiments show very promising results for the
proposed method in object localization applications.

1 Introduction

Finding objects in images, based on one or several tem-
plate images, has been an important task in computer vision.
Most early work on object location tries to locate objects
by matching a cloud of points. In such a problem setting,
the General Hough Transform and Geometric Hashing have
been widely applied. Deterministic annealing schemes [1]
have also been studied to match point clouds using a thin
plate spline model. In recent years, matching based on in-
variant distinguishable features such as SIFT [2] and affine
invariant features [3] has been attracting much attention. In-
variant features have been successfully applied to matching
texture-abundant objects. For objects that deform arbitrar-
ily or have very little texture, invariant features are not very
effective. In this paper, we study object localization based
on both robust features and robust matching schemes.

Object localization based on features on a template is in-
herently a consistent labeling problem, which is NP-hard
in general. A large volume of work has been devoted to
solving the matching problem more efficiently. Apart from
several special cases in which an exact solution is avail-
able by using dynamic programming [4] or maximum flow
[5], which have polynomial time complexity, most gen-
eral matching methods use approximation schemes. Greedy
schemes such as ICM [6] have been studied for matching
when features are relatively distinguishable. Graph Cut [7]
and BP [8] are more robust matching schemes. Graph Cut
has been mostly applied to stereo and BP has been applied
to stereo and object matching applications.

In this paper we set out a straightforward approach by
optimizing a consistent labeling problem. As in most con-
sistent labeling formulations, our energy function has two
terms: one matching cost term, and one smoothing term to
enforce the consistent matching of nearby feature points. In
this paper, we consider problems whose smoothing term is
convex and can be represented by an L2 norm. An L1 re-
laxation scheme [9, 10] with city block distance has been
studied by Jiang et al. in motion estimation and tracking.
Here, we use a Euclidean Distance, in an L2 relaxation for
object localization applications. The successive convexifi-
cation in [10] is in fact quite general and can also be applied
to the L2 relaxation. An L2 formulation is more suited
for applications when the displacement field is relatively
smooth, which is true for most object localization applica-
tions. Using an interior point method, the L2 formulation
can be solved as efficiently as can the L1 scheme.

Differently from most other approaches, we convert a
non-convex consistent labeling problem into a sequence of
easier convex quadratic programs. The convex QP relax-
ation is obtained by approximating the non-convex match-
ing cost function for each template feature point with its
lower convex hull. This scheme enables us to use a small
number of basis target points to represent the whole target
point space in the optimization process, and thus makes the
scheme well suited for large label-set matching problems.
To refine the matching, we propose shrinking the trust re-
gion for each feature point and at each stage solving a cor-
responding CQP. The proposed scheme is found to be able
to almost always find the global optimum. Detecting scale
and rotation is further integrated in the proposed scheme.
Experiments show that this matching scheme is very robust
and can solve problems for which invariant features become
too sparse.

2 Object Localization based on Convex
Quadratic Programming

2.1 Features for Matching

The features we use are the log-polar transformed image
patches centered on the feature points in the target and tem-
plate images. The log-polar transform simulates the human
visual system’s foveate property and puts more focus in the
center view than the periphery views. The log-polar feature
has large context and it is also not sensitive to small transla-
tions; this enables us to choose feature points more sparsely
in the target image. Notwithstanding the fact that the log-
polar transform feature increases robustness, matching is



still very likely to fail without a robust matching scheme
such as we present here.

2.2 Consistent Matching

Finding objects in an image can be formulated as a con-
sistent labeling problem, in which we assign a correspond-
ing point in the target image to a point on the template. The
assignment or matching should make the cost of matching
corresponding features low, and at the same time the assign-
ment for neighboring template points should be consistent.
We wish to find a mapping f from template points to the
target points that optimizes the following problem:

min
f




∑
s∈S

C(s, fs) + λ
∑

{p,q}∈N
||(fp − p) − (fq − q)||2




in which C(s, fs) is the cost of matching point s on the tem-
plate to the point fs in a target image; S is the set of feature
points on the template; N is the set of all neighboring point
pairs on the template, which consists of all the point pairs
connected by edges in the Delaunay graph of points in S;
|| · || is an L2 norm. The objective function consists of two
terms: the first is the matching cost term and the second
is a smoothing term to enforce consistency of matching for
nearby feature points. The weight of the smoothing term
is controlled by a constant λ. This optimization problem is
usually highly non-convex because of the non-convexity of
the matching cost function C(s, t) with respect to t. Notice
that this formulation is not scale and rotation invariant; we
will consider how to estimate the scale and rotation in § 2.5.

2.3 Convex Quadratic Programming Re-
laxation

The non-convexity of the matching problem makes it
hard to directly solve the problem in its original form. Here,
we propose relaxing the hard problem into an easier to solve
convex programming problem. For each s on the tem-
plate, we replace the matching cost C(s, fs) with a linear
combination of the basis target point costs: C(s, fs) �∑

t∈Bs
ξs,t · C(s, t), where Bs is the set of basis target

points for s and ξs,t are non-negative coefficients. These
points serve as a basis such that fs =

∑
t∈Bs

ξs,t · t, with
the constraint

∑
t∈Bs

ξs,t = 1 for each s. Then the relax-
ation problem becomes:

min{
∑
s∈S

∑
t∈Bs

ξs,tC(s, t) + λ
∑

{p,q}∈N
[(up − x(p) −

uq + x(q))2 + (vp − y(p) − vq + y(q))2]
}

with constraints:
∑
t∈Bs

ξs,t = 1, ∀s ∈ S

us =
∑
t∈Bs

ξs,t · x(t),

vs =
∑
t∈Bs

ξs,t · y(t), ∀s ∈ S

ξs,t ≥ 0, ∀s ∈ S, ∀t ∈ Bs

in which we denote functions x(s) and y(s) as extracting
the x and y component of point s. The matching result
fs ≡ (us, vs). Note that if we were to further constrain
the variables ξs,t to be binary (0 or 1) and if Bs includes
all the matching candidates for point s, the optimization
problem would be exactly equivalent to the original non-
convex matching problem. But the integer quadratic pro-
gram is hard to solve; we are most interested in the relaxed
convex QP for which efficient solution schemes exist. The
quadratic program has a close relation with the continuous
extension of the non-convex matching problem: the con-
tinuous extension of a matching problem is defined by first
interpolating the matching cost surface C(s, t) piecewise-
linearly with respect to t and then relaxing feasible match-
ing points into a continuous region (the convex hull of the
basis target points Bs).

The convex QP relaxation has several useful properties.
When Bs contains all the matching candidates for s, and the
continuous extension cost function C(s, t) is convex with
respect to t, ∀s ∈ S , CQP exactly solves the continuous
extension of the discrete matching problem. In practice, the
cost function C(s, t) is usually highly non-convex with re-
spect to t for each site s. In this case, the quadratic pro-
gramming formulation solves the continuous extension of
the reformulated discrete matching problem, with C(s, t)
replaced by its lower convex hull for each site s. In fact, we
need only include the basis set Bs comprised of the vertex
coordinates of the lower convex hull of C(s, t), ∀s ∈ S,
into the optimization process. The basis set has a much
smaller number than that of candidate labels for one site,
which thus greatly reduces the complexity for matching
large label set problems. In a 2.6GHz PC, matching 50 fea-
ture points to 1000 candidate target feature points with CQP
typically takes about 0.02 seconds.

2.4 Successive Convexification

A single relaxation is usually not sufficient to capture the
non-convex details of the original optimization problem. In-
stead of just using one step of relaxation, we follow the suc-
cessive convexification scheme [10] and successively con-
vexify the matching cost surfaces in each step.

We define a trust region for each feature point on the
template. Initially, the trust region for each feature point
covers the entire target image. We then follow the proposed
relaxation scheme to solve a convex QP and obtain an ini-
tial estimation. Based on the estimation, we can shrink the
trust region of each site. In the new trust regions, the lower
convex hull of the cost surfaces may change and we need
to re-convexify the original surfaces and solve a new CQP.
Such a process iterates until the trust regions become small.
Successive convexification is illustrated in the gray area of
the system diagram in Fig. 1.

In trust region shrinking, we use control points to an-
chor trust regions for the next iteration. We keep the control
point in the new trust region for each site and we shrink the



Set a scale and rotation

Calculating matching costs for all candidate target points

Find lower convex hull vertices 
in trust regions and target point basis sets

Build and solve QP relaxation

Trust region small?

Update control points

Update trust 
regions

Set initial trust region for each site the same size as target image

No

Yes

Output 
Results

Go through all scales and 
rotations in the table?

Set scale 
and

rotation

No

Yes

Refinement

Figure 1. Object localization with CQP relaxation and
successive convexification.

boundary inwards. If the control point is on the boundary of
the previous trust region, the other boundaries are moved in-
wards. We select control points using a consistent rounding
process. In consistent rounding, we choose a site randomly
and check all the possible discrete target points and select
the one that minimizes the objective function in § 2.2, by
fixing other sites’ targets as the current stage CQP solution.
This step is similar to a single iteration of an ICM algorithm
by using CQP solution as initial value. We also require that
new control points have energy not greater than the previ-
ous estimation. Such a trust region refinement scheme can
greatly improve the matching result. The trust region usu-
ally shrinks fast in real applications. Typical iterations are
3 to 5.

2.5 Estimation of Scale and Rotation

Local features themselves do not provide enough infor-
mation for scale of an object, and a consistent matching is
necessary in scale and rotation estimation. We estimate the
scale and rotation based on CQP with the largest trust region
for each site. Since the template deforms, we can quantize
the scale and rotation quite coarsely. The quantization lev-
els for scale are 0.5, 0.75, 1, 1.25 and 1.5. The rotation is
quantized with 45-degree intervals in 360 degrees. We then
scale and rotate the template and obtain a matching with
CQP relaxation. The matching score is the matching cost
term

∑
s∈S

∑
t∈Bs

ξ∗s,tC(s, t) in CQP’s objective function,
where ξ∗s,t are optimal weights. Fig. 1 illustrates the match-
ing process with scale and rotation estimation.

3 Experiment Results
In the first experiment we compare the convex QP

method with BP and greedy scheme ICM using synthetic
grayscale images. The template is a randomly generated im-
age which has resolution of 128× 128. We randomly place
50 white dots into the black background. The truncated dis-
tance transform of the binary image is then used as the tem-
plate image. These dots are then randomly translated and
perturbed and placed into another 256 × 256 image. Out-
lier points are added to the target image to simulate back-
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Figure 2. Matching random patterns.

ground clutter. This image then undergoes another trans-
form similar to that of the template image and is used as the
match target. In this experiment, the feature points are the
50 points placed in the black background; target candidate
points are all target points including the outliers placed in
the target image. The features used are log-polar transform
image patches centered on the template and target points
with masks of diameter 32. In each outlier and perturba-
tion setting, we randomly generated 100 pairs of testing im-
ages and compared the results. Fig. 2 shows the matching
error distribution for different methods, in several outlier
and perturbation settings. In low distortion and low out-
lier cases, all three methods have similar performance. But
when the outliers and distortion increase, greedy schemes
degrade rapidly. The proposed scheme works the best in
this experiment.

An object localization result using real images is shown
in Fig. 3. The leaf used is an object with very little tex-
ture. Therefore the boundary edges of the leaf are the fea-
tures that are used to locate the object. Because of the
background changes from the template image to target im-
age, these boundary features are also distorted considerably,
which makes invariant feature based schemes fail to find the
correct corresponding points. We use about 100 randomly
selected edge points on the template and 1000 randomly se-
lected edge points on the target image, as shown in Figs. 3
(a) and (b). Log-polar features are then used in matching.
The matching scores for discretized scales and rotations are
shown in Fig. 4 (c). The minimum cost rotation and scale
estimations are correctly 45 degrees and 1.25 respectively.
Successive convexification QP is then applied to locate the
object in the target image. Fig. 3 (d) is the initial matching
and Fig. 3 (e) shows the final matching result. Other object
localization results are shown in Fig. 4, Fig. 5 and Fig. 6. In
the experiments locating the toy and the hand in images, we
use a smaller feature context and denser point candidates
(about 8000 target points) in each target image, to increase
the reliability of matching in complex backgrounds. BP be-
comes quite slow for such a large number of target points



due to its O(n2) complexity with respect to the number of
target points. ICM is not able to locate the targets correctly.
For such large label-set matching problems, the proposed
CQP scheme can efficiently locate the target objects in sec-
onds, using an automatically generated template mesh.

(a) (b)

0 45 90 135180225270315

0.5
0.75

1.0
1.25

1.5
30

35

40

45

50

Rotation 
(degrees)Scale

M
at

ch
in

g 
S

co
re

(c)

(d) (e)

Figure 3. Leaf. (a): Template image and mesh; (b): Fea-
ture points on the target image; (c): Matching scores for dif-
ferent scales and rotations; (d): CQP matching in the largest
trust region; (e): Final matching result.
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Figure 4. Face. (a): Template image and mesh; (b): Fea-
ture points on the target image; (c): Matching scores for dif-
ferent scales and rotations; (d): CQP matching in the largest
trust region; (e): Final matching result.

4 Conclusion

We have set out an object localization method which
can deal with textureless objects in strong background clut-
ter. Finding objects in such situations is a challenging
task for traditional invariant feature based schemes, which
work well for texture-abundant objects. We propose a novel
quadratic programming method to solve the class of hard,
non-convex matching problems. The convex QP relaxation
involves a very small number of basis target points in the
search process and thus this method is well suited for very
large label-set problems. We further propose a successive
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Figure 5. Toy. (a): Template image and mesh; (b):
Matching scores for different scale and rotations. (c): CQP
matching result.
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Figure 6. Hand. (a): Template image and mesh; (b)-(f):
Hand localization results with convex QP.

convexification scheme to refine the solution by systemati-
cally shrinking the trust region. The successive convexifi-
cation QP has a high probability of converging to the global
optimum. Experiments show very promising results for us-
ing this method in object localization problems. The match-
ing scheme can also be applied to other problems such as
motion estimation, tracking, and object recognition.
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