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Abstract

In this paper, we propose a novel linear programming based
method to estimate arbitrary motion from two images. The
proposed method always finds the global optimal solution
of the linearized motion estimation energy function and
thus is much more robust than traditional motion estimation
schemes. As well, the method estimates the occlusion map
and motion field at the same time. To further reduce the
complexity of even a complexity-reduced pure linear pro-
gramming method we present a two-phase scheme for esti-
mating the dense motion field. In the first step, we estimate
a relatively sparse motion field for the edge pixels using a
non-regular sampling scheme, based on the proposed lin-
ear programming method. In the second step, we set out a
detail-preserving variational method to upgrade the result
into a dense motion field. The proposed scheme is much
faster than a purely linear programming based dense mo-
tion estimation scheme. And, since we use a global opti-
mization method — linear programming — in the first esti-
mation step, the proposed two-phase scheme is also signifi-
cantly more robust than a pure variational scheme.

1 Introduction

Motion estimation is a key technique for vision applications
such as object segmentation, object recognition, tracking,
and 3D scene reconstruction. Optical flow based meth-
ods have been intensively studied for the small scale mo-
tion estimation problem, e.g. the motion analysis of succes-
sive frames in a high frame-rate video. Horn and Schunck
[1] formulated the optical flow problem as an energy mini-
mization problem and presented a steepest descent iterative
scheme. In their method, a quadratic norm is used in the
smoothing term. Another well-known method to calculate
optical flow is that of Lucas and Kanade [2], in which a
weighted least square norm is used to fit the local first order
optical flow constraint. Different optical flow methods are
evaluated in [3]. A recent optical flow method based on the
structure tensor and a local parameter model is studied in
[4].

Besides the optical flow formulation, another method to
study the motion estimation problem is based on the ex-
plicit matching concept. In this approach, motion estima-
tion corresponds to finding a mapping from the first image

to the second image. The mapping can be restricted to some
specific model, such as affine motion estimation. Another
kind of mapping is model-less mapping, in which there is
no explicit motion constraint. Model based matching in-
volves fewer parameters and is more robust for specific ap-
plications, while model-less matching has more flexibility
and can be easily adapted to different applications. Model-
less matching has attracted a great deal of interest in recent
years. Several model-less matching schemes for horizontal
motion estimation for rectified images in the stereo prob-
lem have been intensively studied [5, 6, 8, 9, 10]. Also, a
max-posterior probability based matching method [11] was
presented for the motion analysis problem.

Motion estimation or matching problems can be gener-
alized as searching problems in a given parameter domain.
One of the key problems is how to search the feasible pa-
rameter space constrained by a variety of constraints such
as smoothing and occlusion conditions, or other model con-
straints, to obtain an optimal solution which generates the
best feature consistency between two images. There are
two classes of search methods used in motion analysis al-
gorithms. The first class of methods start from some ini-
tial guess and try to find a local minimum. Most optical
flow schemes belongs to this class. The merits of the local
search schemes are that they have relatively low complex-
ity compared to some other searching schemes. The prob-
lem, however, is that the quality of the solution is greatly
affected by the initial value selected — and in fact it is usu-
ally difficult to get a good initial guess in most real appli-
cations. The second class of methods search the feasible
space and get a globally best solution. E.g., the graph-cut
scheme [5, 6, 7, 8], a global optimization method, has been
successfully applied to the stereo problem. The graph cut
scheme has also been applied to motion estimation with a
strong approximation scheme [12]. Other global optimiza-
tion schemes used for matching problems include stochas-
tic methods such as simulated annealing [13]. Global opti-
mization is usually much more robust than local searching
schemes.

Besides the above global searching schemes, a linear
programming approach presents another general framework
for global optimization problems. Linear programming has
been applied to match feature points in different views for a
fixed number of correspondences of feature points [14], for
estimating affine motion and homography in two different
views [15], and for pose estimation under affine projection
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[16]. A linear programming method is also presented for the
labeling problem [17], and this could be used for the motion
estimation problem. The problem with the latter scheme is
that the large number of variables makes it difficult to apply
in real applications.

In this paper, we propose a new linear programming
based method to estimate relatively large scale motion.
Here, motion can have both x and y freedom in the two
images. The proposed method involves far fewer variables
and does not need a rounding process for motion estimation.
Our formulation is a model-less approach. The proposed
method can also estimate the occlusion map and motion
field at the same time. By using a linear programming for-
mulation, the proposed method can be used to globally op-
timize the objective function efficiently with a method such
as the simplex method. To alleviate the high-complexity
problem of a pure linear programming method (although it
is already much less than for a nonlinear global optimiza-
tion) we suggest a two-phase scheme for estimating a dense
motion field. In the first step, we estimate a relatively sparse
motion field (cf. [1, 2]) using the edge pixels and small set of
supporting non-edge pixels, here, based on a proposed new
linear programming method. In the second step, we pro-
pose a detail-preserving partial differential equation (PDE)
method to upgrade the result into a dense motion estimation.
Comparing to Horn and Schunck’s variational formulation,
the proposed method can adapt to the local structures of
the motion field. The proposed two-phase scheme is much
faster than a purely linear programming based dense motion
estimation scheme. As well, since we use a globally opti-
mizing method (linear programming) in the first estimation
step, the proposed two-phase scheme is more robust than a
pure variational or PDE scheme.

The arrangement of the paper is as follows. In §2 we
first propose a nonlinear formulation of the motion estima-
tion problem. Then, we study how to convert the nonlin-
ear optimization problem into an equivalent linear program-
ming formulation. In §3 we present a two-phase method for
dense motion field estimation based on a sparse linear pro-
gramming formulation and a detail-preserving variational
method. In §4 we present the results of the proposed method
applied to the dense motion estimation and stereo problems.
We conclude the paper in §5.

2 Motion Estimation Based on
Linear Programming

We study the problem of motion estimation based on the
image matching concept. The image matching problem can
be stated as: Given a pixel set S in the first image, we need
to find a function M such that s′ = M(s), where s ∈ S and
s′ is the corresponding matched pixel in the second image.
We require that M is a function such that for each pixel in
the first image I1, there is one and only one matching pixel
in the second image I2 . In this formulation, image I1 and
I2 are not symmetric, since for each pixel in I2, there could
be more than one matching pixel in I1. The non-symmetric
definition is reasonable for real applications since the lim-

ited sampling rate and some specific motion may lead to
several pixels in the first image mapping to the same pixel
in the second image. To differentiate the roles of the two
images in the matching process, we define the first image as
the reference image Ir and the second the matching image
Im. Besides motion estimation, we usually also prefer to
be able to estimate whether a pixel in the reference image
is occluded in the matching image. Estimating the occlu-
sion map is usually a much more difficult problem and has
been ignored in many motion estimation algorithms, espe-
cially for cases where the occlusion is small, for example
for high sampling-rate videos. For wide baseline match-
ing problems, a good estimation of the occlusion map can
usually greatly improve the shape reconstruction result at
the occluding boundaries. Thus in summary, for the mo-
tion estimation problem we need to estimate the motion for
non-occluded pixels and the corresponding occlusion map.

In this section, we present a method based on a linear
programming formulation to estimate the motion map and
occlusion map at the same time. We first formulate the mo-
tion and occlusion estimation problem as a nonlinear opti-
mization problem. Then we convert the nonlinear optimiza-
tion problem into an equivalent linear programming formu-
lation based on linear approximations and variable relax-
ation.

2.1 Nonlinear Motion and Occlusion
Optimization

The estimation of motion and occlusion can be formulated
as the following minimization problem:

min
d(x),d(y),g

∑
(x,y)∈S

[
C

x,y,d
(x)
x,y,d

(y)
x,y

· gx,y + Co · gx,y

]

+
∑

[(x1,y1),(x2,y2)]∈N
{λx1,y1,x2,y2 [|d(x)

x1,y1
· gx1,y1

−d(x)
x2,y2

· gx2,y2
| + |d(y)

x1,y1
· gx1,y1

− d(y)
x2,y2

· gx2,y2
|]

+ µx1,y1,x2,y2 |gx1,y1 − gx2,y2 |}
In the optimization problem, we search for optimal motions
in the horizontal and vertical directions, represented as d

(x)
x,y

and d
(y)
x,y respectively, and the occlusion map gx,y for each

site in the set S in the reference image such that the energy
defined is minimized. The occlusion map gx,y is a binary
function defined such that if pixel (x, y) is occluded in the
matching image, gx,y = 1, and otherwise gx,y = 0. The
complement of gx,y is gx,y, equaling 1 − gx,y. The energy
function consists of two parts. The first part defines the cost
of the motion estimation or occlusion decision at a site, in
which Cx,y,d(x),d(y) is the cost function for assigning the
motion (d(x), d(y)) to site (x, y) and Co is the cost of la-
beling a site as occluded. The second part of the energy
function is a regularity term that penalizes the discontinu-
ity of neighboring motions or occlusion decisions. N is
the set of neighboring sites in S and the coefficients λ and
µ control the smoothness of the motion field and the oc-
clusion map estimated. In the regularity term, we choose
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the L1 norm, which has better properties for preserving dis-
continuity than does the L2 norm. Note that we include
subscripts for both µ and λ to indicate that in our scheme
we can make µx1,y1,x2,y2 and λx1,y1,x2,y2 adaptive to the
coupling strength of the two sites at (x1, y1) and (x2, y2),
which is necessary if we use non-regular grids. We discuss
how to select the coefficients dynamically in more detail in
§ 3.1. In motion analysis for digital images, the set S is
a discrete set which corresponds to the position of the im-
age pixels. But the motion d(x) and d(y) can be fractional
numbers.

In the above energy minimization formulation, if a pixel
and its neighbors are not occluded from the first image to
the second image, the functional minimizes the motion esti-
mation cost and penalizes motion discontinuities for neigh-
boring sites. If the pixel is occluded in the second image,
the functional minimizes the occlusion labeling cost and
penalizes discontinuities for neighboring occlusion labels.
This formulation also penalizes large motions at the occlu-
sion and non-occlusion boundaries, which does not pose a
problem because of the discontinuity preserving properties
of the L1 norm. The merit of this optimization configura-
tion is that it facilitates the linear programming formulation.
We wish occluded pixels to take on gx,y = 1. The selec-
tion of cost C0 should therefore follow the following rules.
In the ideal case, for an occluded pixel at (x, y) we will
need to make the cost Cx,y,d(x),d(y) > C0 for all possible
(d(x), d(y)), so that the pixels will be labeled as occluded.
On the other hand, for non-occluded pixels we need to make
C

x,y,d
(x)
∗ ,d

(y)
∗

< C0 for the actual motion (d(x)
∗ , d

(y)
∗ ), such

that the pixel will be labeled as non-occluded. Based on this
arrangement, if a pixel is occluded the minimization tends
to assign 1 to gx,y; otherwise the scheme will find a best
motion estimation and assign 0 to gx,y. In actuality, the
above conditions cannot be completely satisfied but usually
can be well approximated. Since we include smoothing reg-
ularity terms, our scheme in fact works quite well in actual
situations.

2.2 Conversion to Linear Programming

The above energy optimization problem is nonlinear, so it
is difficult to find a global optimization solution in this orig-
inal form. Local searching schemes are usually not robust
for the problem in which the displacements of pixels are rel-
atively large without a good initial value estimate. We study
how to cast the problem as linear programming, which is
still globally optimized, by linear approximation and vari-
able relaxation.

We first relax gx,y into a continuous function in the range
[0, 1]. In this relaxation form, gx,y becomes a “soft” deci-
sion or likelihood of whether a pixel is occluded, instead
of the binary hard decision in the original formation. To
convert a soft decision into a hard decision a thresholding
scheme can be applied. For example, a threshold of 0.5 is
usually used in the threshold process. The merit of relax-
ation of gx,y into a continuous function is that we can con-
vert the problem into a linear programming problem, not a
harder mixed-integer programming problem.

To linearize the first term, we use the following
scheme. We select a basis Bi,j for the displace-
ment of each site (i, j), e.g. the positions of the
vertices of the convex hull of the cost function over
a 40 × 40 window, or even larger. Then the dis-
placement (d(x)

i,j , d
(y)
i,j ) can be represented as a linear

combination of the displacement basis as (d(x)
i,j , d

(y)
i,j ) =∑

(m,n)∈Bi,j
ξi,j,m,n · (m, n). The labeling cost of mo-

tion (d(x)
i,j , d

(y)
i,j ) can be then approximated by the linear

combination of the motion cost of the base motion costs
Ci,j,x{∑

(m,n)∈Bi,j
ξi,j,m,n·(m,n)},y{∑

(m,n)∈Bi,j
ξi,j,m,n·(m,n)}

� ∑
(m,n)∈Bi,j

ξi,j,m,n · Ci,j,m,n, where function
x({x, y}) = x, y({x, y}) = y . We also further set
constraints ξi,j,m,n ≥ 0 and

∑
(m,n)∈Bi,j

ξi,j,m,n = 1 for
each site (i, j), so as to constrain the space spanned by
the basis to the convex hull of the basis vectors. (Clearly,
if ξi,j,m,n are constrained to be 1 or 0, the above repre-
sentation is exact.) Note that di,j is not constrained to the
basis motions, but can be any convex combination. To
linearize the regularity terms in the nonlinear formulation
we can represent a free variable by the difference of
two nonnegative auxiliary variables and introduce the
summation of the auxiliary variables into the objective
function. If the problem is properly formulated, when the
linear programming problem is optimized the summation
will approach the absolute value of the free variable [18].
Below, we discuss in more detail how to structure the
problem to achieve these goals.

Based on this linearization process, a linear program-
ming formulation of the problem can be stated as

min : I =
∑

(i,j)∈S

∑
(m,n)∈Bi,j

Ci,j,m,n · ξi,j,m,n+

∑
(i,j)∈S

Coπi,j +
∑

[(i,j),(k,l)]∈N
λi,j,k,l(dx+

i,j,k,l + dx−
i,j,k,l+

dy+
i,j,k,l + dy−

i,j,k,l) +
∑

[(i,j),(k,l)]∈N
µi,j,k,l(π+

i,j,k,l + π−
i,j,k,l)

subject to:

∑
(m,n)∈Bi,j

ξi,j,m,n + πi,j = 1, ∀(i, j) ∈ S

∑
(m,n)∈Bi,j

ξi,j,m,n · m = dxi,j , ∀(i, j) ∈ S

∑
(m,n)∈Bi,j

ξi,j,m,n · n = dyi,j , ∀(i, j) ∈ S

dxi,j − dxk,l = dx+
i,j,k,l − dx−

i,j,k,l, ∀ [(i, j), (k, l)] ∈ N
dyi,j − dyk,l = dy+

i,j,k,l − dy−
i,j,k,l, ∀ [(i, j), (k, l)] ∈ N

πi,j − πk,l = π+
i,j,k,l − π−

i,j,k,l, ∀ [(i, j), (k, l)] ∈ N
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with bounds:
ξi,j,m,n ≥ 0

πi,j ≥ 0
∆x max ≥ dxi,j ≥ ∆x min

∆y max ≥ dyi,j ≥ ∆y min

dx+
i,j,k,l, dx−

i,j,k,l ≥ 0

dy+
i,j,k,l, dy−

i,j,k,l ≥ 0

π+
i,j,k,l, π

−
i,j,k,l ≥ 0

where ξi,j,m,n and πi,j are the real-valued motion weighting
and occlusion variables for site (i, j), respectively. Since we
wish to carry out linear programming using only nonneg-
ative variables, we compose reals from nonnegative pairs,
e.g. dx = (dx+ − dx−).

In I, Ci,j,m,n is selected based on the lineariza-
tion scheme; Bi,j is the basis set for site (i, j); and
[∆x min, ∆x max] and [∆y min, ∆y max] are the searching
ranges of the motion in the x and y directions respec-
tively. dxi,j and dyi,j are the motions at site (i, j) in
the x and y directions. ξi,j,m,n are the coefficients of
the motion bases — clearly, the motion in the x direc-
tion dxi,j can be represented as the linear combination∑

(m,n)∈Bi,j
ξi,j,m,n · m = dxi,j . Similarly the motion in

the y direction can be represented as
∑

(m,n)∈Bi,j
ξi,j,m,n ·

n = dyi,j . The condition
∑

(m,n)∈Bi,j
ξi,j,m,n + πi,j =

1, ∀(i, j) ∈ S accounts for the coefficients g in the first
and third term in the nonlinear optimization formulation.
It should be noted that motions dx and dy in the linear pro-
gramming formulation correspond to the d (x)g and d(y)g re-
spectively, which are the real motions in the non-occlusion
area and vanish in the occlusion area. This projected motion
is well defined everywhere in the image. In the following
sections, motion will be discussed in the sense of projected
motion.

It is not difficult to show that the third and fourth term in
the minimization equal the absolute value of the neighbor-
hood motion field difference and occlusion map difference.
Therefore the linear programming formulation is equivalent
to the general nonlinear programming formulation if the lin-
earization assumption is fulfilled. In real applications, the
linear programming formulation is an excellent approxima-
tion of the original nonlinear optimization problem.

The above linear programming formulation degenerates
to the local searching method if the smoothing terms are
eliminated, and degenerates into the formulation with oc-
clusion ignored if the occlusion cost term and penalty terms
are removed. Note that it is not difficult to extend the formu-
lation into a solution to the general labeling problem: this
could have great use in the object tracking and segmentation
and 3D reconstruction problems.

3 A Two-phase Method for Dense
Motion Field Estimation

The above linear programming method guarantees global
optimization of the problem but is usually too complex to be

able to apply directly for estimation of a dense motion field
with the computational power of current hardware. Since
motion fields usually have much less high frequency con-
tent than the gray levels of images, the sampling rate of the
motion field can be much lower than the sampling rate of
the original images, and this implies that we can estimate
a sparser motion field without forfeiting estimation qual-
ity. In this section, we present a sparse motion field estima-
tion scheme. We only estimate the motion for the important
points of the images (cf. [1, 2]). In this paper, we identify
edge pixels and small set of supporting points as the impor-
tant points. Edge pixels carry less ambiguity for the motion
analysis problem than do pixels in textureless parts of the
image and therefore should be able to actually improve the
motion estimation result. First, we discuss a non-regular
sampling scheme to estimate a sparse motion field. Then,
we present a PDE-based method to upgrade the result into a
dense motion field with resolution equal to that of the orig-
inal images.

3.1 Sparse Estimation Based on Linear Pro-
gramming Method

We first extract the edges by using the Prewitt edge detec-
tor. Then we randomly select ρ of the total number of edge
pixels, where ρ is in (0, 1]. Typical ρ is from 0.1 to 0.5.
We also randomly select κ of the non-edge pixels, with κ
in (0, 1] and κ ≤ ρ. The non-edge pixels usually have less
reliability in the local motion estimation searching process
but can be used to improve the uniformity of the sampling
scheme and the final dense motion field estimation. Assume
S = {(i, j)} is the set of chosen pixels for sparse motion
estimation. We first calculate the Delaunay triangulation of
the point-set S. The triangulation result is represented as
the graph G whose edges define the neighborhood relation
N of the chosen points, in the linear programming formula-
tion: if there is an edge in G between node (i, j) and (k, l),
then we have [(i, j), (k, l)] ∈ N . In the actual implemen-
tation we only select either [(i, j), (k, l)] or [(k, l), (i, j)] in
N .

We have defined the neighbor set N and we need further
to define the motion basic set Bi,j for site (i, j). We confine
the matching to a rectangular window centered at site (i, j)
in the reference image which corresponds to the motion can-
didate set W = [∆x min, ∆x max] × [∆y min, ∆y max]. It is
not difficult to show that the best motion basis set for each
site can be selected as the motions corresponding to the ver-
tices of the lower convex hull of the cost surface of all the
motion candidates in window W . In this paper, we sim-
ply take the cost of assigning motion (m, n) to site (i, j) to
be the color consistency between reference and matching
blocks:

Ci,j,m,n =

∑
(s,t)∈Oi,j

|Ir(s, t) − Im(s + m, t + n)|
L · (σ2

r + 10−4)0.5(σ2
m + 10−4)0.5

where Ir and Im are the normalized reference and match-
ing gray level images, respectively; Oi,j = [i − τ, i +
τ ] × [j − τ, j + τ ], where τ is 1..4 in this paper; L =
(2τ + 1)2; σ2

r = 1
L−1

∑
(s,t)∈Oi,j

(Ir(s, t) − mr)2 and

σ2
m = 1

L−1

∑
(s,t)∈Oi,j

(Im(s + m, t + n) − mm)2 are
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the non-deviation estimation of the variance of the image
blocks; mr and mm are the mean value for the reference
and matching image block.

In our scheme, we would like the smoothing terms
λi,j,k,l and µi,j,k,l adapted to the distance of neighboring
sites: λi,j,k,l = λ0w(di,j,k,l) and µi,j,k,l = µ0w(di,j,k,l)
where di,j,k,l = ((i − k)2 + (j − l)2)1/2 and w(·) is a de-
creasing function in the domain [0, 1], with λ0 and µ0 two
constant coefficients. The typical values of λ0 and µ0 are
0.01 and 0.02 respectively. C0 is in [0.5, 0.7]. In this pa-
per, w(·) is selected as a simple staircase function equal to
0 if the distance between two neighbors is greater than some
threshold and is otherwise 1.

3.2 Dense Refinement Based on PDE Method

Based on the above linear programming method, we obtain
a sparse reconstruction for the motion in the x and y direc-
tions, as well as the occlusion map. The sparse reconstruc-
tion needs further refinement to derive a dense estimation at
a resolution equal to that of the original images. The occlu-
sion map can easily be extended to a dense map by a simple
interpolation scheme. In this section we give a scheme to
refine the x and y motion field into a dense motion field.

We use the interpolated sparse x-, y-motion field as the
initial motion, and apply a PDE-based method to refine the
estimation in a force field determined by the consistency
function in the two images. To begin with, we interpolate
the sparse x-motion set at points dxxi,yi so as to generate a
dense set h(x, y). A straightforward approach for achieving
this is to solve a constrained Laplace’s equation:{ ∇2h = 0

h(xi, yi, t) ≡ dxxi,yi , t > 0, i = 1...M

for h. To do so, we iterate using an artificial time variable
t, and constrain a solution at any time to pass through the
sparse mesh points. Dense x-motion h(x, y) is analogue to
the steady state for isotropic heat transmission with constant
temperatures at the mesh nodes. In the discretized domain
above, we have converted a non-regular grid into a much
easier regular-grid system. In the rest of the analysis, we
will work on this regular grid. This interpolation scheme
iterates the standard heat diffusion equation. y-motion is
interpolated with a similar scheme and the dense y-motion
is denoted v(x, y).

We further formulate the following variational problem
to derive smooth motion fields p and q (x and y motions)
from the initial interpolated h and v:

{p̂, q̂} =
min
p, q J =

∫
x

∫
y
[η · G(x, y, p, q)

+ (1−α(x,y))
2 ‖∇p(x, y)‖2 + (1−β(x,y))

2 ‖∇q(x, y)‖2

+α(x,y)
2 ‖∇p(x, y)‖ + β(x,y)

2 ‖∇q(x, y)‖]dxdy,

η = const; G = consistency function

(1)

with constraints
py√

p2
x+p2

y

= sin[θ(x, y)], px√
p2

x+p2
y

= cos[θ(x, y)],
qy√

q2
x+q2

y

= sin[ϕ(x, y)], qx√
q2

x+q2
y

= cos[ϕ(x, y)],

α = f (x)(‖∇hσ(x, y)‖), β = f (y)(‖∇vσ(x, y)‖),
(2)

where the {sin, cos} constraints signify that p and q are
surfaces. We preserve smooth motions by letting con-
stant function α(x, y) or β(x, y) be small if the initial in-
terpolating motion h or v is smooth. In that case, we
would like the second and third terms in J to dominate
and color consistency to guide further smoothing. How-
ever, for non-smooth motions we would like the fourth
and fifth, curvature-producing, terms to be more important
and therefore α(x, y) or β(x, y) should be larger. Coeffi-
cient η is a constant that controls the influence of the en-
ergy term based on the consistency function. f (.)(x) =
max(( x−xmin

xmax−mmin
)0.2, 0.95), where xmin and xmax are the

minimum and maximum gradients in the domain of image
pixels.

So we use the initial interpolating motion h and v to set
a general smoothness level by defining positive monotonic-
increasing functions f (x)(·) and f (y)(·) both with range
[0, 1], so that α and β go from low to high as smooth-
ness decreases. To simplify the variational equation be-
low, we further assume that the motion field can be rep-
resented as piecewise planar surfaces. Thus the gradi-
ent of the x-motion field and y-motion field are piecewise
constant. Based on the definitions of α and β, we have
∂α/∂x � 0, ∂α/∂y � 0, ∂β/∂x � 0, ∂β/∂y � 0 al-
most everywhere. A simplifying assumption, then, is that
the partial derivatives of the α and β vanish. Based on this
assumption, the resulting PDE below becomes much sim-
pler, crucially for an iterative algorithm, at the expense of
slightly sacrificing the edge preserving property.

We also use the initial normal vectors ∇h and ∇v to set
the normal direction for a solution, ∇p and ∇q, by con-
straining p and q via the first four conditions in (2). This
makes the algorithm fast. To fix the normal direction, we
take θ(x, y) = arctan(hσ

y/hσ
x), with hσ the initial dense

x-motion h, Gaussian-smoothed at scale σ, and similarly
ϕ(x, y) = arctan(vσ

y /vσ
x). G(x, y, p, q) is a real function

defining color consistency of the point (x, y) with motion
(p, q): G(x, y, p, q) is an interpolated version of Ci,j,m,n.
G(x, y, p, q) is minimized if the color block centered at
(x, y) in the reference image is consistent with the color
block at (x + p, y + q) in the matching image.

The Euler-Lagrange equations for eq. (1) are given by
the variational derivatives δJ /δp = 0, δJ /δq = 0, and ap-
plying the vanishing assumptions for the partial derivatives
of α and β we have

ηGp(x, y, p, q) − (1 − α)(pxx + pyy)

−α
pxxp2

y+pyyp2
x−2pxypxpy

2(p2
x+p2

y)3/2 = 0,

ηGq(x, y, p, q) − (1 − β)(qxx + qyy)

−β
qxxq2

y+qyyq2
x−2qxyqxqy

2(q2
x+q2

y)3/2 = 0

(3)

The third term in both equations— the curvature for
equi-value contour curves for fields p and q— smooths only
along contour tangents (when the terms contribute enough,
i.e., at edges), not isotropically like the second term.

Substituting eq. (2) into (3), by introducing an artificial
time variable t and adding a small positive value ε to avoid a
zero denominator, the partial differential equation solution
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of the system can be written

pt = pxx(1 − α + α
sin2 θ

2(p2
x + p2

y)1/2 + ε
)

+pyy(1 − α + α
cos2 θ

2(p2
x + p2

y)1/2 + ε
)

−pxy
α sin θ cos θ

(p2
x + p2

y)1/2 + ε
− ηGp(x, y, p, q),

qt = qxx(1 − β + β
sin2 ϕ

2(q2
x + q2

y)1/2 + ε
)

+qyy(1 − β + β
cos2 ϕ

2(q2
x + q2

y)1/2 + ε
)

−qxy
β sinϕ cosϕ

(q2
x + q2

y)1/2 + ε
− ηGq(x, y, p, q)

In summary, the x- and y-motion are initialized to h and v
respectively, the dense interpolation of the sparse motion.
As time t increases, the above PDE approaches a standard
heat equation with a penalty term given by the consistency
in two images in smooth motion regions. The diffusion
method approaches a mean curvature motion solution at
rapidly changing areas such as edges or corners. A finite
difference method is used in the discretization of the PDEs.
The coupled PDEs are iterated alternatively between the x-
and y-motion fields until the result converges.

4 Experiment Results

In this section, we present the results of the linear program-
ming based motion estimation method in the application of
motion estimation and stereo problems. In all the following
experiments, we use only the gray scale image for feature
extraction and matching. If the image is a color image, it
will be first converted to a gray level image before further
processing. The gray level image is also normalized such
that the gray levels are in [0,1].

First, we compare the proposed LP based method with
the graph-cut method, the state of art benchmark global op-
timization scheme. To simplify the comparison, we ignore
occlusion in these experiments for both methods. As well,
we use the same cost function and topology for both meth-
ods. About 800 random points are selected in a rectangu-
lar area and weighting parameters are tuned such that the
best performance in the sense of mean absolute error is at-
tained for both schemes respectively. Fig. 1 and Fig. 2 show
test images used and their ground truth motion field and the
best-performance interpolated sparse motion estimation re-
sults for two different experiments. Mean absolute error for
the selected points is compared in Fig. 3. For these tests, the
LP based method has substantially better performance both
visually and in the sense of mean absolute error.

Fig. 4 illustrates the sparse linear programming edge-
feature points based matching result and dense motion esti-
mation for image Table. A rectangular region has been se-
lected as the region of interest manually. About 2000 edge-
points and supporting points are detected in the region of in-
terest. The local searching region is [−20, 20] in both x and

Figure 1: Top left two: reference and matching images. Top
right two: ground truth x and y motion field. Bottom left
two: interpolated LP motion estimation. Bottom right two:
interpolated graph cut motion estimation.

Figure 2: Top left two: reference and matching images. Top
right two: ground truth x and y motion field. Bottom left
two: interpolated LP motion estimation. Bottom right two:
interpolated graph cut motion estimation.

Figure 3: MAE comparison: Left, for Fig. 1 and Right, for
Fig. 2. In each comparison, y-motion error is at the top
and x-motion is the bottom set of bars. The darker bars, on
top, show error for the Graph-cut method, while the lighter,
bottom bars are for the proposed LP based method.

y directions. The basis sets for each site are selected based
on the scheme proposed in § 3.1. We calculate the dense
motion field in Fig. 4 based on the proposed two-phase
scheme. To visualize the dense motion estimation result,
we plot the matching result on regular grids based on the
dense motion estimation, in Fig. 4. Fig. 5 shows the dense
motion estimation result based on the graph-cut scheme in
[12]. In this experiment, the graph-cut method uses 3 itera-
tions and takes about 15 minutes to finish with a Pentium-4
2.6GHz Linux PC. The proposed two-stage scheme takes
about 5 minutes. More experimental results, using image
Toy house, are shown in Fig. 6.

In the above experiments, there is little occlusion in-
volved. Figs. 7, 8, and 9 illustrate experiment results for
estimating motion and the occlusion map simultaneously
with the proposed method for image Mouse. In this exper-
iment, camera motion and object motion are both involved.
Another challenge of the experiment is that the mouse and
mouse pad contain large areas without texture. The scaled
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Figure 4: Table. Top left: reference image and mesh.
Top right: matching image and matching mesh based on
sparse LP method. Middle: dense x motion (left); dense y
motion (right). Bottom: regular mesh matching based on
dense motion field.

Figure 5: Dense x-motion (left) and y-motion (right) esti-
mation based on the graph-cut method.

motion vector plot is shown in Fig. 7. A threshold of 0.5
is used to obtain the occlusion map in the experiments. In
Fig. 7, the occlusion map is shown aligned with the refer-
ence image by replacing the red channel of the reference im-
age with the occlusion map while keeping intact the green
and blue channels. Fig. 8 shows the sparse matching re-
sult based on the proposed linear programming scheme and
Fig. 9 shows the dense motion field based on the proposed
two-phase motion estimation scheme.

We also apply the proposed scheme to the stereo problem
with large occlusions. Fig. 10 shows the stereo pair for the
image Map with the motion vector plot and occlusion map
in a polygonal window region of interest. Fig. 11 shows the
dense disparity map and its texture-mapped image in the
region of interest. Fig. 12 shows the dense disparity esti-
mation without occlusion inference. Comparing the texture
mapped images of Figs. 11 and 12, we can see that the oc-
clusion inference improves the motion at the boundary of
occlusion.

In experiments, we found that limitations of the method
have to do with sharp boundaries and with noise. Because
of the motion smoothing term, occasionally at a sharp ob-

Figure 6: Toy house. Top left: reference image and mesh.
Top right: matching image and matching mesh based on
sparse LP method. Middle: dense x motion (left). dense
y motion (right). Bottom: regular mesh matching based on
dense motion field.

Figure 7: Mouse. Upper images: reference and matching
images. Lower left: scaled motion vectors. Lower right:
occlusion map shown in red.

Figure 8: Sparse matching based on LP method.

ject boundary motion estimation results near the boundary
may include influence from a different object, resulting in
a minor error. As well, if the image is too noisy, distin-
guishing the occlusion map becomes difficult because error
in the motion estimation and error in identifying occlusions
becomes too close.
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Figure 9: Dense x-motion (left) and y-motion (right) based
on the proposed two-phase method.

Figure 10: Map. Upper images: left and right view. Lower
left: scaled motion vectors. Lower right: occlusion map
shown in red.

Figure 11: Dense disparity map, and texture-mapped figure.

Figure 12: Dense disparity map without occlusion infer-
ence; texture-mapped figure.

5 Conclusion

In this paper, we propose a new linear programming based
method to estimate large scale motion in both x and y di-
rections in two images. The proposed method estimates the
occlusion map and motion field at the same time. To solve
the still relatively high-complexity problem of pure linear
programming, we present a two-phase scheme to estimate
a dense motion field. In comparison to graph-cut or belief
propagation for the general motion estimation problem, the
proposed LP method has a different optimization mecha-
nism. We uniquely represent the search space via a basis
set, with dimension much smaller than the full candidate
set used for the graph-cut or belief propagation methods.
Crucially, this dimension reduction does not affect the solu-
tion space — it still equals the space spanned by the whole

candidate set. We thus remove some correlation between
neighbor candidates, high for motion estimation, increasing
speed without degrading performance. Also, we inherently
generate a float solution, much more straightforwardly than
the subpixel graph-cut and belief propagation method. Ap-
plying the LP formulation iteratively with the search range
shrinking during each iteration will be a future study direc-
tion.
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