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Abstract 
Several color object irecognition methods that are 

based on image retrieva.1 algorithms attempt to dis- 
count changes of illuminlztion in order to increase per- 
formance when test image illumination conditions dif- 
fer from those that obtained when the image database 
was created. Here we extend the seminal method of 
Swain and Ballard to discount changing illumination. 
The new method is based on the first stage of  the sim- 
plest color indexing medhod, which uses angular in- 
variants between color image and edge image chan- 
nels. That method Jirst normalizes image channels, 
and then effectively discards much of the remaining 
information. Here we adopt  the color-normalization 
stage as an adequate color constancy step. Further, 
we replace 3 0  color histograms by  2 0  chromaticity 
histograms. Treating these as images, we implement 
the method in a compressed histogram-image domain 
using a combination of wavelet compression and Dis- 
crete Cosine Transform (DCT to fully exploit the 
technique of low-pass filtering / or eficiency. Results 
are very .encouraging, wath substantially better perfor- 
mance than other methods tested. The method is also 
fast, in that the indexing process is entirely carried out 
in the compressed domain and uses a feature vecior of 
only 36 or 72 values. 

1 Introduction 
Retrieval from an image or video database can be 

expected to  play a larger and larger role as such collec- 
tions proliferate. Swain and Ballard’s seminal work on 
color object recognition by means of a fast matching 
of color histograms [l] began an interest in the use of 
simple color-based features for such applications. In 
this method, a database of coarse histograms indexed 
by three color values is built up. A very simple and 
fast histogram matching strategy can often identify 
the correct match for a new image, or a near-match, 
by using an L1 .metric of histogram differences. It 
was soon realized that,  along with confounding fac- 
tors such as object poste, noise, occlusion, shadows, 
clutter, specularities, and pixel saturation, a major 
problem arose because of the effect of changing illu- 
mination on images of color objects [2]. After all, i t  
would be quite natural for an object in a database to  
be presented a s  it appears imaged under some other 
lighting. 

Several color object recognition schemes have been 
developed that purport to  take illumination change 
into account in an invaxiant fashion. Nevertheless, 
while producing good results in many cases, we show 

below that some of these methods may actually pro- 
duce poor results when confronted by illumination 
change. 

In this paper we address the problem of illumina- 
tion change by extending the original Swain and Bal- 
lard method to  include illumination invariance in a 
natural and simpler way than heretofore. To do so, 
we apply the first step, color-channel normalization, 
that appears in the simplest illumination-invariant 
method, based on the angles between color image 
channels [3], and argue that this first step is really 
all that is required to  deal properly with illumination 
invariance. Then, with an aim of reducing the dimen- 
sionality of the feature space involved, we shift from a 
full-color (3-dimensional) representation to one based 
on (2-dimensional) chromaticity, and show that the 
essential illumination-invariant color information is 
maintained across this data reduction. The normal- 
ization step has the effect of undoing a changing- 
illumination induced shift in pixel color-space posi- 
tion, in chromaticity space. 

Histograms in chromaticity space are indexed by 
two values, and chromaticity histograms for two dif- 
ferent objects are often very different. Since we are 
now effectively dealing with feature-space images, we 
can easily apply image-based compression techniques 
to  the chromaticity histograms and then index into 
a database with a small feature vector based on the 
compressed histogram. Here, we combine a technique 
of first applying a wavelet-based reduction with a sec- 
ond step of truncation of the Discrete Cosine Trans- 
form (DCT) image. This results in an effective low- 
pass filtering of the chromaticity histogram. The re- 
sulting image indexing scheme is very efficient in that 
it uses a feature vector of only 36 or 72 values. The 
method is remarkably accurate for such a simple, com- 
pact scheme and, as we show below, is more resilient 
to  noise than other methods explored here. 

In $2 we outline the significance of image normaliza- 
tion and the role of chromaticity histograming in im- 
age database indexing. In $3 we describe a histogram- 
image compression scheme using wavelet-based reduc- 
tion, DCT, and truncation. Experimental results are 
presented in $4 and some conclusions are drawn in $5. 

2 Illumination-Invariant Indexing 
2.1 Illumination invariance and image 

The simplest previous method for illuminant- 
invariant recognition is the Color Angles method of 

normalization 
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Finlayson et al., who proposed indexing on six num- 
bers corresponding to the "angles" amongst image and 
edge-image channels [3]. That  method consists of 
the following: normalize each mean-subtracted color 
channel R, GI  B to length 1 by dividing by the square 
root of the sum of squares of that channel, and then 
take as indexing numbers the three angles formed from 
the inverse cosine.of the products R . GI  R . B, G . B.  
Along with these, append a second set of angles de- 
rived in exactly the same way from the edge image of 
the smoothed color-normalized color image, V2Gp , 
where p = ( R , G , B ) .  The idea is that, if camera 
sensors are sufficiently narrowband, these angles are 
invariant to  color shifts in the illuminant because in 
that situation illumination change corresponds to  a 
simple scaling of the color channels (the "coefficient 
rule"). In the limit of Dirac delta function sensors, 
this approximation would hold identically. If sensors 
are not "sharp" enough, then provided one knows the 
camera sensor curves one can carry out a "spectral 
sharpening" operation [4] to bring the color angle ap- 
proximation more in line with actual conditions [3]. 
Thus illumination change amounts to a diagonal ma- 
trix transform among color channels. Even without 
sharp sensors, if the illuminant is fairly white then 
a factor model [5] of color formation still leads to a 
diagonal transform. 

To see this, consider the RGB triple'presulting 
from some set of lights with spectral power distribu- 
tions E;(A) and indexed by i = 1..L impinging on a 
Lambertian surface with surface spectral reflectance 
function S"(A), under conditions of orthography. If 
the camera system color sensors have sensitivity func- 
tions q (A)  then 

L 

p x  = C(a7n") / E i ( A ) s " ( X ) q ( A ) d X  (1) 
i= l  

where nx is the surface normal for that pixel and 
light E; has normalized spatial direction a i .  If camera 
sensors q are narrow band enough to be approximated 
as sampling a single frequency, 

with constants q k ( A k ) ,  then we have 

where 

Clearly, under a cha&& of illumination environment 
Ei + E:, a i + a :, L + L',  we have a diagonal trans- 
formation of RGB values p provided  ihe surface is f l a t  
so that r k  is independent of 2. Then the normal n of 
the flat surface patch can be tilted, in the new image 
under new lighting, and still have a diagonal trans- 
form relate color under the old illumination to  color 
under the new illumination with the diagonal elements 
T ; / T ~  being the same for every pixel. Ignoring surface 
normal terms or considering very distant viewing as 
in satellite imaging (cf. [SI) constitutes a good work- 
ing hypothesis, at least for image retrieval purposes, if 
not for physically correct surface reconstruction, and 
we see below in $4 that indeed applying the diagonal 
model of illuminant change works well enough for this 
purpose, even for non-flat objects. 

qk(X) zz qk(Ak)S(A - A,) ; IC = 1..3 

PE = , ~ ; " s x ( X k ) Q . k ( A k )  (2) 
7; = C ( U : n " ) E , ( X s )  

Even without sharp sensors, a factor model [5] ap- 
proximates the kth component of the color b.; reflected 
by a surface with color s k ,  for the ith incident light 
with color e:, by the product b; 2: s k e ; / u k ,  le = 1..3, 
with camera scaling term uk = J q k ( A ) d A .  Again one 
arrives at an expression like (a) ,  with 

where now 
I. 

i=l  

Normalization of each color band in an L2 norm ef- 
fectively enforces illumination invariance in a diagonal 
model: for considering each color channel pk,  k = 1..3 
separately as a long vector (cf. [3]) we see that an il- 
lumination change 

simply corresponds to  a change of vector length. Nor- 
malizing these lengths to unity for every image effec- 
tively discounts change of lighting. 

In this paper, we adopt the first, normalization step 
of the Color Angles method (but do not subtract the 
mean from images). In our view, and as shown below 
in $4, since the normalization step constitutes the il- 
lumination invariance of the method, it is needlessly 
prodigal to not employ more of the information in 
the image once illumination change has been guarded 
against. And in $4 the Color Angles method is shown 
to fail, very likely because it does throw away so much 
information. 

Indeed, one could simply utilize the original Swain 
and Ballard method, but using 3-dimensional his- 
tograms of normalzzed  color bands (i.e., each color 
channel as a long vector is normalized). 

However, once we give up the range 0..255, as when 
we normalize each color band, the issue remains of ex- 
actly what our histogram bins shall be. That  is, we 
can make a guess at what a likely maximum and min- 
imum value would be, based on a random input color 
image say, and then use either uniform bins or some 
form of histogram equalization. However, the statis- 
tics of any particular image dataset will likely be dif- 
ferent than those for a stochastic image and we would 
perhaps be better off using an adaptive Lloyd-Max 
quantizer. But this detracts somewhat from the orig- 
inal attractive simplicity of the method. E.g., in [a] a 
3-dimensional, 4096 bin edge-based method is ham- 
pered somewhat by the necessity of inventing 'good' 
histogram bins. As well, that method is limited by the 
fact that edge ratios a t  low intensity levels can become 
dominated by noise. 

Instead, here we can again fix a natural range for 
maxima and minima, and explore the possibility of 
using uniform bins, if we go to a more compact, 2- 
dimensional histogram structure. By sacrificing image 
intensity we can still capture the essential color infor- 
mation by going over to chromaticity images. Start- 
ing with normalized color images, the resulting chro- 
maticity images will be relatively illuminant invariant. 
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Since we use simple histogram matching, the method 
will also be invariant to  2-dimensional linear trans- 
formations in the image such as rotations and shifts. 
By making each histogram sum to unity we also make 
the method invariant to  the size of the object in the 
image. 
2.2 Illuminant-invariant chromaticity 

Define the chromaticity ( r ,  9 )  for each normalized 
pixel by [7] 

r = R / ( R + G + B )  , g = G / ( R + G + B )  (4) 
and consider the 2-channel chromaticity image as that 
N x 2 array formed from the color channels of an N- 
pixel image. Swain and Ballard also considered his- 
tograms of chromaticity, but with no color-band nor- 
malization step - instead, they suggested some un- 
resolved form of color cclnstancy preprocessing. Here, 
the normalization step essentially accomplishes com- 
pensation for changing illumination. 

histograms 

Chromaticities shift under illumination chanae 

-. , __\_._I‘ . , 1 
-... 

-. -. -. .. -. .. 
3.0 0:2 0:4 0.6 0.6 1 .O 

(4 
I 

Chromaticities for normalized images: no shift 
~- 2 -._ 

0 ‘--;..I 

(b) 
Figure 1: (a): Chromaticity shift, under an illumination 
change in the diagonal model. (b): Chromaticities for 
color-normalized images do not shift. 

To see how illumination change affects chromatic- 
ity, suppose we adopt the diagonal model of illu- 
mination change. Then under a diagonal transform 
diag(l ,2 ,3)  three pixels with RGB values (1,10,5),  
(1,5,  lo), (10,5,1) have their chromaticities, labeled 
‘X’ in Fig. l (a) ,  shifted to  values labeled ‘0’. (Note 
that chromaticity values are floats in the range 0 to  
1 and must occur below the dashed line in the figure 
since r + g 5 1.) But employing the L2 normaliza- 
tion of the three RGB vectors before calculating their 

0’0 0’2 0’4 0’6 0’6 1 0  
0 

lLin and Lee [SI also use chromaticity-based indexing, and 
project histograms under new illuminants into an eigenspace to 
accomplish color constancy, whereas we simply normalize the 
length of each color channel. 

chromaticities, we find in Fig. l (b)  that the shift is 
eliminated. 

Consider the imaEe of Fig. 2(a). If we plot the chro- 
maticity r versus the chromaticity g for this image, as 
in Fig. 2(b), the eye tend to  accumulate points into a 
histogram. Since chromaticity values must lie below 
the dashed line, a chromaticity histogram may use half 
the number of bins. 

Now consider a similar object under different light- 
ing, rotated, and translated somewhat (and even 
translated’ to/from French), as shown in Fig. 2(c . 

Notice that the plot of r versus g, shown in Fig. 2(d 1 , 
has shifted to  some degree. Figure 2(e) shows the two 
plots overlaid. 

Now applying the L2 normalization step first, we 
see that the two chromaticity plots are much closer to  
each other, as shown in Fig. 2(f). Here the scatterplot 
of the chromaticity of the original, color-normalized 
image is overlaid by that of the object imaged under 
changed illumination. 

Thus a chromaticity-based image retrieval method 
has a good chance of succeeding, even in the face of 
changing illumination. 
2.3 Histogram equalization 

The original Swain and Ballard algorithm used uni- 
form histogram bins, coarsely accumulating into 16 
bins over the range 0..255. Since image channel nor- 
malization and the subsequent step of forming chro- 
maticities may make uniform bins non-optimal, here 
we consider histogram equalization for chromaticities. 
To do so, we histogram-equalize the probability den- 
sity for chromaticity values in either channel for color- 
channel-normalized versions of the 66 model images 
used in Swain and Ballard’s original method. These 
consist of various manufactured products, clothin , 
etc. and are shown in color in [l] (Page 30, Figure 8. 

As another possible source of histogram bins, we 
could instead simply normalize the color channels of a 
large image with values drawn from a uniform random 
distribution in the range 0..255, form the chromaticity, 
and histogram-equalization. 

Below, in 54, we examine what effect using these 
histogram bins, rather than uniform ones, may have 
an the accuracy of image retrieval. There we see that 
using optimized histogram bins may have a real, but 
somewhat marginal effect, relative to  the much more 
efficient uniform bin method. 
2.4 Histogram intersection 

In [l], a very useful histogram metric is developed, 
which we adopt here for uncompressed histograms. 

Adapting Swain and Ballard’s definition to  the 
present situation, we define the intersection of chro- 
maticity histograms H ,, and H b as: 

p = min{Ha(i,j), Ha(i,j)) (5) 

2Swain and Ballard use a matrix-transformed color space as 
well as RGB, and more coarsely sample the first dimension, for 
a total of 8 x 16 x 16 = 2048 bins, but we simply use RGB and 
163 bins in our implementation of their original method here. 
As well, Swain’s algorithm explores accounting for changes in 
3-dimensional orientation by storing several views of the object 
in the model database. We simply store a single model image. 
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Chromaticity 
0 - 
e, 0 

m 0 

m 

=? 0 

1 

0 D 

(b) 
Chromaticity under a new illuminant 

( c )  
Chromaticities shift ($1 Chromaticities for normalized images: no shift 

( e )  ( f )  

Figure 2: (a): Model image. (b): Chromaticity for unnormalized model image. (c): Test image, under new illumi- 
nation. (d): Chromaticity for unnormalized t e s t  image. (e): Chromaticities shift under change of illumination. (f): 
Chromaticities for color-normalized images do not shift. 

Swain and Ballard normalize intersection (or match) 
values by the number of pixels in the model histogram, 
and thus matches are between 0 and 1. Alternatively, 
one can make the area under each histogram equal to  
unity, effectively making each image have the same 
number of pixels and turning the histogram into a 
probability density. Time for histogram intersection 
is proportional to the number of histogram bins and 
so is very fast. 

Instead, here, zero occurrences in the model histogram 
are counted instead and such effects do not contribute 
to  the metric. 

Object recognition proceeds by intersecting the 
chromaticity histogram of an unknown object with 
similar histograms precomputed and stored in a data 
base. The highest value of p ,  or in other words the 
smallest distance value (1 - p )  indicates the database 
imaEe that matches best. 

We computed matches using the above method, and 
It can be shown that histogram intersection is also using an L2 distance and found little change in 

equivalent to  1 minus an L1 distance, and SO (1 - P )  match rankings amongst images in the database when forms a metric 6, with S = 1 - p = ( l / n )  IW a - the algorithm was presented with a novel image. As 
I€ b I ,  where is the mm~ber  of histogram bins. The well, since we may view the chromaticity histogram as 
utility of this metric is that it helps to alleviate the ef- a kind of 'image', we also calculated the image correla- 
fects of noise, in the following Way. Suppose an image tion between test and model images, again with little 
has a great many very small histogram entries, ark- advantage over the histogram intersection method. 
ing perhaps from illumination that varies spectrally 
across the image, so that object colors tend to not 2*5  Other meth- 
form well-defined clusters. If such low values do not ods 
occur in the particular model image chromaticity his- The color angle idea can be summarized as a use 
togram being compared to,  then such low values might of a covariance matrix (plus the addition of an edge 
tend to  dominate, in an L2, squared-differences norm. image covariance). As such, its closest relative is the 
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method of Healey and ’Wang [9], which has been ap- 
plied to  color textures Histogram-based methods 
have distinct advantages, over [9], however, in that they 
are invariant to  2D rotations and translations. 

Healey and Wang’s method [9] consists of consider- 
ing a set of correlations Rjk(n, m), j, k = 1..3 (i.e., co- 
variance terms for mean-subtracted image channels), 
with shifts n, m from 0 to  16 pixels. In practice, they 
use n = 0..16 and m := -16..16, so for each set of 
channel products jk they use 561 correlations. Then 
there are 6 different color channel products (RR, RG, 
etc.) for each set of Sh ih ,  so an image feature vector 
has 561 x 6 = 3366 elernents. For matching, an error 
measure is taken to  be t,he L2 distance between a new 
image’s feature vector and the result of writing that 
vector in terms of the eigenvectors of each model im- 
age’s set of correlations. Let us refer to  this method 
as the Correlation Method. 

In comparison, other illumination-invariant match- 
ing schemes include the color-constant-color-indexing 
(CCCI) method [2], which uses the counts in 4096 his- 
togram bins for a color edge image, and the method of 
Slater and Healey [lo], which uses moments of color 
histograms and makes the assumption that local im- 
age patches can be modeled as textured, flat planes. 

3 Chromaticity Histogram-Image 
Compression 

In the next section we show that if we store a repre- 
sentation of each histogram-image that is first reduced 
in size by a wavelet transformation, and then further 
reduced by going to  the frequency domain and discard- 
ing higher-frequency DCT coefficients, one can derive 
a simple indexing method that is efficient and invari- 
ant under illuminant change. In the following method, 
the number of parameters in the feature vector is only 
36 or 72 values. 

Chromaticity histogram matching without com- 
pression could be computationally intensive; we 
would like to  recover an accurate approximation of 
histogram-images without sacrificing efficiency. As a 
guiding principle it would also be sensible to  main- 
tain a linear relationship between the histogram- 
image and its compress,ed representation. We can ad- 
here to  this principle by applying only linear opera- 
tions while compressing the histogram-images. There- 
fore, here we first apply a linear low-pass filter to  
both histogram-image3, resulting in new histograms 
H and H ’. To best approximate the chromatic- 
ity histograms the low-pass filtered histogram-images 
should approximate the original ones as closely as pos- 
sible, yet be of lower resolution. The scaling function 
of biorthonormal wavelets, as a symmetrical low-pass 
filter, can be exploited to that end. Basically, scaling 
functions with more “taps” use polynomials of higher 
order to  approximate the original function (the num- 
ber of taps is the number of nonzero coefficients) [ll]. 
Our main concern is to  capture the most detail but 
in lower resolution, and after some experiments we 
arrived at a good balance between efficiency and pre- 
cision by using the synimetrical 9-tap filter [12]. The 

1D mask of the separable 2D scaling function is: 

(0.037829, -0.023849, -0.110624,0.377403,0.852699, 
0.377403, -0.110624, -0.023849,0.037829} 

After applying the scaling function several times to 
the original histograms, assuming for simplicity square 
histograms with resolution 2” x 2”,  we obtain size 16 x 
16 lower resolution histogram images. 

We then apply a DCT, transforming H into H^ 
and indexing on H . Since the lower frequencies cap- 
ture most of the energy of an image, after applying 
the DCT we can retain just the lower frequency co- 
efficients for histogram-image database indexing - a 
very effective and efficient way of realizing a further 
low-pass filtering. By experiment we found that using 
only 36 coefficients worked well, these being those in 
the first 36 numbers in the upper left corner of the 
DCT coefficient matrix, as shown in Fig. 3. 

Denote by H d the 36 values (derived from DCT 
coefficients) in the order illustrated in Fig. 3. We in- 
dex on the L2 distance between H d for the model 
histogram and that for the test histogram. Let us 
call the chromaticity-histogrammethod (with no com- 
pression) the ChromHzst-A method, and that based on 
compressed histograms the ChromHist-B1 method. 

h 

Figure 3: Arrangement o f  DCT coefficients 

Populating the database, then, consists of calculat- 
ing off-line the 36 values H d ,  viewed as indices for 
each model image. For image query, first the 36 Val- 
ues for the query image are computed, thus dbtain- 
ing H &; then for every model image, the L2 distance 
[ C ( H  & - H d)2]1/2 is calculated. The model image 
minimizing the distance is taken to be a match for the 
query image. 

Note that in the ChromHist-B1 method only re- 
duced, DCT transformed, truncated histograms are 
used - no inverse transforms are necessary and the 
indexing process is entirely carried out in the com- 
pressed domain. 

31nstead of using a conventional 8 x 8 window for the DCT, a 
16 x 16 window is adopted. As a result, a finer resolution (twice 
as high as with 8 x 8 ) in the spatial frequency domain is realized. 
Since the low-pass filtering after DCT can only retain a limited 
number of coefficients for efficiency, the net effect of having a 
larger (16 x 16 ) window is that a more detailedparameterieed 
description at the lower end of the spectrum is facilitated. This 
is beneficial when very low-resolution wavelet images are used 
for matching in our method. 
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The choice of a reduced resolution of 16 x 16 for 
chromaticity histograms and 36 DCT coefficients re- 
tained was made quite empirically. For comparison 
we also define a ChromHast-B2 method in which the 
wavelet-reduced chromaticity histogram images have 
a resolution of 32 x 32. For this method we could 
still use a 16 x 16 window for the DCT by applying 
the DCT to each of the four quadrants of the 32 x 32 
histogram-image.. However, a more compact repre- 
sentation can be used here. Recall that only the lower 
left-half of the chromaticity histogram contains non- 
zero counts (shown as the shaded region in Fig. 4(a)). 
To reduce computation we rearrange the histogram by 
cutting off the right-half of the shaded triangle and 
append it to the top of the remaining region to get a 
new rectangular region shown in Fig. 4(b). The new 
histogram consists of two 16 x 16 subimages; applying 
a 16 x 16 DCT to each of these, with 36 coefficients 
each, gives method ChromHist-B2, which indexes on 
a total of 72 values. 

As well, an auxiliary step of carrying out a square 
root operation on the histogram values before turn- 
ing them into probability densities was found to im- 
prove the performance over the results presented in 
[13] where no square root was applied. 

Algorithm 

Color Indexing (L l )  
Color Angles (L2) 
ChromHist-A (LI )  
ChromHist-Bl (L2) 
ChromHist-BZ ( L e )  

Color Indexing (L l ) .  
Color Angles (L2): 
ChromHist-A (Ll) :  
ChromHist-B1 (LZ):  
ChromHist-B2 ( L 2 ) :  

0 0 

(a) (b) 
Figure 4: ChromHist-B2:Preparing two 16 x 16 subim- 
ages 

Next-Best 
Mismatch Rankings 

1 2 3 > 3 Mean SD 
23 2 0 5 1 .32  0.49 
24 1 2 3 2.41 2.10 
28 2 0 0 1.47 0.36 
26 1 1 2 g . 6 5  2.Z8 
27 1 1 1 2.61 1.52 

22 2 1 5 1.17 0.23 
12 4 2 12 1.02 0.71 
27 2 0 1 1.10 0.09 
27 0 2 1 5.24 5.77 
27 2 0 1 4.59  4.47 

With Added Noise 

4 Experiments 
4.1 Swain’s database: no illumination 

change 
Here we compare the new method (denoted 

ChromHist-A), based on the chromaticity of color- 
normalized images, and its variants that operate in 
the compressed domain (denoted ChromHist-B1 and 
B2), with the original Color Indexing method [l], and 
with the Color Angles method [3], with model and 
test images taken from Swain’s original paper. We 
find that the new method does well on this database, 
better than the other methods tested. Since the orig- 
inal images are quite special in the sense that objects 
appear on a black background that is easily thresh- 
olded away, we also test how the performance of each 
method degrades in the presence of clutter. A simple 
approach to  providing a background for each image 
is to generate random noise all over the image-this 
also provides a standard partial sensitivity analysis. 
To the eye, this makes no difference in recognizing 
correct matchesf 

The new ChromHist method is relatively insensitive 
to  the size of the histogram. Here we use 128 x 128 
histograms; this is not necessarily optimum, but is use- 
ful for wavelet-based compression because each side of 
the histogram ‘image’ is a power of 2. 

Table 1 shows matching scores for the methods 
tested, on the original images and on images with uni- 
form random noise with rms value 15 added. A rank 
of 1 means a correct match, and a higher value in- 
dicates at what relative order the correct match was 
to be found. We find that the new method is more 
resilient to noise than previous methods tested. 

Along with matching scores, we also wish to know 
to what degree each algorithm fails, if it does fail. To 
characterize each algorithm in these terms, we wish 
to  compare values of metric distances from each test 
image to  every one of the model images in terms of 
the distance from the test image to its corresponding 
correct model image. Therefore, for each test image, 
we divide these distances by the distance from the test 
image to the correct model image, and thus form dis- 
tance ratios. Then a good characterization of perfor- 
mance is the mean value of distance ratios for worst- 
case zncorrect models for each test (cf. [12]). Here, the 
worst case is the model that is closest to  the test im- 
age, but is not the correct model. I.e., the worst case 
is the “next-best’’ mismatch model. Table 1 shows 
t8he mean and standard deviation over all experiments 
of this next-best mismatch distance, always using a 
metric distance. For the present database, this means 
that we give the mean and standard deviation of next- 
best distance ratios for the 65 incorrect model images 
over 30 tests. For algorithms that use an L2 distance 
metric, we use that distance. For algorithms that use 
histogram-match values p with a maximum value of 1, 
we use the L1 distance (1 -1-1). Comparing L1 distance 
with L2 distance is not entirely reasonable, but still 
distance ratio values do characterize algorithm perfor- 
mance. In Table 1 we show L1 distances in normal 
font and L2 distances in italics. Good performance is 
indicated by a mean distance ratio greater than 1 and 
the higher the better, since that would mean perfor- 
mance in which the algorithm rarely makes a wrong 
guess. 

Table 1: Swain’s images. Matches of 30 t e s t  images for 
database of 66 model images 

From the results in Table 1 we see that ChromHist- 
A performs best, and the ChromHist-B2 method, the 
version that operates entirely in the compressed do- 
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main, follows not too far behind. The ChromHist 
method in either the whole-histogram or compressed 
histogram version is least sensitive to  noise. Below we 
show that for textures or when illumination change is 
actually present the ChromHist method in any form 
again does best of methods tested here. 
4.2 Textures: modeled illumination 

As another test, consider the model database of ten 
color texture images in [14]. For this model set, test 
images are created by modeling illumination change by 
means of imaging these textures through three sepa- 
rate colored filters. Thus there are a total of 30 test 
images under different simulated illuminations, for a 
model database of 10 images. After Finlayson et al. 
[3], we rotated test images by 30' with respect to  the 
model image orientation before carrying out matching. 
As a result, the correlation-based method of [14] fails, 
with match rankings of 13 at rank 1, 7 at  rank 2, 1 at 
rank 3, and 9 at  rank > 3.  A subsequent correlation- 
based method [15] addresses rotations, but we have 
not implemented that extension here. 

Narrowband filters sliould favor the Color Angles 
method, and we find that this is indeed the case. In 
Table 2 results are shown for the six algorithms tested. 
Since it is asserted that image size is relatively unim- 
portant for at  least one of these methods [l], for the 
uncompressed methods we reduced the texture images 
by pixel averaging from 480 x 640 to  120 x 128. 

Table 2: Textures Matcl ies of 30 reduced, rotated test 
images for database of 10 model  images 

change 

Algorithm 

As can be seen, again methods ChromHist-B2 and 
B1 approximate fairly well to  using full histograms 
and again the ChromHist method performs best. Note 
from the Next-Best Mismatch distance ratio that 

4Above we do not provide a comparison with the CCCI 
method [2]. That method selected only the 55 of Swain's 66 
model images that had no pixel saturation. This concomitantly 
reduces the number of test images to 24. We do not preselect 
out any of the images. However, we did perform runs using just 
these 55 model images, with no noise, using the ChromHist- 
A method and also our implementation of the Color Indexing 
method, for comparison with CCCI. For CCCI, results reported 
are: 2 3  matches of rank 1 and 2 of rank 2 out of 24 (szc). For 
this data, the Color Indexing method finds 21 matches with 
rank 1 and 3 matches with r i d  2. Our method, ChromHist-A, 
finds 22 of rank 1 and 2 of rank 2.  

ChromHist-A performs much more robustly than its 
one L1-metric competitor. The mean of next-best 
mismatch values is 1.66 for ChromHist-A and 0.90 for 
Color Indexing. Thus the ChromHist method is much 
less likely to  choose the wrong model image. 
4.3 Objects: true illumination change 

To test the indexing algorithms on data that truly 
reflects changing illumination and not just placing a 
filter in front of the camera lens, we consider the 13 
model images in [3]. 

Test images consist of images of various objects, 
rotated, shifted, or wrinkled, taken under two different 
illuminants (three different illuminants in one case). 
Thus there are 27 test images for a model database of 
13 images. Results for the algorithms tested are given 
in Table 3. 

Table 3: Objects under changing il luminants: Matches 
of 27 test images for database of 13 model  images 

I Algorithm 

ChromHist-A (L l ) :  
uniform bins 
ChromHist-A (Ll ) :  
randimage bins 
ChromHist-A (L l ) .  
hist.-eq. bins 
ChromHist-Bl(L2) 

ChromHist-B 1( U):  

I Next-Best 
Rankings Mismatch 

1 2 3 > 3 Mean SD 
2 6 7 12 0.76 0.35 

23 3 1 0 3.48 3.64 

24 1 2 0 1.24 0.25 

26 
26 

18 

This database is the only one studied that truly 
utilizes changing illumination and here our method 
performs best, either in the whole-histogram or 
compressed-histogram version. As well, the new al- 
gorithm stands up best when challenged by noise. 

5 Conclusion 
The simple idea of normalizing color images sepa- 

rately in each band as a reasonable approach to  color 
constancy preprocessing in the context of indexing 
into an image database is adopted here, but in this 
paper we do not throw away most of the information, 

5 0 f  course, if test and model images were registered, then the 
very best one could do would be to model illumination change 
via a 3 x 3 transformation matrix among color bands; in [12] 
we computed a Least Squares approximation of such a matrix 
with excellent results. As well, we showed that wavelet-based 
compression followed by DCT and truncation did not destroy 
the linearity of the transformation and therefore that a Least 
Squares analysis could be carried out entirely in the compressed 
domain, leading to an indexing scheme with very little degra- 
dation from using full images and based on only 63 values. 
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as in the Color Angles method. Instead, we transform 
to a 2D representation by using histograms of chro- 
maticity. Viewing these 2D feature space histograms 
as images, we apply a wavelet-based image reduction 

having to generate descriptive statistics for the entire 
video, for each new video. The  metric used in this do- 
main is again based on compressed chromaticity his- 
tograms. 

transformation for low-pass filtering, a square root op- 
eration, and DCT and truncation. The  resulting in- 
dexing scheme uses only 36 or 72 values to index into 
the image database. Results for experiments on test 
images with no change of illumination, illuminption 
change modeled by changing camera filters, and true 
change of illumination, with and without noise added, 
show that the method does better or a good deal bet- 
ter than the other methods tested. As well, we find 
that operating entirely in the compressed domain has 
an  appreciable but acceptable effect on the accuracy 
of the method, compared to using whole images and 
no compression. Generally speaking the compression 
method ChromHist-B2, based on folding a 32 x 32 his- 
togram into a 32 x 16 one, does slightly better than 
method ChromHist-B1, which uses a 16 x 16 com- 
pressed histogram. 

Future work could further consider the effect of 
histogram-equalization on the method. We have 
found that performing histogram-equalization on in- 
dividual chromaticity histograms derived from color- 
normalized color images generally leads to histogram 
bins that are more or less the same across images, so 
histogram-equalized bins for each image could be em- 
ployed. This could also benefit from our ChromHist-B 
methods in which severe low-pass filtering is applied. 
Alternatively, the database could be augmented by the 
best bins for each model image, either with both chan- 
nels lumped or separately for each chromaticity band, 
for a resulting overhead of one or two times the number 
of histogram bins in use. Then a quick culling scheme 
could be based on whether a test image has similar 
histogram-equalized bins, as a first pass. Of course, 
straightforward adaptive schemes such as comparing 
largest bins first and so on could also be used. 

As well, there may be other wavelets that could 
work better and the issues of optimum histogram res- 
olution and schemes other than the square root for 
reducing the AC energy could be addressed. Never- 
theless, the results reported here are in some cases al- 
ready quite good, even using uniform bins and a fairly 
ruthless compression scheme. 

The fact that the color-channel normalization step 
reduces every image to the same scale means that the 
present method can also be applied to transition detec- 
tion in video [16]. Because transition thresholds can 
be predetermined from a training set of videos, new 
videos or streaming videos can be segmented without 

References 
[l] M.J. Swain and D.H. Ballard. Color indexing. Int. J .  

Comput. Vzszon, 7(1):11-32, 1991. 
[a] B.V. Funt and G.D. Finlayson. Color constant color 

indexing. IEEE PAMI, 17:522-529, 1995. 
[3] G.D. Finlayson, S.S. Chatterjee, and B.V. Funt. Color 

angular indexing. In ECCV96, pages II:16-27, 1996. 
[4] G.D. Finlayson, M.S. Drew, and B.V. Funt. Spectral 

sharpening: sensor transformations for improved color 
constancy. J .  Opt. Soc. Am. A ,  11(5):1553-1563, May 
1994. 

[5] C.F. Borges. Trichromatic approximation method for 
surface illumination. J .  Opt. Soc. Am. A ,  8:1319- 
1323, 1991. 

[6] G. Healey and A. Jain. Retrieving multispectral satel- 
lite images using physics-based invariant representa- 
tions. IEEE PAMI, 18342-848, 1996. 

Color Science: Con- 
cepts and Methods, Quantztatzve Data and Formulas. 
Wiley, New York, 2nd edition, 1982. 

Using chromaticty distribu- 
tions and eigenspace analysis for pose-, illumination- 
and specularity-invariant recognition of 3D objects. 
In CVPR97, pages 426-431, 1997. 

[9] G. Healey and L. Wang. The illumination-invariant 
recognition of color. In ICCV95, volume 12, pages 

[lo] D. Slater and G. Healey. Combining color and geomet- 
ric information for the illumination-invariant recogni- 
tion of 3-d objects. In ICCV95, pages 563-568, 1995. 

[ l l]  M. Antonini et al. Image coding using wavelet trans- 
form. IEEE Trans. on Image Processing, 1(2):205- 
221, 1992. 

[12] Mark S. Drew, Jie Wei, and Ze-Nian Li. On illumina- 
tion invariance in color object recognition. Technical 
Report TR 97-07, Simon Fraser University, 1997. 

[13] Mark S. Drew, Jie Wei, and Ze-Nian Li. Illumination- 
invariant color object recognition via compressed 
chromaticity histograms of normalized images. Tech- 
nical Report TR 97-09, Simon Fraser University, 1997. 

[14] G. Healey and L. Wang. Illumination-invariant recog- 
nition of texture in color images. J.  Opt. Soc. Am. A ,  

[15] L. Wang and G. Healey. Illumination and geometry 
invariant recognition of texture in color images. In 
CVPR96, pages 419-424, 1996. 

[16] J. Wei, M.S. Drew, and Z.-N. Li. Illumination invari- 
ant video transition detection by robust thresholding, 
1997 (submitted for publication). 

[7] G. Wyszecki and W.S. Stiles. 

[8] S. Lin and S.W. Lee. 

128-133, 1995. 

12:1877-1883, 1995. 

540 


