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ABSTRACT
In this paper, we present a new technique based on feature

localization for segmenting and tracking objects in videos. A

video locale is a sequence of image feature locales that share

similar features (color, texture, shape, and motion) in the spatio-

temporal domain of videos.  Image feature locales are grown

from tiles (blocks of pixels) and can be non-disjoint and non-

connected.  To exploit the temporal redundancy in digital videos,

two algorithms (intra-frame and inter-frame) are used to grow

locales efficiently.  Multiple motion tracking is achieved by

tracking and performing tile-based dominant motion estimation

for each locale separately.

1. INTRODUCTION
In many applications, the ability to automatically locate and track

objects in videos is very important.  The most intuitive way of

accomplishing this task is to first generate temporally-tracked

homogeneous regions and then apply further processing

(automatic or human-aided) to identify the semantic objects.

In [8], we proposed Feature Localization as an alternative to

traditional image segmentation in respect to object-based image

retrieval.  Locales are enclosures of local features that are not

required to be connected, disjoint, or complete.  Locales also

operate at a higher level than pixels, as the basic building units

used are tiles that correspond to blocks of pixels (e.g., 16×16 or

8×8).  Localization is not merely a reduced-resolution method;

pixel-based statistics are collected and used throughout the

process without loss of high-resolution details.  One of the

advantages of localization is that it generates coarse locales that

are more robust to noise and complex object surfaces.  It is also

much more attainable as it does not require complete pixel-level

segmentation.

In this paper, we describe video locales that exploit the

temporal redundancy in digital videos.  The new method deals

with object segmentation and tracking which are important

issues for object-based video coding.  Initially, we use a

pyramidal probabilistic-unforced-linking algorithm to extract

high quality color locales (using color as the main feature) within

a video frame.  For subsequent frames, a modified algorithm is

used to exploit the similarities between consecutive video

frames.  Finally, extracted locales from consecutive frames are

matched and dominant motion estimation is carried out for each

matching pair of locales to provide temporal tracking.  Since

each locale is tracked separately, the method has the potential to

tackle motions of multiple objects.  Our motion estimation

algorithm also follows the philosophy that all calculations are

done based on tiles while keeping pixel-unit precision; hence we

gain the advantage of utilizing both global and local information.

Experiments have shown impressive results.

2. FEATURE LOCALIZATION CONCEPT
Feature localization was introduced and described in [8].

Definition 1: A locale Lf is a local enclosure of feature f.
A locale Lf uses blocks of pixels called tiles as its building units,

and has the following descriptors:

1. Envelope ℜf : a set of tiles representing the locality of Lf.

2. Geometry: mass M(Lf), centroid C(Lf), and pixel variances.

3. Color, texture, and shape parameters of the locale.

After a localization process the following is often true:

1. Locales are not connected: ∃f : Lf is not connected.

2. Locales are non-disjoint: ∃f ∃g : Lf ∩ Lg ≠ ∅, f ≠ g.

3. Non-completeness:  ∪f Lf ≠ I, not all pixels are represented.

3. VIDEO LOCALES ALGORITHM
Our approach is to create video locales that are coarse but

accurate approximations for both object locations and

movements.  A video locale is a sequence of image feature

locales that share similar features (color, texture, shape, and

motion) in the spatio-temporal domain of videos.  Using color as

the main feature to localize, we extract image locales from each

frame and then perform motion estimation based on tiles (while

making use of pixel-precision statistics).  We extend our

localization algorithm to take advantage of temporal

redundancies in videos.

There are 3 major components in the algorithm:

1. Intra-frame Locales generation using pyramidal probabilistic-

unforced-linking.

2. Inter-frame Locales generation exploiting motion-compensated

frame similarity for subsequent frames.

3. Locale motion estimation using tile-based energy minimization

for 2D affine motion.

The Inter-frame algorithm automatically switches to Intra-frame

processing if scene and shot changes occur (see Section 3.3).

3.1 Overall Algorithm
The overall algorithm for video object segmentation and tracking

is as follows:

1. Read a frame from video.

2. If this is first frame,

a. Generate Intra-frame Locales
3. Else

a. Generate Inter-frame Locales
b. Match locales from current frame to reference frame

c. Perform motion estimation for each locale

4. Repeat 1 – 3 until end of video.

3.2 Intra-Frame Locale Generation
The intra-frame algorithm uses information within the video

frame only.  There are two major steps. Tiles are first generated



from the image and then they are linked into locales in a

pyramidal scheme.

3.2.1 Tile Generation
A relatively simple histogram analysis is performed to

estimate the different dominant colors in a block of pixels.  For

each tile, an RGB histogram with bin widths 32 × 32 × 32 is

constructed and the 5 most frequent color bins become the

dominant colors for the tile. After the dominant colors are

determined, each pixel in the tile is assigned to the closest

dominant color.  Each dominant color becomes a tile-feature and

the average RGB is used as the final color.  Geometrical

statistics mentioned in Section 2 are calculated for each tile-

feature.  If there are more than one tile-feature in a tile, we say

that the tile-features are overlapped.

Integer RGB values are used in this step for computational

simplicity.  Although RGB is not as perceptually accurate as

other measures, we find that it gives good enough estimates.  In

subsequent processing, chromaticity and luminance are used

instead.

Pseudo-code for the entire tile generation process and

transitional/noise pixel determination is outlined in Procedure 1

and 2 respectively.

Procedure 1: Tile Creation
1. Calculate Dominant Colors:

a. Create an RGB histogram (32 × 32 × 32 RGB bins) for the non-

transitional and non-noise pixels.

b. Merge color bins using intensity and chromaticity.

c. 5 most frequent color bins are the Dominant Colors.

2. Assign each pixel (incl. transitional & noise) to closest dominant color.

3. A Tile-Feature (Locale) is created for each dominant color.

Procedure 2: Noise/Transitional Pixel Determination
1. Transitional: intensity is on a steep slope of any 2 of 8 neighbour

pixels.

2. Noise: < than 2 neighbours with similar intensity.

3.2.2 Locale Growing Pyramid
In previous papers [8] we employed a bottom-up pyramid linking

method for merging the tiles into locales; however, this is

plagued by one of the most confounding problems for bottom-up

image segmentation methods: forced-decisions with local or

incomplete information.  Most decisions have to be made at the

lowest level, which is characterized by local and noisy data, and

wrong decisions propagate through the pyramid to cause

inaccurate results.  In [5], T. H. Hong and A. Rosenfeld

introduced an unforced-linking algorithm in which classification

decisions are deferred until more information is available.

Instead of forcing a pixel in the lower level to link with one

parent in the upper level, the pixel is linked to multiple parents

with probabilistic weights derived from their geometric and

intensity similarities.  Multiple iterations update the weights

until they finalize.  Pixels are then assigned to their most

strongly linked parent (region).  The advantage of this method is

that errors made at low levels can be recovered after a few

iterations.

This is the strategy we employ where overlapping tile-

features and locales are used in the place of pixels.  Parent locale

statistics are updated using probabilistic weighting for two

purposes: (1) reduce impact of outliers and noise, and (2)

propagate weights to next level.  When a child locale is merged

into the parent locale wrongly or as an outlier, the link

probability is low so it would not contribute as much to the

parent locale as others.   Note that each child locale can be

compared to more than 4 parents because parent locales may

overlap (each node is a list of locales); hence, as we move up in

pyramid levels, tile-details (which are measured with pixel

precision) are not lost while global information is gained.  This is

the main reason why this algorithm is not merely a multi-

resolution analysis.

3.3 Inter-Frame Locale Generation
Discrepancies between two consecutive frames are mostly caused

by four things: noise, object and camera movements, introduction

of new objects, and special visual effects including cut, wipe and

dissolve transitions.  Since locales are fairly robust to small

noise, we do not worry about noise.  Object and camera

movements account for most of the changes in videos.  Our goal

is to model and predict these movements.  Motion estimation

enables us to generate inter-frame locales quickly and at the

same time provides locale tracking. The other two causes cannot

be predicted so we always scan all pixels at least once to update

such changes.

In the intra-frame algorithm, most of the computation time

is spent on calculating dominant colors within the tiles and on

iteratively linking and re-linking nodes at the bottom-most level

in the pyramid.  Dominant colors calculation is costly because it

is mostly a pixel-level computation.  Similarly, the bottom

pyramid level has as many nodes as tiles.

Our strategy is to minimize those two steps.  Assume that

we have 2D affine motion estimation for each locale on the

reference frame (discussion for motion estimation is deferred

until Section 3.4).  We first transform the envelopes of the

locales onto the current frame according to their motion

estimation.  This prediction carries with it two major pieces of

information for each tile in the current frame: predicted dominant

colors and predicted tile-feature ownership.  Each locale appends

its color to the dominant color list of the tiles within its envelope,

and all tile-features created for that color are assumed to link to

that locale; hence, dominant color calculation is skipped, and the

unforced-linking step is also skipped.  If the predicted motion is

100% accurate, this will produce optimal results with almost no

work.

After the dominant colors are predicted, we examine each

pixel in each tile, update tile-features’ statistics, and extract any

unpredicted tile-features (new colours).  These new tile-features

are then linked into locales in a partial pyramid that involves

only the new tile-features.  The new locales are merged or

appended to the predicted locales. Scene changes or large

occlusions will generate many unpredicted tile-features, and full

pyramid linking (as in Intra-processing) is performed in such

cases.

Procedure 3 shows pseudo-code for the algorithm used for

generating inter-frame locales. Inter-frame quality is almost

identical to intra-frame but the average inter-frame computation

time is only 25% of that of the intra-frame.  For frames that have

little motion or those that contain very predictable movements,

computation times are as low as 10% of the intra-frame time.

Procedure 3: Inter-frame Locales Algorithm
1. Predict a locale for each reference locale in previous frame.

2. Update Tiles

a. For each reference locale that is big enough:

 i. Predict envelope from motion vector in last frame.

 ii. Append its color to all intersecting tiles.



b. For each tile:

 i. Assign each pixel to closest predicted dominant color

and keep top 5.

 ii. Each tile-feature is predicted to belong to the color’s

corresponding locale.

 iii. If more than 20% pixels have unpredicted colors,

recalculate tiles as in Intra and recover ownership:

1. For each tile-feature, match it to closest dominant

color list and link it to corresponding locale.

2. Count # tiles that contain unclaimed tile-features.

3. Locales Linking

a. If # unpredicted tiles < ¼ of image

 i. Pyramid-grow the unclaimed tile-features.

 ii. Merge the grown locales with predicted locales.

b. Else, re-grow all tiles as in intra-frame.

3.4 Locale Motion Estimation
The simplest way to estimating locale motion is locale-centroid

displacement.  The vector given by the movements of a locale’s

centroid provides a rough estimation to the translation vector for

the whole locale; however, a two-dimensional translation model

may not be sufficient in the presence of scaling and rotation.

Furthermore, centroids are calculated as an average and therefore

they are sensitive to outliers.  It is more intuitive to examine the

locale envelope directly as the goal is to predict how the

envelope transforms across time.

Many motion segmentation algorithms exist in the

literature.  There are two main approaches: dominant motion

method that derives motion directly from spatiotemporal image

intensity gradient information; and indirect methods that first

estimate optical flow field and then determine parameters and

support for multiple motion models, such as motion parameter

clustering, maximum likelihood (ML) segmentation, and

maximum a posteriori probability (MAP) segmentation [11].

In this experiment, we adopt the dominant motion approach

using over-lapping tiles as the base unit to extract a good

approximation for the overall motion of each locale.  It is

possible that a single locale may exhibit multiple motions,

especially locales from non-rigid and articulate objects.  The

dominant motion approach provides a very intuitive and direct

way of extracting the overall movement.

3.4.1 Matching Locales
Since we are tracking color locales, we make the assumption that

we can model most changes in the locale envelopes by a 2D

affine model.  This is usually the case when the 3D scene is

sufficiently distant from the camera, which is quite common in

most videos [7].  In this paper, we use the 6-parameter affine

model.

Suppose we call the affine transform yyyxxx cbacba ,,,,, ,

then the 2-D motion ),( yx ∆∆  of a pixel is:

yyyxxx cybxaycybxax ++=∆++=∆ , (3.5)

If we assume image motion is small, then a Taylor series

expanded only to linear terms is expected to be sufficiently

accurate to describe the image motion.  This results in the optical

flow equations [6, 9].  For an affine motion, the least-square

solution over a region of interest is the solution of a 6 × 6 matrix

times the unknown 6-vector ( yyyxxx cbacba ,,,,, ), with the right-

hand-side being a forcing vector.

Since locale dominant motion estimation is carried out for

each locale separately, only the envelope of one object is

considered and the dominant motion assumption should hold

valid for most cases.  It is rare that an individual object will

exhibit equal competing motions.  Also, the iterative process and

change detection can be avoided because there is only one motion

to extract.  Pixel-noise is minimized when tiles are used as the

observation points.  Finally, in the case of low spatial gradient

regions, this can be detected by a motion reliability measure

defined in [7] and we can recover by falling back on locale-

centroid displacement to give us an estimation of the translation

vector.  Procedure 4 illustrates the pseudo-code for the motion

estimation process.

Procedure 4: Locale Motion Estimation
1. For each (locale, reference locale) pair:

a. If both Locale and reference Locale have > 5 tiles:

 i. Region of interest = union of tile envelopes

 ii. Estimate Dominant Translation ( )yx dd ,

 iii. Translate Reference locale tiles by ( )yx dd ,

 iv. Estimate Affine Transform yyyxxx cbacba ,,,,,

 v. Compose the two transforms

 vi. If near-singular condition, go to step b.

b. Else:

 i. ( )yx cc , = Centroid displacement.

4. EXPERIMENTAL  RESULTS
We have implemented the above algorithms in our system which

can read any video formats and display locales in real-time.

Figure 1 compares the results of inter-frame algorithm with those

of intra-frame algorithm. The difference in quality is very small

even though on average the Inter-frame algorithm is 70% faster

than the intra-frame algorithm (see Table 1).  On a modern PC

our algorithm should be able to run at 20-30 frames per second.

We evaluate the quality of our motion estimation algorithm

by monitoring the number of unpredicted tiles.  The tile-based

dominant motion estimation algorithm (DM) is compared against

other methods: (1) assume all objects are stationary (SA), (2)

predict translation by locale-centroid displacement (CD).  Table

2 summarizes the results.  As expected, stationary assumption

method performs the worst while tile-based dominant motion

estimation has the best performance. When motion cannot be

well predicted by the affine model (as in the wiggling fish

scene), centroid displacement is as good as dominant motion

estimation.

In Figure 2, a video sequence with lots of motion and

occlusions is tested under the full algorithm (intra-frame & inter-

frame).  Color localization is very effective even though it is a

difficult video.  Figure 3 shows the tracking of a hockey player

by his blue jersey.  Notice that the localization approach

overcomes the problems of disconnected regions (stripes, logos,

jersey) and complex motion to provide good tracking result.

5. CONCLUSION
In this paper, we presented a new algorithm for video object

segmentation and tracking in a localization framework.  An

unforced-linking pyramidal scheme is used to achieve good

localization, and temporal redundancy is exploited by an inter-

frame algorithm.  Fast, effective, object-based dominant motion

estimation is possible because of the introduction of video

locales.  Experimental results show that video objects from a

variety of natural scenes can be effectively segmented and

tracked.



Potential applications of this work include object

segmentation and tracking in sports coverage and surveillance,

video summarization, and object-based video coding.

Many future improvements are possible.  Currently the

motion estimation does not address the merge/split problem.  If a

locale is split, only part of the envelope is used in estimating

motion.  In future we will investigate ways of allowing multiple-

locales matching to track down all the various parts of a split or

merged-locale.  An adaptive threshold scheme will also help.
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Figure 2. Video sequences: original frames are shown on top, followed by composed locales.

The numbers below the sequences show the number of locales in each frame.
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Figure 1. Intra-frame & Inter-frame algorithms results

Table 1. Timing on Pentium II 400 (ms per frame)
 ~800 320x240 frames Intra-frame Inter-frame

Mean      330.3        95.9
Minimum 208.0        37.0
Maximum      587.0      455.0
Standard Deviation        95.5        42.0

Figure 3. Object Tracking: the blue jersey of the hockey player is being tracked.
 Figure shows the blue locale by its envelope and bounding box.

Table 2. Motion Estimation Performance:
Scene Sequences Met

hod
Unpredicted

Tiles per frame
% of Total Tiles

(1600)
Simple linear

motion

(Scrolling texts)

SA

CD

DM

249.52
0.34
0.24

15.595%
0.022%
0.015%

Non-linear

motion

(Wiggling fish)

SA

CD

DM

177.89
56.44
57.51

11.118%
3.528%
3.594%

High motion &

Complex scene

(Football)

SA

CD

DM

342.75
105.65
83.66

21.422%
6.603%
5.229%


