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Abstract. We present a virtual try-on system - EON Interactive Mirror - that em-
ploys one Kinect sensor and one High-Definition (HD) Camera. We first overview
the major technical components for the complete virtual try-on system. We then
elaborate on several key challenges such as calibration between the Kinect and
HD cameras, and shoulder height estimation for individual subjects. Quality of
these steps is the key to achieving seamless try-on experience for users. We also
present performance comparison of our system implemented on top of two skele-
tal tracking SDKs: OpenNI and Kinect for Windows SDK (KWSDK). Lastly, we
discuss our experience in deploying the system in retail stores and some potential
future improvements.
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1 Introduction

The fashion industry greatly relies on traditional retail outlets because most users only
feel comfortable purchasing outfits after physically trying them out. The consequences
of this fact include that Internet shopping is hard for clothing; and fitting rooms in brick-
and-mortar stores are always packed during peak hours. This motivates us in developing
a virtual try-on system that enables shoppers to digitally try out clothes and accessaries.
Our system, named EON Interactive Mirror(http://www.eonreality.com/), utilizes one
Kinect sensor and one High-Definition (HD) camera. The Interactive Mirror enables
the shopper to virtually try-on clothes, dresses, handbags and accessories using gesture-
based interaction. Customers experience an intuitive and fun way to mix-and-match
collections without having to queue for fitting rooms or spend time changing items.
Customers can also snap pictures of their current selections and share them on Social
Media to get instant feedback from friends, which can potentially shorten the decision
time for making the purchase.

Our system has been deployed since April 2012 in one of Singapore’s largest shop-
ping centers with approximately three million visitors passing through every month.
With EON Interactive Mirror, walk-by customers can be convinced to walk into the
store. Within the store, it has created unique customer experiences of virtually trying on
the latest fashion ‘on-the-go’ in a fun and engaging way, and made the store stand out
from the highly competitive market.

In order to achieve a believable virtual try-on experience for the end user, several
challenges have to addressed. First, the Kinect sensor can only provide low-resolution
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VGA quality video recording, yet high quality video is essential for attractive visual
appearance on large screens. We thus opt to use an HD camera to replace the role of
Kinect’s built-in RGB camera. This necessitates a calibration process between the HD
camera and the Kinect depth camera in order to map the 3D clothes seamlessly to the
HD video recording of the customers. Second, digital clothes need to be resized to fit to
a user’s body. Yet the Kinect depth data is noisy, the skeletal motion tracked by third-
party SDKs is not accurate, and sometimes the lower part of the body is not even in
the camera’s field of view. We thus need a reliable and robust procedure to estimate the
shoulder height of the users for the clothes-body fitting process.

We will first discuss related previous work in Section 2. We then give an overview
of our virtual try-on system in Section 3, followed by details of the above mentioned
key components in ensuring a seamless user experience. Skeletal motion tracking is
implemented on two SDKSs; and their performance comparison is documented in Sec-
tion 4. Lastly, we present our observation and experience in deploying our system for
retail store customers, and discuss the limitations of the current system for potential
future improvements.

2 Related Work

Markerless human motion tracking is a long-standing problem in computer vision. With
the recent advances in depth cameras and sensors, especially the Kinect sensor [2],
research on human skeletal pose tracking has made great improvements [5, 11, 12, 14,
15]. Our system builds on top of these techniques by utilizing publicly available SDKs
that incorporate some of these state-of-the-art algorithms.

Kinect has also enabled various interactive applications that are creative and fun,
such as ShoeSense [6], MirageTable [7], HoloDesk [8], FaceShift [13], TeleHuman [10],
and KinectFusion [9]. Most relevant to our Interactive Mirror is the ever-growing vir-
tual fitting room systems available on the market, such as Fitnect [1] and TriMirror [4].
However, we have not been able to find any technical details of these systems. From
their demo videos alone, the major difference between our system and TriMirror, for ex-
ample, is that we do not simulate clothes in our system. We simply render the deformed
clothes on top of the user’s video stream, and this requires a high-quality calibration
between the Kinect and the HD camera.

3 System Overview

Our virtual try-on system consists of a vertical TV screen, a Microsoft Kinect sensor,
an HD camera, and a desktop computer. Fig. 1 shows the front view of the Interactive
Mirror together with the Kinect and HD camera. The Kinect sensor is an input device
marketed by Microsoft, and intended as a gaming interface for Xbox 360 consoles and
PCs. It consists of a depth camera, an RGB camera, and microphone arrays. Both the
depth and the RGB camera have a horizontal viewing range of 57.5 degrees, and a ver-
tical viewing range of 43.5 degrees. Kinect can also tilt up and down within -27 to +27
degrees. The range of the depth camera is [0.8~4]m in the normal mode and [0.4~3]m
in the near mode. The HD camera supports a full resolution of 2080 x 1552, from which
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Fig. 1: The front view of the Interactive Mirror with Kinect and HD camera placed on
top.
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Fig. 2: Major software components of the virtual try-on system.

we crop out the standard HD resolution 1920 x 1080. It supports a frame rate of 60Hz
with a USB 3.0 interface of up to 5 Gbit/s transfer rate. The Interactive Mirror is a 65”
TV screen mounted in portrait mode with HD resolution 1920 x 1080. We recommend
a space of [1.5~2.5]m x [2.0~2.5]m X [2.0~2.5]m (widthxlegthxheight) in front of
the mirror as the virtual fitting room.

Fig. 2 illustrates the major software components of the virtual try-on system. During
the offline preprocessing stage, we need to calibrate the Kinect and HD cameras, and
create 3D clothes and accessories. These two components will be discussed in more
details in Sections 3.1 and 3.2 respectively. During the online virtual try-on, we first
detect the nearest person among the people in the area of interest. This person will
then become the subject of interest to be tracked by the motion tracking component
implemented on two publicly available Kinect SDKs, as will be discussed in Section 4.
The user interacts with the Interactive Mirror with her right hand to control the User
Interface (UI) and select clothing items. The Ul layout will be discussed in more details
in Section 3.3.
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Fig.3: The camera calibration process. The checkerboard images seen by the Kinect
RGB camera (left) and the HD camera (right) at the same instant of time.

For good fitting of the clothes onto the body, we need to estimate the height of the
user to resize the digital clothes appropriately. We discuss two ways of height estimation
in Section 3.4. The ratio between the height of the real user and that of the default digital
model will then be used to scale the clothes uniformly in three dimensions. Finally, the
resized digital clothes are skinned to the skeleton, rendered with proper camera settings,
and merged with the video stream of the user.

3.1 Camera calibration

Vision-based augmented reality systems need to trace the transformation relationship
between the camera and the tracking target in order to augment the target with virtual
objects. In our virtual try-on system, precise calibration between the Kinect sensor and
the HD camera is crucial in order to register and overlay virtual garments seamlessly
onto the 2D HD video stream of the shoppers. Furthermore, we prefer a quick and
semi-automatic calibration process because the layout between Kinect and HD camera
with respect to the floor plan may be different for different stores, or even for the same
store at different times. To this end, we use the CameraCalibrate and StereoCalibrate
modules in OpenCV [3] for camera calibration. More specifically, we recommend to
collect a minimum of 30 pairs of checkerboard images seen at the same instant of time
from Kinect and HD camera, and calculate each pair’s correspondences, as shown in
Fig. 3.

In addition, the Kinect sensor is usually not perfectly perpendicular to the ground
plane, and its tilting angle is needed to estimate the height of users later in Section 3.4.
We simply specify the floor area from the Kinect depth data manually, and the normal
vector of the floor plane in Kinect’s view can be calculated. The tilting angle of Kinect
is then the angle between this calculated floor normal and the gravity normal.

Furthermore, to seamlessly overlay the virtual garments on top of the HD video,
we also need to estimate the tilting angle of the HD camera, and a correct FoV (Field
of View) that matches the TV screen’s aspect ratio. Subsequently precise perspective
transformations can be applied by our rendering engine to properly render the deformed
digital clothes for accurate merging with the HD video.
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Fig. 4: Major steps for content creation. Catalogue images are first manually modeled
and textured offline in 3DS Max. We then augment the digital clothes with relevant size
and skinning information. At runtime, 3D clothes are properly resized according to a
user’s height, skinned to the tracked skeleton, and then rendered with proper camera
settings. Finally, the rendered clothes are merged with the HD recording of the user in
realtime.
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Fig. 5: Left: the Ul for virtual try-on. Right: the Ul for clothing item selection.

To summarize, the output of the camera calibration procedure include:

— extrinsic camera parameters (translation and rotation) of the HD camera with re-
spect to the Kinect depth camera.

— the tilting angles of the Kinect sensor and the HD camera with respect to the hori-
zontal ground plane.

— FoV of the HD camera.

3.2 Content creation

Our virtual 3D clothes are based on actual catalogue images, so that new fashion lines
can be added to the system quickly. Fig. 4 shows the major steps of converting catalogue
images to 3D digital clothes. In the preprocessing stage, our artists manually created
one standard digital male mannequin and one female mannequin. Then they modeled
the catalogue images into 3D clothes that fit the proportions of the default mannequins.
Corresponding textures were also extracted and applied to the digital clothes. Then we
augment the digital clothes with relevant size and skinning information. At runtime, 3D
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Fig. 6: Shoulder height estimation when the user’s feet are not in the field of view of
Kinect. The tilting angle of the Kinect sensor, the depth of the neck joint, and the offset
of the neck joint with respect to the center point of the depth image can jointly determine
the physical height of the neck joint in the world space.

clothes are properly resized according to a user’s height, skinned to the tracked skeleton,
and then rendered with proper camera settings. Lastly, the rendered clothes are merged
with the HD recording of the user in realtime.

Our content development team modeled 115 clothing items in total, including male
clothes, female clothes, and accessories. On average it took about two man days to
create and test one item for its inclusion into the virtual try-on system.

3.3 User interface

Fig. 5 depicts the user interface of the Interactive Mirror. Because our clothes are 3D
models rather than 2D images, users are able to turn their body within a reasonable
range in front of the Interactive Mirror and still have the digital clothes properly fit to
their body, just like what they can see in front of a real mirror. The user selects menu
items and outfit items using hand gestures. Different tops, bottoms, and accessories can
be mixed and matched on the fly.

3.4 Height estimation

Digital clothes need to be rescaled according to users’ body size, for good fitting and
try-on experiences. We propose two methods to estimate a user’s shoulder height. The
first one simply uses the neck to feet height difference, when both the neck and the feet
joints are detected by Kinect skeletal tracking SDKs. As illustrated in Fig. 6, however,
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Fig. 7: Human skeletons defined by OpenNI (left) and KWSDK (right).

sometimes the feet are not located within the field of view of Kinect. In such scenarios,
we can still estimate the neck height from the tilting angle of the Kinect sensor, the depth
of the neck joint in the Kinect depth image, and the offset of the neck joint with respect
to the center point of the depth image. After the shoulder/neck height is estimated, we
then uniformly resize the digital clothes in three dimensions for a better fit to the user’s
body.

4 Skeletal Motion Tracking: OpenNI vs. KWSDK

One key component of a virtual try-on system is to track the motion of the user. We built
our motion tracking component on the successful Kinect sensor and publicly available
SDKs developed for Kinect. More specifically, we have experimented with two SDKs
that provide skeletal motion tracking capability for Kinect. The first one is the OpenNI
1.1.0.41. OpenNI is a set of open source SDKs released by an organization of the same
name. It aims to standardize applications that access natural interaction devices. The
other SDK we use is Kinect for Windows SDK (KWSDK) 1.5, released by Microsoft
to support developers who wish to work with Kinect. Here we begin with an overview of
both SDKs, and then we compare their performance related to skeletal motion tracking.

Both OpenNI and KWSDK can query the Kinect sensor for RGB images and depth
images up to 30 frames per second. Additionally, both can track a user’s skeleton that
includes information of positions and orientations of each joint. Their major difference
lies in the structure of the returned skeletons, shown in Fig. 7. Note that in OpenNI the
neck joint always lies on the line that connects the left and right shoulders, while the
KWSDK shoulder_center joint does not necessarily lie on the shoulder line.

OpenNI requires a skeleton calibration step before it can track user’s poses; while
KWSDK can work in a walk in/walk out situation. On the other hand, KWSDK is more
prone to false positives, such as detecting chairs as users. In addition, KWSDK cannot
correctly identify the right vs. left limbs of the user when she faces backwards away
from Kinect. This problem is depicted in Fig. 8. The red lines represent the limbs on
the left side of the tracked skeleton.
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Fig. 8: Left: OpenNI correctly identifies the left limbs (colored red) regardless the facing
direction of the user. Right: yet KWSDK confuses the left and right limbs when the user
faces backwards.

measured shoulder| neck-to-feet [shoulder_center-to-feet| neck height [shoulder_center height
height (cm) OpenNI (cm) KWSDK (cm) OpenNI (cm) KWSDK (cm)
153.4 134.6 153.2 156.8 162.7
151.0 129.5 149.7 153.5 161.8
151.0 116.5 136.0 149.0 158.8
144.2 1144 141.3 148.2 151.2
143.5 121.3 139.0 147.5 146.0
143.5 117.1 138.9 147.3 148.2
137.6 105.4 131.6 143.7 142.9
1355 105.0 129.3 142.0 135.6
134.0 106.1 129.0 142.1 137.8

Table 1: Comparison of shoulder height estimation between OpenNI and KWSDK. Col-
umn 1: manual measurements; Column 2&3: height estimation using neck to feet dis-
tance; Column 4&5: height estimation using the method of Fig. 6 when feet positions
are not available.

In addition to full-body skeletal tracking, OpenNI provides functionalities such as
hand tracking, gesture recognition, background foreground separation etc. KWSDK
supports additional capabilities such as seated skeletal tracking, face tracking, speech
recognition, background separation etc. Our system currently does not utilize these fea-
tures and components.

4.1 Performance Comparison

We first compare the performance of OpenNI and KWSDK in terms of their joint track-
ing stability. To this end, we recorded 30 frames (1s) of skeleton data from three subjects
holding the standard T-pose standing from various distances (1.5m, 2m, and 2.5m) to
the Kinect sensor. The Kinect was placed 185cm above the ground and tilted downward
20 degrees. Subject 1 and 2 were males wearing a polo or T-shirt, jeans, and casual
sneakers, of height 190.5cm and 173cm respectively. Subject 3 was a 163cm female
wearing a blouse, jeans, and flat flip-flops. We then calculated the standard deviation of
each joint position for all the visible joints. Fig. 9 shows the results, which suggest that
the joint tracking stability of OpenNI and KWSDK are roughly comparable. Note that
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Fig. 9: Comparison of joint tracking stability between OpenNI and KWSDK. Left: aver-
age standard deviation of joint positions in centimeters for all joints across all frames.
Right: average standard deviation for each individual joint across all frames.

we recorded the T-pose trials with KWSDK while doing online tracking. We then fed
the recorded depth data to OpenNI to do offline tracking. Thus the same T-pose trials
were used for both SDKs to eliminate the difference caused by users’ motion variations.
Ideally, we should also capture the same trials using a high-end motion capture system
such as Vicon, so that the joint tracking stability of the two SDKs from Kinect data can
be compared with ground truth data. Due to space and time constraints, however, we
did not perform such comparison. From the average individual joint stability charts in
the right column of Fig. 9, we can also see that end-effectors such as hands and feet are
more unstable compared to inner body joints in both SDKs.

We also compare how OpenNI and KWSDK integrate with our height estimation
methods described in Section 3.4. With Kinect placed 185cm above the ground and ti-
tled down 20 degrees, we captured nine subjects wearing T-shirts and jeans and holding
the T-Pose for one second two meters away from the mirror. At this distance, the sub-
ject’s full-body skeleton could be seen. We first simply calculated the average distance
from the neck joint (in OpenNI) or shoulder_center joint (in KWSDK) to the mid-point
of the feet joints as shoulder height estimation. The results are shown in the second and
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third columns of Table 1. Second, we used the method depicted in Fig. 6 for height
estimation without using the feet positions. The results are shown in the fourth and fifth
columns of Table 1. The first column of Table 1 lists our manual measurement of the
vertical distance between the floor to the mid-point of the clavicles. This is the shoul-
der height that our clothes-body fitting algorithm expects to overlay the virtual clothes.
We can see from Table 1 that feet-to-neck heights tend to underestimate the shoulder
heights, mainly because there is usually a distance between the feet and the ground that
is not compensated for by the first height estimation method. For the second approach
that does not use feet positions, such underestimation is eliminated. On the other hand,
KWSDK tends to overestimate the height now, mainly because its shoulder_center joint
usually locates above the shoulder line, as shown in Fig. 7 right.

5 Discussion

EON Interactive Mirror offers several advantages over traditional retailing. It attracts
more customers through providing a new and exciting retail concept, and creates interest
in the brand and store by viral marketing campaigns through customers sharing their
experiences in Social Media such as Facebook. Furthermore, it reduces the need for
floor space and fitting rooms, thereby reducing rental costs and shortening the time
for trying on different combinations and making purchase decisions. We encourage
interested readers to search our demo videos with keywords EON Interactive Mirror at
http://www.youtube.com.

We have closely engaged participating retailers during the content creation process
in an iterative review process to ensure the high quality of interactive 3D clothes from
catalog images. Thus the retailers and shopping mall operators were confident and ex-
cited to feature their latest fashion lineups with EON Interactive Mirror. The try-on
system was strategically placed in the high traffic flow area of the shopping mall, and
successfully attracted many customers to try on the virtual clothes and bags. The retail-
ers appreciated the value of the system as a crowd puller, and to allow other passers-by
to see the interaction when somebody is trying clothes with the Interactive Mirror. We
have also observed that interactions with the system were often social, where either
couples or group of shoppers came together to interact with the mirror. They took turns
to try the system, and gave encouragement when their friend or family was trying. No-
tably the system also attracted families with young children to participate. In this case,
the parents would assist the children in selecting the clothes or bags. Due to limitations
of Kinect SDKs, the system would not be able to detect or has intermittent tracking for
children shorter than one meter. However, this limitation did not stop the young children
from wanting to play with the Mirror.

Currently there are several limitations of our system. First, the manual content cre-
ation process for 3D clothes modeling is labor intensive. Automatic or semi-automatic
content creation, or closer collaboration and integration with the fashion design industry
will be needed to accelerate the pace of generating digital clothing for virtual try-on ap-
plications. Additionally, our current clothes fitting algorithm scales the outfit uniformly.
This is problematic when the user is far way from the standard portion. For instance, a
heavily over-weighted person will not be covered entirely by the virtual clothes because
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of her excessive width. Extracting relevant geometry information from the Kinect depth
data is a potential way to address this problem.

In the future, we wish to augment the basic try-on system with an additional rec-
ommendation engine based on data analytics, so that the system could offer customers
shopping suggestions ‘on the fly’ regarding suitable sizes, styles, and combinations to
increase sales of additional clothes or promote matching accessories. The system could
also be used to gather personalized shopping preferences, and provide better informa-
tion for market research on what create just an interest to try versus a decision to buy.
We would also like to explore the possibility of adapting our system for Internet shop-
ping, for customers who have a Kinect at home. In this scenario, we will simply use the
RGB camera in Kinect rather than an additional HD camera.
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