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Abstract. In the pursuit of pushing active character control into games, we have
deployed a generalized physics-based locomotion control scheme to multiple
simulation platforms, including ODE, PhysX, Bullet, and Vortex. We first overview
the main characteristics of these physics engines. Then we illustrate the major
steps of integrating active character controllers with physics SDKs, together with
necessary implementation details. We also evaluate and compare the performance
of the locomotion control on different simulation platforms. Note that our work
only represents an initial attempt at doing such evaluation, and additional refine-
ment of the methodology and results can still be expected. We release our code
online to encourage more follow-up works, as well as more interactions between
the research community and the game development community.
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1 Introduction

Developing biped locomotion controllers has been a long-time research interest in the
Robotics community [3]. In the Computer Animation community, Hodgins and her col-
leagues [12, 7] started the many efforts on locomotion control of simulated characters.
Among these efforts, the simplest class of locomotion control methods employs re-
altime feedback laws for robust balance recovery [12, 7, 14, 9, 4]. Optimization-based
control methods, on the other hand, are more mathematically involved, but can incor-
porate more motion objectives automatically [10, 8]. Recently, data-driven approaches
have become quite common, where motion capture trajectories are referenced to further
improve the naturalness of simulated motions [14, 10, 9]. For a more complete review,
We refer the interested readers to the recent state-of-the-art report on character anima-
tion using simulated physics [6].

With so many locomotion control methods available now in academia, we cannot
help but wonder: Can these methods work beyond their specific dynamics formulations
or chosen physics engines? If they do generalize well across different physics engines,
to what degree does the selection of a particular engine affect the stability and per-
formance of the character control? What components are involved in porting a control
scheme onto different simulation platforms? And how difficult would they be?

We show in this paper that it is relatively easy to deploy one type of locomotion
control scheme [4] to multiple simulation platforms. Furthermore, the choice of simu-
lation engines is not crucial, if the controller itself is sufficiently general and robust. We
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hope our work can encourage more researchers to demonstrate their character control
schemes on publicly-available physics engines, for easy benchmarking and comparison.

From the perspective of game development, an observation is that passive object
dynamics and Ragdoll simulation are very common features in action games today;
yet the adoption of active character control is rare. As a result, simulation engines are
tested extensively for their ability to simulate the motion of passive objects, such as an
object knocking down a brick wall; while as far as we know, there is no test on physics
engines for their ability to simulate active objects. We hope our work can help increase
the awareness of game and engine developers, who usually work on one designated
platform with tight schedule and budget constraints, that it is now the time to push
more active character control into games and physics engines.

The locomotion control scheme we choose for deployment is the generalized biped
walking control method of Coros et al. [4]. This scheme produces simple yet robust
walking controllers that do not require captured reference motions, and generalize well
across gait parameters, character proportions, motion styles, and walking skills. More-
over, the authors released their code online as a Google project named cartwheel-
3d(http:://code.google.com/p/cartwheel-3d/). cartwheel-3d is built on top of
an open-source dynamics engine ODE (Open Dynamics Engine), which is commonly
used in the animation research community for its superior constraint accuracy. We fur-
ther choose two simulation engines that are more popular in the game development
community: PhysX and Bullet. PhysX is supported by NVIDIA and currently domi-
nates the market share among the released game titles. Bullet is open source and has
great overall performance. Other popular game physics engines today include Havok
and Newton. Due to the space limit, we will not discuss these engines further. The
biomechanics and robotics communities, however, are often skeptical of simulation re-
sults in the graphics literature because of the use of physics simulators that are also
associated with games. Therefore, we choose a fourth engine Vortex to test the loco-
motion controllers. Vortex is currently the leading dynamics platform in the mechanical
engineering and robotics industries. Its simulation tools have been widely used in vir-
tual prototyping and testing, virtual training, mission rehearsal, as well as in serious
games.

We will first give an overview of the chosen simulation platforms in Section 2. We
then discuss the key steps in integrating character control and simulation with physics
SDKs in Section 3. The implementation details are further discussed in Section 4. Read-
ers who are not interested in these details can safely bypass Section 4 and jump directly
to the evaluation Section 5. We concentrate only on implementation and performance
issues pertinent to the porting of locomotion controllers. For evaluation and comparison
of other aspects of physics engines, such as constraint stability or collision detection ac-
curacy, we refer the interested readers to [1], where a series of simple tasks with passive
objects and constraints are performed and compared.

2 Simulation Platforms Overview

ODE (Open Dynamics Engine) is an open source library for simulating rigid body dy-
namics and collisions [13]. The library is mostly written in C++, and provides both C
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Fig. 1: Partial architecture diagrams relevant to active rigid character control and sim-
ulation of four physics SDKs: (a) ODE (b) PhysX (c) Bullet (d) Vortex.

and C++ interface. All classes and functions are prefixed with “d”. ODE uses fixed-time
stepping. The latest ODE version 0.11.1 was released in October 2009, and currently
ODE’s development seems to be suspended.

The NVIDIA PhysX supports rigid and soft body dynamics, collision detection, flu-
ids, particles, vehicle and character controllers [11]. The SDK has a C++ programming
interface, and all classes are prefixed with “Nx”. Fixed and variable time steps are pos-
sible. PhysX also provides GPU acceleration for fluids, clothes, and soft bodies, with a
CUDA implementation. The latest PhysX SDK V3.0 was released in June 2011, which
is a major rewrite of the PhysX SDK. Our code based on V2.8.4 does not work directly
on V3.0.

Bullet provides rigid body and soft body dynamics, collision detection, and ve-
hicle and character controllers [5]. It is open source and free for commercial use on
many platforms including PLAYSTATION 3, XBox360, Wii, PC, Linux, Mac OSX
and iPhone. Bullet is implemented in C++ and all classes are prefixed with “bt”. It sup-
ports both variable and fixed time steps. The latest version of Bullet is 2.78 released in
April 2011, which we use in our code.

The CMLabs Vortex supports rigid body dynamics, collision detection, fluids, par-
ticles, cables and vehicles [2]. It is a C++ toolkit and all classes are prefixed with “Vx”.
Vortex allows arbitrary changes to the structure of the simulated system in between
steps, without any need to reconfigure or restart the simulation. It also integrates with
graphics toolkits such as OpenSceneGraph (OSG) and Vega Prime. Fixed and variable
time steps are possible. Our code is implemented on Vortex 5.0.1, and the latest release
was in August 2011 version 5.0.2.

Fig. 1 shows partial architecture diagrams of the four engines. Relevant classes will
be referred to in the following sections. From a programmer’s perspective, PhysX and
Vortex provide better documentation than ODE and Bullet. Although ODE and Bullet
are open source so direct access to the code helps where documentation is lacking. All
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Pseudocode 1 : Character control and simulation pipeline
1: Create a simulation world; //Section 4.1
2: Create objects; //Section 4.2 and 4.4
3: Create joints; //Section 4.3 and 4.4
4: Loop:
5: Apply control and accumulate forces;
6: Detect contact and collisions;//Section 4.5
7: Timestep;

dynamics engines provide sample code on basic rigid body simulation. Note that the
character controllers provided by PhysX and Bullet do not use “real” physics, but are
rather descendants of customized and dedicated code in traditional games to move a
player. Such controllers employ heuristic kinematics and quasi-physics to achieve the
illusion of controllable and responsive characters. Pure physics-based character con-
trollers are still challenging to construct in games today, and this paper taps the tip of
the iceberg by deploying a truly physical locomotion control scheme on various simu-
lation platforms.

3 Character Control and Simulation Pipeline

We deploy the generalized biped walking controller of Coros et al. [4], who released
an implementation in C++ on top of ODE. The simulation pipeline for active rigid
character control is listed in Pseudocode 1. To switch dynamics engines, each step needs
to be mapped to SDK-specific code. We explain Line 5 and Line 7 in this section, and
defer all other implementation details to Section 4.

Line 5 of Pseudocode 1 basically is where the controller computes active control
torques and accumulates external forces for each rigid link of the character. Then these
torques and forces are passed to the physics engine. We refer interested readers to the
paper [4] and our source code for details of the control algorithm. Line 7 of Pseu-
docode 1 steps the dynamics system forward in time for a small time step: constrained
equations of motion are solved and kinematic quantities are integrated. Here the major
difference of the four engines is whether they separate collision detection and timestep-
ping into two parts. ODE separates them into two distinct steps as shown in Line 6 and
7; while PhysX, Bullet, and Vortex integrate collision detection into their timestepping
so Line 6 should really be merged into Line 7 for these three platforms.

ODE provides two timestepping functions: dWorldStep and dWorldQuickStep. The
first one uses the Dantzig algorithm to solve the LCP (Linear Complementarity Prob-
lem) formulation of the constrained equations of motion, while dWorldQuickStep uses
the iterative PGS (Projected Gauss Seidel) method which sacrifices accuracy for speed.
Both methods use a fixed user-defined time step. Hereafter we use ODEquick to refer to
simulations on ODE using the iterative solver. The PGS method is also used in PhysX
and Bullet, and the users can specify the maximum number of iterations allowed. Vor-
tex provides both a standard and an iterative LCP solver, just like ODE. We only test
its standard solver kConstraintSolverStd in this work. PhysX, Bullet, and Vortex can
advance fixed time steps as well as variable time steps during timestepping. For ease of
comparison, we always use fixed time steps for all four engines in all our experiments.
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ODE PhysX Bullet Vortex
simulation world

scene world frame
world space

timestepping dSpaceCollide(...)
->simulate(...) ->stepSimulation(...) ->step()

function dWorldStep(...)

Table 1: ODE decouples the simulation world into a dynamics world and a collision
space. Thus it takes two commands to step the system forward. While PhysX, Bullet, and
Vortex unify the two concepts and integrate collision detection into the timestepping.

4 Implementation Details

This section details the major procedures in supporting character control using different
SDKs: managing a simulation world; instantiating rigid bodies and joints; and handling
contacts and collisions. Commonalities and differences between ODE, PhysX, Bullet,
and Vortex are summarized and contrasted. We also illustrate with pseudocode and
snippets where necessary.

4.1 Simulation World

A simulation world is the virtual counterpart of the physical world that hosts the virtual
objects and constraints governed by physics laws in dynamics engines. The control
component of cartwheel-3d maintains a world of its own too, containing a copy of all
the objects and constraints being simulated. Deploying the control on a new physics
engine is thus equivalent to mapping between the SDK’s world and the controller’s
world, as well as passing data between them.

The initialization of the simulation world involves specification of: dynamic prop-
erties of the world such as gravity; collision properties such as maximum number of
contacts and maximum penetration depth allowed; and default contact materials such
as coefficient of restitution and friction. ODE decouples the concept of the simulation
world into a dynamics world which handles rigid body dynamics and a collision space
which handles collision detection, as shown in Table 1. In PhysX, Bullet, and Vortex,
however, one world handles both dynamics and collision. The world detects collisions
inside the timestepping function shown in Table 1.

One point worth noting is the great flexibility and modularity of Bullet. Many parts
of the Bullet world, including the world itself, can be switched to different implemen-
tations. We use the default dynamics world btDiscreteDynamicsWorld, for which we
choose the default broadphase and narrowphase collision detection implementation and
the default constraint solver btSequentialImpulseConstraintSolver. It is also interesting
to note that Bullet actually contains the ODE quickstep solver, due to the open source
nature of both engines, so that the users can switch the solvers easily if they so choose.

4.2 Objects

Objects within the simulation world can be classified into three categories: the first type
carries the kinematic and dynamic properties including position, velocity, and mass
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body (dynamic object) shape (geometric object) static shape (static object)
ODE body geom geom (not attached to a body)

PhysX actor shape actor (with no dynamic properties)
Bullet rigidBody collisionShape collisionObject
Vortex part collisionGeometry part (frozen by users after creation)

Table 2: Dynamic, geometric, and static objects have different names in different SDKs.
We refer them as bodies, shapes, and static shapes in our discussion.

and inertia; the second type specifies the geometric properties, or shape, of an object.
Hereafter we refer to the first type as bodies, and the second type as shapes. Shapes
are usually attached to bodies for collision detection, and one body may be associated
with one or more collision shapes. Common collision primitives include box, sphere,
capsule, and plane. Advanced collision shapes such as height field, convex hull, and
triangle mesh are also supported by these four engines. There is a third kind of objects
that we call static shapes, which represent static objects such as ground which usually
do not move and are only needed for collision detection. Static shapes do not attach to
bodies and do not posses time-varying kinematic quantities. Table 2 lists the names of
these types of objects in different physics SDKs.

In ODE there is a special type of geom called space, which can contain other ge-
oms and spaces. The collision world in ODE is in fact a space. In PhysX, a body is
called an actor. Actors with specified dynamic properties, such as mass and inertia,
are dynamic; otherwise they are static. Similarly, a body in Vortex, called a part, can
be either static or dynamic. A part is dynamic by default after creation, but users can
freeze it as a static object. ODE, PhysX, and Vortex all support multiple compound col-
lision shapes attached to a single body. But in Bullet, each body or static shape can only
have one collision shape attached. Also Bullet does not support relative transformation
between collision shapes and the bodies they attach to. Therefore collision shapes in
Bullet posses identical position and orientation as the bodies they are associated with.
To achieve more sophisticated collision shapes with various initial configuration in Bul-
let, users can first define a compound shape to store all the needed component shapes,
and then encapsulate different relative transformations into the child shapes.

4.3 Joints

Joints are constraints that limit the relative movements of two otherwise independent
bodies. We classify the types of joints by counting how many rotational and transla-
tional Degrees of Freedom (DoFs) a joint permits. Table 3 lists the common joint types
supported by the four SDKs. Again the same type of joint may be named differently on
different platforms.

All the engines support a large set of common joint types. PhysX and Bullet also
provide a special kind of six-DoF freedom joint. Each DoF of a freedom joint can
be locked or unlocked independently, to model almost any type of joints. Snippet 1
illustrates how to construct a universal joint from a freedom joint in PhysX. In addition
to the listed joint types, PhysX also implements distance joint, point in plane joint, point
on line joint, and Pulley Joint. Bullet provides an additional cone twist constraint which
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#DoFs 0 1R 2R 3R 1T 1R1T 6
ODE fixed hinge universal ball-and-socket slider piston

PhysX fixed revolute spherical prismatic cylindrical freedom
Bullet hinge universal point2point slider freedom
Vortex RPRO hinge universal ball-and-socket prismatic cylindrical

Table 3: Common joint types supported by the four simulation engines. We classify the
types of joints by counting how many rotational and translational DoFs a joint permits.
For example, 1R1T means 1 rotational DoF and 1 translational DoF.

NxD6JointDesc d6Desc;

d6Desc.xMotion = NX_D6JOINT_MOTION_LOCKED;

d6Desc.yMotion = NX_D6JOINT_MOTION_LOCKED;

d6Desc.zMotion = NX_D6JOINT_MOTION_LOCKED;

d6Desc.twistMotion = NX_D6JOINT_MOTION_FREE;

d6Desc.swing1Motion = NX_D6JOINT_MOTION_FREE;

d6Desc.swing2Motion = NX_D6JOINT_MOTION_LOCKED;

NxD6Joint * d6Joint=(NxD6Joint*)gScene->createJoint(d6Desc);

Snippet 1: Constructing a universal joint using a freedom joint in PhysX.

is a special point to point constraint that adds cone and twist axis limits. Vortex supports
even more types of constraints, such as the Angular2Position3, CarWheel, and Winch
constraint. The zero-DoF joint RPRO can also be relaxed to model a six-DoF joint.
Moreover, Vortex supports velocity constraints such as the ScrewJoint, Differential,
and GearRatio constraints. In our case of walking control, however, the basic rotational
joints of one to three DoFs are already sufficient.

To achieve desired joint behavior, correctly setting up the various joint parameters
is the key. For instance, most rotational joints are modeled by an anchor point and up
to two rotational axes. A third axis is computed implicitly as a cross product of the
two defined axes. These axes form the right-handed local coordinate frame, as well as
help define joint limits. In PhysX however, except for the 6DoF freedom joint, all other
joints adopt a left-handed local coordinate frame. Understanding the joint local frame
is crucial when using the built-in Proportional Derivative (PD) controllers to power or
motorize certain joints, where users can specify the desired joint angles and velocities.

Specifying joint angle limits is usually straightforward except for ball-and-socket
joints, for which only PhysX supports the specification of the local rotational axes. In
PhysX and Bullet, however, limits can be specified for a twist-and-swing decomposition
of the angular freedoms of 6-DoF freedom joints. We thus create ball-and-socket joints
from freedom joints when using these two SDKs. In ODE and Vortex, we circumvent
this problem by attaching an additional angular motor constraint to the two bodies that a
ball-and-socket joint constrains, and then specifying limits for the angular motor along
its three motor axes as shown in Snippet 2.

Lastly, ODE provides users contact joints for handling collisions. Contact joints
prevent two bodies from penetrating one another by only allowing the bodies to have an
“outgoing” velocity in the direction of the contact normal. We will discuss this further
in Section 4.5 where we look at collision handling mechanisms of the four simulation
platforms.
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dJointID j = dJointCreateBall(worldID, 0); //create ball-and-socket joint

dJointAttach(j, parentBody, childBody);//attach to bodies

...//set joint parameters;

dJointID aMotor = dJointCreateAMotor(worldID, 0); //create angular motor

dJointAttach(aMotor, parentBody, childBody);//attach to bodies

...//set amotor parameters;

dJointSetAMotorAxis (j,0,rel,x,y,z);//set motor axis 0

dJointSetAMotorAxis (j,2,rel,x,y,z);//set motor axis 2

//set joint limits for swing angle 1

dJointSetAMotorParam(aMotor, dParamLoStop, minSwingAngle1);

dJointSetAMotorParam(aMotor, dParamHiStop, maxSwingAngle1);

...//set joint limits for swing angle 2 and twist angle

Snippet 2: Angular motors help specify joint limits for a ball-and-socket joint in ODE.

NxRevoluteJointDesc revoluteDesc; //joint descriptor

revoluteDesc.actor[0] = actor1; //attach actors constrained by the joint

revoluteDesc.actor[1] = actor2;

revoluteDesc.setGlobalAnchor(NxVec3(p.x,p.y,p.z)); //set the anchor point

revoluteDesc.setGlobalAxis(NxVec3(a.x,a.y,a.z)); //set the rotation axis

//create the joint

NxRevoluteJoint * revoluteJoint =

(NxRevoluteJoint *) gScene->createJoint(revoluteDesc);

Snippet 3: Revolute joint setup in PhysX

4.4 Creating Objects and Joints

Another difference of the four physics SDKs is the way objects and joints are created.
In PhysX every object has a descriptor, which is used to specify all the arguments of an
object before its creation. Snippet 3 shows a sample on how to create a revolute joint
in PhysX. ODE, on the other hand, allows users to specify parameters for objects after
their creation. Snippet 4 shows the code for creating the same revolute joint (although
called hinge joint) in ODE. Bullet adopts yet another approach by providing object-
creating functions with long lists of arguments. Snippet 5 illustrates this point. Vortex
supplies two types of procedures, one with many arguments as in Bullet; and the other
with less arguments during creation, but users need to specify additional parameters
later on as in ODE.

These examples also show that different physics engines add objects into the sim-
ulation world in different ways. PhysX starts with a scene (i.e., the simulation world)
as the main object. Every other object is created using one of the creation methods of
the scene with corresponding descriptors as arguments. In ODE users first apply for
an object ID from the world, and then create the object with detailed specifications. In
Bullet and Vortex, users add objects to the world after their creation.

4.5 Collision Detection and Processing

All four simulation platforms supply built-in collision detection engines. PhysX, Bul-
let and Vortex are generally acknowledged for providing more powerful and robust
collision systems, such as stable convex hull collision detection and warmstart of con-
tact constraints. From the point of view of walking control of a single character with
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dJointID j = dJointCreateHinge(worldID, jointGroup); //create the joint

dJointAttach(j,body1,body2); //attach bodies constrained by the joint

dJointSetHingeAnchor(j, p.x, p.y, p.z); //set the anchor point

dJointSetHingeAxis(j, a.x, a.y, a.z); //set the rotation axis

Snippet 4: Hinge joint setup in ODE.

//create the constraint with all necessary parameters

btTypedConstraint * constraint =

new btHingeConstraint(object_a,object_b,pivot_in_a,pivot_in_b,...);

//add the joint into the world

world->addConstraint(constraint,bool disableCollision=true);

Snippet 5: Hinge constraint setup in Bullet

rigid links, however, the basic ODE collision detection is already sufficient. The ma-
jor difference of these platforms is how they activate the collision detection module.
PhysX, Bullet, and Vortex provide fully automatic collision detection and seamless in-
tegration with the dynamics solver. Users only need to define collision shapes, and then
all the collision constraints are generated implicitly and desired collision behavior will
automatically happen. In ODE, however, users have to call the broad phase collision
detection manually before timestepping, as shown in Table 1. In addition, users need
to supply a callback function to further invoke the narrow phase collision detection, as
shown in Snippet 6. Lastly, users must explicitly create contact joints from detected
collisions for the dynamics solver to take into account the collisions, as shown in the
for loop of Snippet 6.

4.6 Collision Filtering

object pairs group pairs bit mask callback
ODE X X32-bit must

PhysX X X X128-bit optional
Bullet X32-bit optional
Vortex X X optional

Table 4: Collision filtering mechanisms.

The most effective way that users can
influence the simulation performance
is by filtering unnecessary collision de-
tections. There are several mechanisms
to filter collisions, as listed in Tabel 4.

ODE provides built-in support
to filter collisions between different
groups of shapes during the broad phase collision detection. Each geom also has a 32-
bit “category” and 32-bit “collide” bitfield to bypass collision testing between shapes
in different categories. As explained earlier, users have to define a collision callback
function for ODE to incorporate contact and collision constraints into the dynamics. In-
side this callback, users have complete freedom to further filter out collisions between
shapes. In the context of character control, collisions between joined limbs, such as the
upper arm and the lower arm, should be ignored.

In PhysX, collisions between pairs of jointed bodies are disabled by default. More-
over, users can change the collision detection behavior between an arbitrary pair of
shapes or actor groups by setting related flags. Different from the 32-bit bit mask mech-
anism in ODE and Bullet, users are able to specify a 128-bit group mask for each shape
in PhysX. This mask is further combined with user specified constants and operators to
generate a boolean value indicating if contacts should be generated for a pair of shapes.
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void collisionCallBack(dGeomID shape1,dGeomID shape2,...)

{

//filter collision

......

//call the narrow phase collision detection function

//cps records contact position, normal, penetration depth etc.

num = dCollide(shape1,shape2,max,&(cps[0].geom),sizeof(dContact))

//generate contact joint for each detected collision

for(int i=0;i<num;i++)

{

//define the material parameters for the collision in cps

......

//create a contact joint based on the collision point cps

dJointID c=dJointCreateContact(worldID,contactGroupID,&cps[i]);

//assign feedback variable for collision postprocessing

dJointSetFeedback(c,&(jointFeedback[i]));

}

}

Snippet 6: ODE narrow phase collision detection callback function

Bullet does not have built-in support to filter collisions between a given pair of
shapes or groups. It does have a bitwise filter mechanism similar to that of ODE that
can be used to tailor collision detection between shapes and groups. In Vortex, users can
disable collision detection between pairs of objects, assemblies of objects, and groups of
objects (identified by IDs), either through the appropriate container classes or through
an intersect filter class.

Users can also define customized callback functions for total control over the col-
lision or intersect filtering mechanism, in PhysX, Bullet, and Vortex, just like in ODE.
The difference is that callback functions are optional except for ODE. It is worth not-
ing that mask-based collision selection happens a lot further up the tool chain than the
callbacks do, so collision masks are preferred to callbacks if they are sufficient for your
purpose. PhysX and Vortex can also automatically detect inactive dynamic bodies, bod-
ies that do not move for a period of time, and put them into sleep until external forces
wake them up. Sleeping bodies are not detected for collision or simulated to save time.

4.7 Collision Postprocessing

Postprocessing of contact and collision forces is needed when the locomotion controller
wishes to regulate the Ground Reaction Forces(GRFs) between the character and the
ground, to calculate GRF-based feedback controls, or simply to monitor or visualize the
GRFs. Collision postprocessing should be done after the timestepping, when the contact
and collision forces or impulses have been resolved by the constrained dynamics solver.

Postprocessing contacts in ODE involves reading back the contact information from
the jointFeedback array initialized on the last line of Snippet 6. Bullet initializes a col-
lision dispatcher during the creation of the simulation world, and from the dispatcher
the contact information can be obtained for postprocessing. In PhysX, users subclass
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walk style inplace normal happy sneak chicken drunken jump snake wire
control desired speed 0.0 1.0 2.0 1.5 2.5 0.5 1.0 3.0 -1.0

parameter cycle duration 0.6 0.6 0.5 0.6 0.5 0.6 0.5 0.5 0.6
step width 0.12 0.12 0.1 0.14 0.12 0.2 0.15 0.13 0.1

motion ODEquick-ODE 2.3e-4 1.6e-4 2.8e-4 9.5e-4 1.0e-3 1.6e-3 7.9e-4 6.6e-4 9.1e-4
distance PhysX-ODE 5.5e-2 1.9e-2 9.6e-2 8.3e-1 8.4e-2 5.6e-2 9.6e-2 7.3e-2 1.5e-1

Bullet-ODE 1.7e-2 1.2e-2 1.5e-2 5.9e-2 1.3e-2 1.7e-2 2.9e-2 1.5e-2 1.4e-2
Vortex-ODE 1.8e-3 3.5e-3 7.1e-3 2.7e-2 6.4e-3 1.9e-3 6.1e-3 1.1e-2 3.7e-3

Table 5: Motion deviation analysis. The simulated motion on ODE serves as the base-
line. ODEquick uses the iterative LCP solver rather than the slower Dantzig algorithm.
We investigate nine walking controllers: inplace walk, normal walk, happy walk, car-
toony sneak, chicken walk, drunken walk, jump walk, snake walk, and wire walk.

NxUserContactReport and register an instanced object of this class during the initial-
ization of the simulation world. Then onContactNotify(...) of the object receives the
contact information for each pair of shapes or actors that has requested contact notifi-
cation through proper flag setting. Similar to PhysX, Vortex users can subclass VxInter-
sectSubscriber to access contact events before or after timestepping. However, if users
just need to read back the contacts after the dynamics has stepped forward, a simpler
way is to access VxDynamicsContact via a pointer of VxUniverse.

5 Performance Evaluation and Comparison

We test nine controllers walking in various styles provided by the original cartwheel-
3d online distribution. For common simulation parameters we use the cartwheel-3d
defaults on all platforms, e.g., a ground friction of 0.8; a fixed time step of 0.5ms etc.
Since each controller can walk the character successfully with a range of parameter
settings, such as the desired walking speed, duration of one walk cycle, and width of
the steps, we manually choose one point in the control parameter space as listed in
Table 5. Then we measure the distance between the motion simulated on each engine
and that on ODE. That is, we use the motion simulated on ODE as the baseline. The
distance d(m, m̃) between two simulated motions m and m̃ is defined as follows:

d(m, m̃) =

n
∑

k=1

l
∑

i=1
||pi

k− p̃i
k||

nlh
(1)

where n is the number of frames in m̃ and l is the number of links of the character. We
record ten cycles of a simulated walk at 30Hz as m and m̃, starting from the fifth cycle
when the walk has converged onto its limit cycle. Then m is time aligned with m̃ and
resampled to n frames for comparison. pi

k is the center of mass location of each limb in
the character root frame. h is the height of the character for normalization.

Perceptually the limit cycles of the simulated walks from all nine controllers are
quite similar, although there are cases the step length or width is noticeably different.
We encourage the readers to check the accompanying demo video yourself. The differ-
ence of the beginning start-up cycles is also notable. In fact, due to the initial difference,
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Fig. 2: Screen captures at the same instants of time of the happy walk, simulated on top
of four physics engines: ODE, PhysX, Bullet, and Vortex (from left to right).

Engine bound1 bound2 bound3
ODE 18 1.6 1.0

ODEquick 18 1.4 1.0
PhysX 150 0.9 −
Bullet 100 1.3 1.0
Vortex 35 1.6 1.2

Table 6: Stability analysis with respect
to the size of the time step in ms.

Engine d(m8/9,m10/11) d(m8/9,m14/15)

ODE 0.185 0.036
ODEquick 0.196 0.037

PhysX 0.172 0.006
Bullet 0.174 0.014
Vortex 0.157 0.002

Table 7: Stability analysis of the nor-
mal walk with respect to external push.

some characters walk diagonally rather than on the default straight line. Quantitatively,
the simulations on ODE and Vortex resemble more, and their averaged limb position dif-
ference never exceeds 3% of the character height. Usually the simulations from PhysX
differ more. Fig. 2 shows a side-by-side comparison of the same frames of the happy
walk simulated on each platform.

We test the stability and robustness of the normal walk controller on each engine
with respect to the size of the simulation time step. The original cartwheel-3d uses
a default simulation time step of 0.5ms on top of ODE. We further search for three
time steps as shown in Table 6. bound1 is the largest time step before the simulation
becomes unstable; bound2 is the largest time step before the simulated character falls;
and bound3 is the largest time step before the distance between the simulated motion
from the default motion simulated at the default time step becomes larger than 0.1. Note
that in PhysX the character falls using a time step larger than 0.9ms, when the motion
distance is 0.06. We can see that simulations in PhysX and Bullet are much more stable
at large time steps than in ODE and Vortex, but they do not differ much in terms of the
stability of the walking controller once the simulation moves into the stable region.

We also test the robustness of the normal walk controller on each engine with respect
to external perturbations. The character gets pushed by a planar force of (250,150)N
backward and sideways for 200ms at the onset of the tenth cycle m10. Using the motion
from the eighth and ninth cycles, denoted as m8/9, as the baseline motion, we then
compare how much m10/11 and m14/15 differ from the baseline m8/9. Table 7 shows
that the motion error caused by the external push diminishes quickly, and the character
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Engine 1 character 10 characters 100 characters 100 characters with 6 threads
ODE 0.099 0.96 9.9 ×

ODE-quick 0.064 0.61 6.6 ×
PhysX 0.300 1.57 14.2 11.6
Bullet 0.107 0.96 11.0 −
Vortex 0.120 1.60 17.4 12.4

Table 8: Average wall clock time of one simulation step in milliseconds using the default
simulation time step 0.5ms. Timing measured on a Dell Precision Workstation T5500
with Intel Xeon X5680 3.33GHz CPU (6 cores) and 8GB RAM. Multithreading tests
with PhysX and Vortex may not be valid due to unknown issues with thread scheduling.

eventually goes back to the original limit cycle. Note here we only measure the distance
between the feet positions, as the controller uses a foot placement strategy to regain
balance so the upper body postures do not differ too much after the perturbation.

The computational cost for simulating 10 characters is roughly distributed as fol-
lows: 2% on rendering; 18% on control; 65% on simulation including collision de-
tection and constraint solving (except ODEQuick which is faster). Table 8 shows the
average timing of one simulation step using the default time step 0.5ms, for one char-
acter, ten characters, and a hundred characters. We see a near linear degradation of
the performance, probably mainly because our characters all walk independently. We
also tried simulating multiple characters with GPU acceleration turned on in PhysX,
but we did not observe any performance gain with our NVIDIA graphics card GeForce
GTX 570. This is because rigid body collisions are still processed by the CPU in the
PhysX version we use. Furthermore, we tested the multithreading capability of PhysX
and Vortex. Unfortunately our tests with 6 threads on our 6-core machine did not show
significant speedup either. This contradicts with released tests from PhysX and Vortex.
In diagnosing this problem, we found that only two of our six cores are active no matter
how many threads we specify for the engine. This may be caused by the Python inter-
face or wrapper used in our software, or unknown issues in the interaction between the
Windows thread scheduler and Python. Bullet also provides multithreading and GPU
acceleration, which we have not tested due to lack of documentation.

6 Conclusion

We have deployed the generalized locomotion controller in cartwheel-3d to multiple
simulation platforms with ease. Our code is released online at http://animation.
comp.nus.edu.sg/locotest.html. The porting part of this project was completed
within four weeks by a first year graduate student who had no experience in simulation
and control but had basic knowledge on computer animation. The original controllers
can immediately walk the character successfully after porting, although in slightly dif-
ferent styles. The robustness of the controllers in multiple styles stays across different
platforms. Our experience suggests that it is plausible and straightforward to integrate
the chosen locomotion controller into game physics today.

We would like to emphasize that our results are specific to the type of controller
being tested [4], and its specific implementation in cartwheel-3d. This implementation
controls the walking style through explicit PD torques at every simulation time step. The
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advantages of such an implementation include: computing the control at each time step
is cheap and easy; porting the controller to off-the-shelf physics engines is straight-
forward; and the simulated character exhibits natural compliance when pushed. The
disadvantage is that the simulation has to take smaller time steps, compared to other
methods which integrate the equations of motion directly into each control time step.
However, all our tested engines provide built-in joint PD controls, some of which use
implicit methods to achieve better stability at larger time steps. We plan to explore such
stable PD controllers in the near future.

Our performance analysis mainly serves to test the plausibility of deploying the
walking control to multiple simulation platforms, and is not for accurately comparing
the performance of the physics engines themselves. Different engines have different
parameter settings that can trade off among robustness, accuracy, and speed. We use
default settings of these parameters on all platforms, which may favor different aspect
of the performance depending on the preference of the specific engine. We believe more
interactions between the academia and the game industry are needed to achieve better
active character control for games and game engines today. Hopefully our effort in this
work can serve as a solid starting point.
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