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Figure 1: Real world mall examples.

Abstract

In this supplementary material, we also include for reference sev-
eral real world shopping mall examples and pictures of example
mall data used for training. We provide further details of the simu-
lation model, the training of random forest regressors and the opti-
mization process. We also provide time usage statistics and further
justify the use of regression for approximating full crowd simula-
tion. Finally, we provide a screenshot of our user interface, and
further details about the user syntheses described in our main pa-
per, and the example of using our tool for remodeling a real world
shopping mall.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Geometric Algorithms

1 Real-world Mall Examples

Figure 1 shows some real world mall examples for reference. Each
mall consists of an input layout domain, sites of different types (in-
cluding facilities) and paths connecting the sites. We define our
problem domain similarly. Figure 2 shows some real world mall
examples after being digitized by ArcGIS into standard spatial data
format (Shapefiles), which we use as our training data.

2 Simulation Model

Agent Model and State Machine. We define our agent mod-
els following similar agent models that have been used in the lit-
erature [Tu and Terzopoulos 1994; Shao and Terzopoulos 2005;
Narain et al. 2009; Li et al. 2012], with slight modifications to
suit our purpose. In our case, the agents are used for getting the
metrics from the environment necessary for evaluating the agent-
based costs, rather than for generating a sophisticated artificial life
simulation that aims at modeling the full complexity of human per-
ception (please refer to the work of Shao and Terzopoulos [2005]
for a successful attempt along that direction). Note that increasing
the complexity of the perception model will increase the computa-
tional complexity of the agent-based simulation and hence the time
needed for generating training data. As our illustrative example fo-
cuses on a shopping mall, we use a state machine inspired by and
similarly applied in previous studies in shopping behaviors [Ali and
Moulin 2005; Ali 2006; Castillo et al. 2009]. The above usage aims
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to give a straightforward, first illustration, and does not presume
users to have prerequisite knowledge of advanced crowd simulation
models. We note that the agent model and state machine can be re-
placed by users to tackle other specific scenarios if necessary, sim-
ilar as in common agent-based crowd simulation software such as
AnyLogic. In our main paper, we also demonstrate that our crowd
simulation model can be replaced by two other popular crowd sim-
ulation models, followed by quantitative evaluations which show
improvement.

Agent Categories. Marketing research [Bloch et al. 1994] finds
that shoppers generally fall into four categories depending on their
shopping habits:

• Enthusiasts: shoppers who engage in a wide range of activ-
ities (purchasing, experiential consumption, using the mall’s
facilities).

• Traditionalists: shoppers who only purchase, but not dine or
use other services of the mall.

• Minimalists: shoppers who have low average participation in
all kinds of activities in the mall.

• Grazers: shoppers who spend more time on eating and taking
a rest. They also tend to purchase more than the average level.

Our agent model and state machine can model each of the four
agent categories. Please refer to the main paper and video for the
effects of changing the proportion of agents belonging to particular
categories on the optimized layout designs.

Coziness. Closely following studies in consumers’ psychol-
ogy [Machleit et al. 1994; Ng 2003], we define our coziness cost
Cc to penalize either an extremely low or high crowd density, as
both degrade the perceived level of coziness. This definition allows
our simulation model to mimic realistic situations as reported in lit-
erature [Machleit et al. 1994; Ng 2003]. For example, during peak
hours, agents visiting a very crowded boutique will feel uncozy. On
the other hand, when a mall is closing (i.e., near the end of a simu-
lation), the few remaining agents visiting a nearly-empty boutique
will also feel uncozy.

Entering and Leaving Sites. Our simulation model ignores inter-
agent collisions as we focus on the crowd flow effects with respect
to the layout design rather than the individual agent motions. Our
model also ignores the low-level detail of a site’s door size with
respect to an agent’s size, as our work focuses on the optimization



Figure 2: Example mall data used for training.

of paths and sites. In our simulation, agents can enter or leave a site
simultaneously in case their entering or leaving times coincide.

3 Training and Optimization

Random Forest Regressors. We trained our random forest re-
gressors for predicting the agent-based costs using layout features
and full simulation costs obtained from real world layouts. We
used the implementation of random forest regressors provided by
scikit-learn in Python. We empirically set the number of trees as
10, which gives the best accuracy in our cross validation experi-

ments by repeated random sub-sampling. Please refer to the litera-
ture [Liaw and Wiener 2002] for further details of the random forest
regression technique.

Simulated Annealing. We optimize our layouts using the
simulated annealing technique with a Metropolis-Hastings state-
searching step. Given an input layout domain, the layout φ is initial-
ized with a few user-specified or randomly-placed entrances on the
domain boundary, while a random parameter controls the existence
of an atrium. Paths are then generated to connect the entrances and
the atrium (if it exists), while splitting the layout domain into sev-
eral separate sites.



Time Interval Mobility Accessibility Coziness Time Usage
1 s 0.7401 0.4129 0.8812 470.77 s
5 s 0.7873 0.3010 0.8068 105.31 s
10 s 0.6631 0.2766 0.6107 45.90 s
20 s 0.5232 0.2451 0.6029 18.93 s
30 s 0.5698 0.2449 0.5352 11.08 s

Table 1: Costs obtained and simulation time usage of running a
crowd simulation on the original layout in Figure 14(a), using dif-
ferent time intervals. The costs obtained from using a time interval
of 1 second serves as the baseline.

Training Synthesis 1 Synthesis 2 Synthesis 3
Mall 1 20 s 297.23 s 312.89 s 303.42 s
Mall 2 17 s 172.57 s 185.34 s 169.96 s
Theme Park 20 s 218.57 s 198.09 s 192.36 s
Train Station 19 s 236.98 s 239.62 s 202.21 s
Campus 20 s 189.32 s 178.48 s 186.02 s

Table 2: Training and synthesis time usage for different layouts in
Figure 12 in the main paper.

Our optimization proceeds iteratively. At each iteration, a randomly
selected type of move is proposed to generate a proposed layout φ′
from the current layout φ. The total cost function C(φ′) of the
proposed layout φ′ is compared with the total cost function C(φ)
of the current layout φ. If the proposed layout has a lower cost
(C(φ′) < C(φ)), the current layout is updated to become the pro-
posed layout. Otherwise, the current layout is updated to become
the proposed layout only at an acceptance probability. The accep-
tance probability is high at the beginning of the optimization (cor-
responding to a high temperature in simulated annealing), allowing
the optimizer to quickly explore the solution space; the acceptance
probability is low at the end of the optimization (corresponding to
a low temperature in simulated annealing), allowing the optimizer
to refine the solution (i.e., the layout). We set the temperature of
our simulated annealing to gradually decrease over iterations. For
further details of the Metropolis Hastings and simulated annealing
techniques, please refer to the classic literature [Metropolis et al.
1953; Hastings 1970; Kirkpatrick et al. 1983].

Probabilities of Moves. For simplicity, we use equal probabilities
for all types of moves. In our illustrative example (Figure 9 in the
main paper), the initial big sites are generally split into smaller sites
because of two reasons. First, the coziness cost causes big sites with
less visitors to become smaller. Second, a prior total number of sites
is set in a prior cost, and as the total area is fixed, the larger the prior
total number of sites is, the smaller the sites will become.

4 Time Usage

Time Intervals. By default, we use a time interval of 1 second
in our simulation. We avoid using a long time interval as this will
result in inaccurate navigation and perception data being captured
by the agents.

For example, using a long time interval of 30 seconds, we would
frequently miss the important moments when an agent turns around
a corner or walks through an intersection. For instance, at one time
frame, an agent may be walking towards an crowded intersection.
At the next time frame (which refers to 30 seconds later), the agent
may have already passed through the intersection. In other words,
in both time frames, the agent would not have experienced any
crowding which it should have experienced had we used a short
time interval. We would wrongly conclude from this agent’s navi-
gation experience that the layout is good.

Using a short time interval requires a longer simulation time. We
decide to trade off time for better accuracy, because the simulation

Figure 3: Our user interface.

only needs to be done once offline, to create reliable data for train-
ing the regressors.

As a test, we conducted simulations using different time intervals,
in the original mall layout in Figure 14(a) of the main paper. Table 1
shows the time needed and the costs returned by each simulation.
The costs returned by a time interval of 1 second are the most re-
liable and serve as the baseline. We can see that using a long time
interval (e.g. 30 second) generally results in lower costs. The re-
ductions in the costs are due to the fact that the negative effects of
crowding are not captured well under a long time interval.

Training and Synthesis Time. Table 2 lists the training and syn-
thesis time for different layouts shown in Figure 12 of the main
paper. The training time (excluding the simulation time) for all lay-
outs is about the same (around 20 seconds) using the random forest
regressors implementation in Python.

Justification for Approximation. Even using a popular agent-
based crowd simulation technique [Narain et al. 2009] optimized
for speed, it is difficult to directly drive optimization by simula-
tions and achieve interactive performance. A typical simulation in-
volves at least 1000 agents (we also used 2000 and 3000 agents
for bigger layouts as mentioned in our experiments) navigating in a
layout for 2 simulated hours with regular time interval being 1 sec-
ond, corresponding to about 7.2 million agent updates in total. This
simulation would take about 0.5 minute for the aforementioned fast
technique to finish, which is able to make about 0.2 million agent
updates per second according to the reported statistics of the tech-
nique. An optimization requires about 300 such simulations, and
hence would require about 150 minutes (2.5 hours) to finish even
using this popular crowd simulation technique optimized for speed.

Note that the above statistics are an estimate. Our crowd simulation
model is more computationally expensive because we also need to
update each agent’s perception, internal states and navigation goals
in addition to its position. The simulation time needed also depends
on the complexity of the layout. For our running example (Mall 1),
using 1000 agents, 2 simulated hours and 1 second time interval,
one full simulation by our crowd simulation model takes about 3
minutes. One layout optimization typically requires about 300 iter-
ations, and hence takes about 15 hours to finish if a full simulation
is run at each iteration.

5 Interface

We implemented our main approach as an interactive layout
modeling tool, using C# and the .NET Framework. Figure 3 shows
a screenshot of our interface.



Figure 4: User-synthesized layouts of Mall 1. For each synthesis, the numbers at the top and at the bottom are the average crowd densities
from AnyLogic and PathFinder respectively. The real world layout of Mall 1 has average crowd densities of 0.9348 and 0.9069 from AnyLogic
and PathFinder respectively.

6 User Synthesis
We invited 22 senior undergraduate students in architectural design
to use our tool for synthesizing layouts given the boundary of Mall
1 and Mall 2 mentioned in the main paper. Figure 4 and Figure 5
show the synthesized layouts from users.

7 Remodeling
We use our approach to remodel a real world shopping mall (Fig-
ure 6(a)), which is badly reputed for its inconvenience in internet

discussion [2007]. The original mall shows a poor design with nar-
row paths, cramped stores and an inconvenient distribution of shops
and facilities, which gives a high cost in our full simulation. Our
approach remodels this mall automatically. The remodeled mall
shows less congestion and is more cozy to visit. Figure 6(b)–(d)
visualize the substantial improvement in all the agent-based costs.
Figure 7 shows the evaluation on the original and the remodelled
layouts by AnyLogic and PathFinder. Refer to the figure caption
for details.



Figure 5: User-synthesized layouts of Mall 2. For each synthesis, the numbers at the top and at the bottom are the average crowd densities
from AnyLogic and PathFinder respectively. The real world layout of Mall 2 has average crowd densities of 0.8391 and 0.9130 from AnyLogic
and PathFinder respectively.

8 Prior Costs
In Equation (1) of our paper, CP = [C total

pr , C type
pr , C ratio

pr ] stores the
prior costs which encode the priors specific to the type of the lay-
out to be synthesized, and wP = [wtotal

pr , wtype
pr , wratio

pr ] stores their
weights. The prior costs are defined as follows.

Prior Total Number of Sites. This cost penalizes if the total
number of sites in the current layout φ deviates from the prior total
number of sites:

C total
pr (φ) =

1

Z total
pr

∣∣stotal − s′total

∣∣ , (1)

where stotal is the total number of sites in layout φ; s′total is the prior
total number of sites; Z total

pr is a normalization constant which we
set to 100.

Prior Number of Each Type of Sites. This cost penalizes if the
number of sites of a particular type deviates from the prior number
of that type of sites:

C type
pr (φ) =

1

Z type
pr

∑
i

∣∣si − s′i
∣∣ , (2)

where si is the number of sites of type i in layout φ; s′i is the prior
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Figure 6: Remodeling of a real world shopping mall. The remodeled mall shows improvement in all the agent-based costs. (a) Layouts of the
original and the remodeled mall. (b) The mobility cost helps make the paths wider and also move the circular paths to the middle to facilitate
the flow of human movement. An agent in the middle can easily turn around to visit a site at either side of the mall. (c) The accessibility cost
ensures an even distribution of facilities such as restrooms. (d) The coziness cost prompts the huge Cosmetics, Lifestyle & Supermarket site
in the original mall to split into two medium-sized sites, distributed at both sides of the mall, such that shoppers can access either one easily.

number of sites of type i; Z type
pr is a normalization constant which

we set to 100.

Prior Ratio of Sites’ Area to Layout Area. This cost penalizes if
the ratio of sites’ area to layout area (commonly known as floor-area
ratio) deviates from the prior ratio:

C ratio
pr (φ) =

1

Z ratio
pr

∣∣r − r′
∣∣ , (3)

where r is the ratio of sites’ area to layout area in layout φ; r′ is the
prior ratio; Z ratio

pr is a normalization constant which we set to 1.

Cost Weights. Unless otherwise specified, we set our cost weights
as wm = 1.0, wa = 1.0, wc = 1.0, wtotal

pr = 0.5, wtype
pr = 0.5, and

wratio
pr = 0.5.

Each of our costs is normalized to the range [0.0, 1.0]. Under the
current weighting scheme, the total cost function C(φ) and the ap-
proximated total cost function Ĉ(φ) stay in the range [0.0, 4.5].

9 Layout Features

To use random forest regressors [Liaw and Wiener 2002] for ap-
proximating the agent-based costs, we extract from a layout a num-
ber of geometrical, topological and general features defined as fol-
lows.

9.1 Geometric Features

Edge Length. Maximum, minimum, mean and standard deviation
of the lengths of all edges in the graph representing the layout.

Edge Width. Maximum, minimum, mean and standard deviation
of the widths of all edges in the graph representing the layout.

Site Area. Maximum, minimum, mean and standard deviation of
the areas of all sites.

9.2 Topological Features

Node Valence. Mean and normalized histogram of the valences
of all nodes in the graph representing the layout. The valence of a
node is defined as the number of its connected edges.

Edge Valence. Maximum, minimum, mean and standard deviation
of the valences of all edges in the graph representing the layout. For
an edge e with start node vi and end node vj , its valence is defined
as:

val(e) = val(vi) + val(vj)− 2, (4)

where val(vi) and val(vj) are node valences for vi and vj .

Travel Distance. Maximum, minimum, mean and standard devia-
tion of the distances of the routes from ten randomly-selected nodes
to their nearest site of each type.

Travel Convenience. Maximum, minimum, mean and standard
deviation of the travel convenience of the routes from ten randomly-
selected nodes to their nearest site of each type. For a route ω with
start node vi and end node vj , its travel convenience is defined as:

tc(ω) =
λe(ω)

λ(ω)
, (5)

where λe(ω) is the Euclidean distance between vi and vj ; λ(ω) is
the total length of route ω.

Betweenness Centrality. Maximum, minimum, mean and stan-
dard deviation of the betweenness centralities of all nodes in the
graph. To compute the betweenness centralities, first we calculate
the shortest paths between every pair of nodes. For each node, its
betweenness centrality is defined as the number of times it appears
on a shortest path.

Closeness Centrality. Maximum, minimum, mean and standard
deviation of the closeness centralities of all nodes in the graph. To
compute the closeness centrality of a node, first we calculate the
shortest path between the node and all other nodes. Its closeness
centrality is defined as the sum of the reciprocals of the shortest
path distances.

9.3 General Features

Site Histogram. Normalized histogram of the number of sites of
all types.

Path Area Ratio. The sum of areas covered by all paths relative
to the area of the layout domain:

par =
1

α

∑
p

Area(p), (6)

where α is the area of the layout domain; Area(p) is the area cov-
ered by path p.

Agent Density. The average number of agents over time:

ad =
N

T
, (7)

where N is the total number of agents in the layout and T is the
length of time that the crowd simulation spans.
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(a) AnyLogic Results (b) PathFinder Results

Figure 7: Evaluating real world layout and our syntheses of Mall 2 by (a) AnyLogic and (b) PathFinder. Heat maps show crowd densities at
the middle of the simulation. Curves and box plots show the means and statistics of crowd densities versus simulation time.
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