
ACM SIGGRAPH / Eurographics Symposium on Computer Animation 2020
J. Bender and T. Popa
(Guest Editors)

Volume 39 (2020), Number 8

Linear Time Stable PD Controllers for
Physics-based Character Animation

Zhiqi Yin† KangKang Yin ‡

Simon Fraser University

Abstract
In physics-based character animation, Proportional-Derivative (PD) controllers are commonly used for tracking reference
motions in motor control tasks. Stable PD (SPD) controllers significantly improve the numerical stability of traditional PD
controllers and support large gains and large integration time steps during simulation [TLT11]. For an articulated rigid body
system with n degrees of freedom, all SPD implementations to date, however, use an O(n3) dense matrix factorization based
method. In this paper, we propose a linear time algorithm for SPD computation, which is based on Featherstone’s forward
dynamics formulation for articulated rigid body systems in generalized coordinates [Fea14]. We demonstrate the performance
advantage of our algorithm by comparing with both the conventional dense matrix factorization based method and an alterna-
tive sparse matrix factorization based method. We show that the proposed algorithm provides superior stability when controlling
complex models at large time steps. We further demonstrate that our algorithm can improve the learning speed and quality of a
Deep Reinforcement Learning (DRL) system for physics-based character animation.

CCS Concepts
• Computing methodologies → Animation; Physical simulation;

1. Introduction

Physics-based character animation has made significant progresses
in recent years. High quality controllers and skills can now be
automatically learned to generate motions that are indistinguish-
able from motion capture data in real-time [YTL18, PALvdP18,
PRL∗19, BCHF19]. Physics-based characters are yet to be widely
adopted by the industry, however, as simulation times for control-
lable characters still remain as one of the bottlenecks. For exam-
ple, state-of-the-art Deep Reinforcement Learning (DRL) based al-
gorithms still require hours to days to learn motor skills success-
fully. Game engines still cannot afford to simulate multiple control-
lable characters on mobile phones. In the state-of-the-art method
DReCon [BCHF19], lower simulation frequency with visible noise
had to be used, as higher frequencies lead to significant perfor-
mance impacts and increases in training time due to the high cost
of physics simulation. Algorithms that can accelerate both policy
training time and simulation run time for physics-based characters
are desirable.

In physics-based character animation, Proportional-Derivative
(PD) controllers are commonly used for joint actuation, especially
for tracking-based motor control methods where kinematic refer-

† zhiqi_yin@sfu.ca
‡ kkyin@sfu.ca

ence motions are available [ZH02, YLvdP07]. Its major advantage
is its simplicity, and its major disadvantage is its instability. Ex-
tremely small simulation time steps are required to avoid numerical
instability for high gain PD controllers. Therefore it is necessary to
address its instability for better simulation accuracy and efficiency.

Stable Proportional-Derivative (SPD) controllers proposed by
Tan et al. greatly improve the numerical stability of traditional PD
controllers by employing the idea of implicit integration [TLT11].
Instead of computing control forces based on the current state, SPD
formulates PD controls using the state at the next simulation time
step. In practice, SPD formulation allows for fairly high gains at
large time steps.

SPD controllers are usually implemented for articulated rigid
body systems in generalized coordinates [LGH∗18, Cou15]. These
implementations solve an n× n linear system in O(n3) time based
on dense matrix factorization, where n is the total number of De-
grees of Freedom (DoFs) in the articulation. However, theoreti-
cal time complexity for SPD computation can be easily reduced
to O(nd2) by sparse matrix factorization, where d is the maximum
number of DoFs among all branches of the articulation. In the worst
case where the kinematic tree becomes a chain, the time complex-
ity falls back to O(n3). We show in our experiments that cubic time
SPD computations significantly slow down when controlling com-
plex articulated characters with large DoFs.

In this paper, we propose a fast and practical SPD computa-

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.



Z. Yin / Linear Time Stable PD Controllers

(a) PD (b) Cubic-time SPD (c) Our linear-time SPD

Figure 1: Performance comparison using a dog model tracking a canter motion with PD controls (a), conventional cubic-time SPD controls
(b), and our proposed linear-time SPD controls (c). On the same desktop, we find the largest time steps that we can use to achieve stable
tracking for each method. For SPD methods, we also find the maximum number of characters that we can simulate simultaneously in real-time
using one CPU thread.

tion algorithm for articulations parameterized in generalized coor-
dinates. In particular, we derive a Modified Articulated-Body Al-
gorithm (MABA) based on Featherstone’s Articulated-Body Algo-
rithm (ABA) for forward dynamics [Fea14]. The proposed algo-
rithm computes SPD controls in worst case O(n) time. As shown
in Figure 1, our linear-time algorithm enables simulation and con-
trol of many more characters than PD and cubic-time SPD. In our
experiments, we demonstrate the performance advantage of MABA
over the conventional dense matrix factorization based SPD imple-
mentation, as well as its sparse matrix factorization based alterna-
tive. We report the simulation FPS (frames per second) of an entire
motion tracking system, and then the extra time required for SPD
computation. We show that our algorithm provides superior stabil-
ity for controlling complex character models at large time steps.
We further demonstrate that MABA improves the training speed
and quality of a DRL system for learning physics-based skills.

2. Background and Related Work

2.1. SPD Formulation for a Single DoF

Standard PD controllers calculate forces based on position and ve-
locity errors at the current time step. At time step n, we denote the
position variable as qn, the target position as q̄n, the velocity as q̇n,
and the target velocity as ¯̇qn. Then the PD control force τ

n can be
calculated as:

τ
n =−kp(qn− q̄n)− kd(q̇

n− ¯̇qn) (1)

where kp is the stiffness parameter and kd is the damping parameter.
If no velocity tracking is required, Equation 1 can be simplified to:

τ
n =−kp(qn− q̄n)− kd q̇n (2)

For notation simplicity, hereafter we will formulate different varia-
tions of SPD controllers based on the PD control in Equation 2.

SPD computes control forces using state at the next time step
instead of the current state [TLT11]:

τ
n =−kp(qn+1− q̄n+1)− kd q̇n+1 (3)

Since future position qn+1 and velocity q̇n+1 at the next time step

are unknown, they are approximated by the first order Taylor ex-
pansion:

qn+1 = qn +∆tq̇n

q̇n+1 = q̇n +∆tq̈n

Equation 3 can then be reformulated as:

τ
n =−kp(qn +∆tq̇n− q̄n+1)− kd(q̇

n +∆tq̈n) (4)

Equation 4 is the most popular SPD formulation. Other SPD for-
mulations do exist. For example, the PD formulation in [LYWG13,
LPY16,LH17] uses positions at the current time step but velocities
at the next time step. Such explicit-proportional implicit-derivative
formulation still achieves better stability than the conventional PD.
In this paper, we focus on designing and analyzing practical algo-
rithms for SPD computation formulated as Equation 4.

2.2. SPD for Articulations

For an articulated rigid body system with n DoFs parameterized in
generalized coordinates, we use n dimensional vectors τ , q, q̇, q̈ to
denote the generalized force, position, velocity, and acceleration of
the system. The equation of motion for the articulation can then be
expressed as:

Mq̈ = τ −C (5)

where M is the generalized inertia matrix, and C is the bias force
term including centrifugal, Coriolis, and external forces.

The SPD formula for an articulation parameterized in general-
ized coordinates is a linear equation relating the acceleration q̈ to
the force τ , similar to Equation 4:

τ =−Kp(q+∆tq̇− q̄)−Kd(q̇+∆tq̈) (6)

HereKp andKd are the diagonal stiffness and damping matrices.
The position q and velocity q̇ can be obtained from the simulation
state. The acceleration q̈ is unknown and needs to be solved for by
a forward dynamics algorithm that obeys Equation 5. Therefore, we
substitute τ in Equation 6 to Equation 5 to solve for the acceleration
q̈ first:

(M +Kd∆t)q̈ =−C−Kp(q+∆tq̇− q̄)−Kd q̇ (7)

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.



Z. Yin / Linear Time Stable PD Controllers

Then τ can be calculated by substituting q̈ into either Equation 5
or 6.

2.3. Solving SPD by Matrix Factorization

The key step in solving SPD is to solve the linear system in Equa-
tion 7. Conventionally, it is solved directly by numerical methods
which result in O(n3) running time in general. We briefly review
these implementations in this section.

The most straight forward SPD implementation uses direct ma-
trix inversion to solve the system [LGH∗18, LPLL19, PRL∗19].
This approach takes O(n3) time and may encounter numerical sta-
bility issues. A better approach is to apply Cholesky factoriza-
tion LDLT or LLT on M +Kd∆t. Such factorization is appli-
cable because the inertia matrix M is symmetric positive defi-
nite, and Kd∆t is a diagonal matrix with non-negative elements.
This approach still takes O(n3) time to compute because it treats
M +Kd∆t as a dense matrix. We shall refer to this approach as
dense factorization (DF) hereafter. Due to its simplicity, the DF
method is widely adopted by both the research community and the
industry [Cou15, PALvdP18, PBYVDP17, PBVdP16, YK19].

To reduce the time complexity of the DF method, our first
thought is to examine the inertia matrixM . Featherstone’s dynam-
ics formulation of articulated rigid body systems results in branch-
induced sparsity of M [Fea14]. More specifically, for tree-like ar-
ticulations that contain no loops,Mi j is non zero if and only if node
i is an ancestor or a decedent of node j. We thus can employ a topol-
ogy dependent sparse LDLT or LLT factorization algorithm [Fea14]
forM+Kd∆t, because again the additional diagonal matrixKd∆t
does not change the sparsity of the inertia matrixM . We shall refer
to this approach as sparse factorization (SF) hereafter. The time
complexity of the SF method is O(nd2), where d is the maximum
number of DoFs among all branches of the articulation tree. In the
worst case where the tree becomes a chain, SF degenerates into DF
and requires O(n3) time as well, as the inertia matrix is not sparse
anymore. To the best of our knowledge, we are the first to imple-
ment the sparse factorization method for SPD computation.

2.4. Articulated-Body Forward Dynamics Algorithm

Forward dynamics is the problem of solving accelerations from the
equation of motion indicated by Equation 5. From Equations 5 and
7 we can see that both forward dynamics and SPD control involve
solving for the accelerations from a linear system. The cubic time
SPD computation can significantly slow down the performance for
systems with large DoFs, if linear time forward dynamics algo-
rithms are used for simulation [Fea14,Bar96]. One well-known lin-
ear time forward dynamics algorithm from the robotics literature is
Featherstone’s Articulated-Body Algorithm (ABA) [Fea14]. This
algorithm is sometimes abbreviated as ABM (Articulated Body
Method) [Kok04], but we follow Featherstone’s original acronym.

ABA solves for the accelerations recursively in linear time with-
out explicitly solving the n× n closed-form linear system. Its effi-
ciency comes from the use of recurrence relations. A similar and
more well known case is the Newton-Euler inverse dynamics al-
gorithm: the recursive Newton-Euler is much faster than its non-
recursive predecessor. ABA calculates the forward dynamics of a

kinematic tree by three passes over the tree: an outward pass (root
to leaves) to calculate velocity and bias terms; an inward pass to
calculate articulated-body inertias and bias forces; and a second
outward pass to calculate the accelerations.

ABA does not directly handle constraints such as collisions and
joint limits. Additional mechanisms, either ABA-based or indepen-
dent, are required to impose penalty, impulse, or constraint forces to
enforce such constraints. For example, a modified version of ABA
is used to compute acceleration constraint matrices in [Kok04]. An-
other ABA-based procedure is used for computing and propagating
impulse responses through articulated bodies [Mir96]. In our work,
we solely modify ABA for the purpose of SPD computation, which
is complementary to other works that integrate other types of con-
straints into ABA-based algorithms.We will discuss more ABA de-
tails in Section 3.1, and derive our linear time SPD implementation,
which is based on ABA, in Section 3.2 .

3. Modified Articulated-Body Algorithm

Since SPD computation has a similar structure as forward dy-
namics, we propose to solve SPD in linear time by adapting the
Articulated-Body Algorithm. The fundamental intuition is that
solving SPD accelerations is simply computing forward dynamics
while enforcing the SPD constraints on the control forces indicated
by Equation 6. We name such a linear time SPD algorithm as Mod-
ified Articulated-Body Algorithm (MABA). We will derive MABA
by enforcing the SPD control force constraints where necessary in
the ABA derivation. MABA shares the same algorithm structure
as ABA, and therefore can be computed with the same set of tree
traversals as in ABA.

3.1. ABA Preliminaries

In this section, we review a few key concepts and the three tree
traversal passes of ABA, starting with necessary symbol defini-
tions. We refer readers to [Fea14] for more detailed explanations.
However, ABA was developed by roboticists and its original deriva-
tion as presented in [Fea14] is hard to understand for a typical
graphics audience [Bar96, Mir96]. We encourage readers who do
not have any knowledge on spatial notations to first follow these
excellent tutorials [Fea10a, Fea10b]. Interested readers are further
referred to an ABA derivation from basic principles of rigid body
dynamics [Mir96], which should be easier to understand.

Let T be a kinematic tree with m links L1 to Lm, where L1 is
the root. The subtree rooted at Li is denoted as Ti. The set of link
indices of Li’s children is denoted as µ(i). The index of Li’s parent
link is denoted as λ(i). The inbound joint of Li is denoted as Ji.

For each link Li, we denote its 6D spatial motion vector as vi,
which includes both the linear and angular motion of the rigid body.
Similarly, we denote its 6D spatial force vector as fi, which in-
cludes both the linear force and the angular torque. Spatial accel-
eration of Li is denoted as ai. Generalized joint variables for joint
Ji are denoted as qi, q̇i, q̈i and τi. The motion subspace matrix Si
relates the generalized coordinates to spatial quantities as follows:

vJi = Siq̇i (8)

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.



Z. Yin / Linear Time Stable PD Controllers

Bf

a

(a) a single body

Li

Jk

...

Lk

fi

ai

fJk

Ti

Tk

(b) an articulated body

Figure 2: Illustration of a single body and an articulated body.

τi = S
T
i fJi (9)

where vJi and fJi are the spatial velocity and spatial force of joint
Ji.

Figure 2 illustrates the concept of a single body system and an
articulated-body system. When applying a spatial force f on a sin-
gle rigid body B as shown in Figure 2a, the acceleration a of body
B is determined by the Newton-Euler equation:

f = Ia+p (10)

where I is a 6×6 single-body spatial inertia matrix including both
the mass and moment of inertia, and p is a bias force term including
the centrifugal and Coriolis forces.

An articulated body is a system of rigid bodies articulated by
joints as shown in Figure 2b. When spatial force fi is applied on
link Li, we cannot compute the acceleration ai from Equation 10
anymore because of the unknown joint force fJk from the subtree
Tk. However, fi and ai still satisfy a linear equation

fi = I
A
i ai +p

A
i (11)

where unknowns IA
i and pA

i depend on the whole structure of the
articulated body. IA

i and pA
i are termed the articulated-body inertia

and bias force of Ti. Li is called the handle of the articulated-body
system, as Equation 11 describes the acceleration response of body
Li jointed with all bodies in Ti. IA

i and pA
i have the following two

properties that enable the ABA implementation by three tree traver-
sals:

1. IA
i and pA

i can be computed recursively from the leaves to the
root. Specifically, IA

i and pA
i can be computed from IA

j and pA
j

where j ∈ µ(i).
2. Once we know IA

i and pA
i for each i, all joint and link accelera-

tions can be computed recursively from the root to the leaves.

ABA requires three passes of tree traversal of the articulation
tree. These tree traversals solve for the auxiliary variables and final
accelerations following the topological order of the tree:

• Pass 1 (top down): Compute auxiliaries including joint and link
velocities, and single-body centrifugal, Coriolis, and external
forces, from the root to the leaves.
• Pass 2 (bottom up): Compute articulated-body inertias and bias

forces based on auxiliaries computed in Pass 1, from the leaves
to the root.
• Pass 3 (top down): Compute joint and link accelerations based

on the articulated-body inertias and bias forces computed in Pass
2, from the root to the leaves.

3.2. MABA Derivation

Our MABA derivation is similar to the standard ABA derivation,
which makes three traversal passes of the kinematic tree. In par-
ticular, MABA shares the exact same Pass 1 as ABA, for which
we omit the details in this paper and refer the interested readers
to [Fea14]. Hereafter we assume quantities computed by Pass 1
are known, including joint and link velocities, and single-body bias
forces. We will first derive Pass 3 then Pass 2, since derivation for
Pass 2 requires a relationship between joint accelerations and link
accelerations derived in Pass 3. For notation simplicity and ease
of comprehension, we omit necessary coordinate transformations
in this section. For ease of reimplementation though, we list the
complete set of equations with proper coordinate transformations
in Appendix A.

3.2.1. MABA Pass 3

Pass 3 of MABA does a similar job as Pass 3 of ABA, with addi-
tional SPD constraints taken into account when accumulating ac-
celerations from the root to the leaves. The root link acceleration
serves as the base case of the recursion. For fixed-base articula-
tions, the root acceleration is set to zero. For floating-base articula-
tions, we treat the root link as connected to a fixed base by a virtual
6-DoF joint. Now we derive recurrent formulas to solve

• (Objective 1): ai based on aλ(i) and q̈i, and
• (Objective 2): q̈i based on aλ(i).

For Objective 1, we consider the articulated body Tλ(i) shown in
Figure 3. The joint velocity vJi is the relative spatial velocity of Li
with respect to Lλ(i). From Equation 8 we have

vJi = vi−vλ(i) = Siq̇i. (12)

By differentiating the above equation, we get

ai−aλ(i) = Siq̈i + Ṡiq̇i. (13)

So the link acceleration ai can be computed from the parent link
acceleration aλ(i) and the inbound joint acceleration q̈i, achieving
Objective 1 of Pass 3.

For Objective 2, we take the SPD constraints into consideration.
After Pass 2, the articulated-body inertia IA

i and the bias force pA
i

for Ti are knowns that satisfy

fi = I
A
i ai +p

A
i (14)

where fi is the net external force acting on articulated body Ti
through handle Li. Such force comes only from joint Ji, therefore,

fi = fJi (15)

Now we expand Equation 9 by Equation 15, 14 and 13:

τi = S
T
i fJi

= ST
i

(
IA

i ai +p
A
i

)
= ST

i

(
IA

i

(
aλ(i)+Siq̈i + Ṡiq̇i

)
+pA

i

) (16)

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.



Z. Yin / Linear Time Stable PD Controllers

Lλ(i)

...

...

Li

Ji

...
Root

Ti

fJi

Tλ(i)

f

aλ(i)

Figure 3: Articulated-body Tλ(i) with handle Lλ(i).

Equation 16 is a linear equation relating the generalized joint force
τi and the generalized joint acceleration q̈i. Here we must enforce
that τi equals the SPD control force. Following Equation 4, the SPD
constraint for a single joint Ji can be written as

τi =−Kpi(qi +∆tq̇i− q̄i)−Kdi(q̇i +∆tq̈i) (17)

Combining Equation 16 and 17, we get

q̈i = (ST
i I

A
i Si +Ki)

−1
(
Qi−ST

i

(
IA

i (aλ(i)+ Ṡiq̇i)+p
A
i

))
(18)

where we define

Ki =Kdi∆t, (19)

Qi =−Kpi(qi +∆tq̇i− q̄i)−Kdiq̇i (20)

Equation 18 achieves Objective 2, as joint acceleration q̈i can be
computed from the parent link acceleration aλ(i). Since we have
enforced the SPD constraint in the derivation, accelerations com-
puted by this algorithm strictly follow the SPD control. Now we
have completed the derivation of MABA Pass 3.

3.2.2. MABA Pass 2

Pass 2 of MABA recursively accumulates articulated-body inertias
and bias forces from the leaves to the root. All leaf links of the
kinematic tree form the recursion base cases. As leaf links have no
children, their articulated-body inertia and bias force equal to their
single-body counterparts. Next we need to derive the recurrent for-
mulas to solve for a link’s articulated-body inertia and bias force
from those of its children. We first consider the case shown in Fig-
ure 3 where Lλ(i) has only one child Li. Later we will generalize
the computation for links with multiple children.

To compute IA
λ(i) and pA

λ(i) from IA
i and pA

i , the strategy is to
derive an equation of the form

f =Aaλ(i)+b (21)

where f is the net spatial force acting on Lλ(i) external to the artic-
ulated body Tλ(i). Then the coefficientsA and b will correspond to
the desired quantities IA

λ(i) and pA
λ(i).

We first consider the spatial forces acting on the single body
Lλ(i). Apart from f , there is also a joint reaction force −fJi acting
on Lλ(i). Then from the Newton-Euler equation similar to Equa-
tion 10:

f −fJi = Iλ(i)aλ(i)+pλ(i) (22)

where Iλ(i) and pλ(i) are the single-body spatial inertia and bias
force terms. Expanding Equation 22 with Equations 15, 14, 13 and
18, we get:

f = Iλ(i)aλ(i)+pλ(i)+fJi

= Iλ(i)aλ(i)+pλ(i)+I
A
i ai +p

A
i

= Iλ(i)aλ(i)+pλ(i)+I
A
i (aλ(i)+Siq̈i + Ṡiq̇i)+p

A
i

= Iλ(i)aλ(i)+pλ(i)+I
A
i (aλ(i)+Si(S

T
i I

A
i Si +Ki)

−1(
Qi−ST

i

(
IA

i (aλ(i)+ Ṡiq̇i)+p
A
i

))
+ Ṡiq̇i)+p

A
i

(23)

By rearranging terms in the above equation, we can achieve the
desired form in Equation 21. If we define

Ia
i = IA

i −IA
i Si(S

T
i I

A
i Si +Ki)

−1ST
i I

A
i , (24)

pa
i = p

A
i +I

a
i Ṡiq̇i +I

A
i Si(S

T
i I

A
i Si +Ki)

−1(Qi−ST
i p

A
i ) (25)

then we can get the formulas for IA
λ(i) and pA

λ(i) as follows:

IA
λ(i) = Iλ(i)+I

a
i , (26)

pA
λ(i) = pλ(i)+p

a
i (27)

Similarly, Equations 26 and 27 can be generalized for links with
multiple children. For an arbitrary link Li:

IA
i = Ii + ∑

j∈µ(i)
Ia

j , (28)

pA
i = pi + ∑

j∈µ(i)
pa

j . (29)

We therefore use Equations 28 and 29 to compute the articulated-
body inertias and bias forces from the leaves to the root in MABA
Pass 2. Again, a complete set of equations for the whole algorithm
is given in Appendix A.

3.3. Algorithm Complexity

MABA and ABA share most of their essential computations. The
key difference is that MABA requires the extra computation ofKi
and Qi by Equation 19 and 20, which takes at most O(n) time.
Since ABA runs in worst case O(n) time, we conclude that MABA
runs in worst case O(n) time as well.

3.4. Practical Implementation

MABA can be directly implemented by modifying essentially just
two lines of the original ABA equations, for which more details
are given in Appendix A. This makes it easy to embed SPD con-
trol directly into simulation systems that already use ABA for
forward dynamics, such as PhysX [NVI19], Bullet [Cou15] and
DART [LGH∗18]. In such an embedded implementation, forward
dynamics accelerations are computed directly under constraints im-
posed by SPD, without the actual control forces explicitly calcu-
lated. Such implementation is simple to code on top of ABA, and
incurs negligible cost as we will show in our experiments.

As MABA is simply ABA with SPD constraints satisfied, our

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.



Z. Yin / Linear Time Stable PD Controllers

(a) Humanoid (b) Dog

(c) Snake1 (d) Snake2

(e) Snake3

Figure 4: Character models used in our experiments.

embedded implementation of MABA naturally works with addi-
tional constraint solvers, either ABA-based or independent. Simu-
lation engines with independent constraint solvers can call MABA
instead of ABA to solve forward dynamics with SPD controls
[NVI19]. ABA-based solvers just need to incorporate our minor
modifications into their algorithm to use SPD controllers [Kok04].
For our experiments done on PhysX, we do not need to do anything
other than replacing the original ABA code with our MABA code
to incorporate contact and ground reaction forces into the simula-
tion, as PhysX handles these constraints independently of ABA.

4. Experiments

In this section we validate the accuracy, stability, and performance
of MABA in motion tracking tasks and Deep Reinforcement Learn-
ing (DRL) tasks. We also compare MABA with the dense fac-
torization (DF) method and the sparse factorization (SF) method.
The DF method is implemented using the dense LLT factoriza-
tion provided by the Eigen library [GJ∗10]. The SF implementa-
tion strictly follows the pseudo-code for sparse LLT factorization
presented in [Fea14].

Our experiments are performed on a Dell Precision 7920 Tower
workstation with an Intel Xeon Gold 6128 CPU (3.4 GHz, 12
threads) and a GeForce GTX 1080 Ti GPU. NVIDIA PhysX (ver-
sion 2019.8) is used as our physics simulation engine. Five simu-
lated virtual character models of different complexity are studied
in our experiments, including a humanoid, a dog, and three snakes
of different length. We visualize these models in Figure 4 and list
their important model parameters in Table 1. The humanoid model

Model Humanoid Dog Snake1 Snake2 Snake3
n 34 72 36 72 195
d 13 24 36 72 195

Table 1: Model parameters: n is the degrees of freedom; and d is
the maximum number of DoFs from the root to the leaves.

and motions are obtained from Peng et al. [PALvdP18]. The dog
model and motions are obtained from Zhang et al. [ZSKS18].

4.1. Accuracy and Stability

We investigate the accuracy and stability of MABA through motion
tracking tasks on the humanoid and dog models. More specifically,
we use SPD controllers to track both the root and internal joints
in predefined motion trajectories. As the root is controlled by ex-
ternal “hand-of-God” forces, such tasks are quasi-static in nature
and used purely for accessing the tracking performance. Tracking
accuracy is measured by end-effector to root errors between the
reference and simulated vectors. Here we use a fixed set of SPD
parameters in our experiment: kp = 20000,kd = 2000 for the root,
and kp = 75000,kd = 4000 for all the internal joints. We show the
tracking errors using different simulation time steps in Figure 5 and
6. Figure 5 corresponds to the tracking errors measured by the right
ankle to root vector of the humanoid model during a running mo-
tion. Figure 6 corresponds to the tracking errors measured by the
right front toe to root vector of the dog model during a cantering
motion. We only compare the DF method and MABA here, as SF
only differs from DF in terms of efficiency, but not accuracy nor
stability.

Figure 5 shows that MABA and the dense factorization method
produce near identical accuracy curves on the humanoid model.
Both controllers are stable for time steps up to ∆t = 1/30 s. Fig-
ure 6 demonstrates that MABA achieves significantly better ac-
curacy and stability than DF on the dog model. MABA is stable
for all tested time steps, while DF diverges for ∆t ≥ 1/60 s. For
∆t = 1/120 s, although DF does not fail, it produces visibly larger
tracking errors than MABA. For small time steps ∆t ≤ 1/300 s, the
two implementations become comparable. Based on these experi-
ments, we conclude that MABA delivers better stability for com-
plex models at large time steps. Even though different implementa-
tions solve the same SPD formulation, MABA generally produces
less numerical errors than matrix factorization due to its computa-
tional simplicity. Therefore MABA degrades more gracefully than
matrix factorization based methods for large integration time steps
and complex models, which tend to amplify the accumulated nu-
merical errors.

4.2. Simulation Performance

We compare the runtime performance of different SPD implemen-
tations on four character models of different complexity using the
same motion tracking tasks described in Section 4.1. Performance
is measured by the number of simulated Frames Per Second (FPS)
on a single CPU thread. We set ∆t = 1/30 s for the humanoid
and snake models. We use ∆t = 1/240 s for the dog model, as

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.



Z. Yin / Linear Time Stable PD Controllers

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (s)

0

10

20

30

40

50

Po
si

tio
na

le
rr

or
(c

m
)

∆t = 1/30
∆t = 1/60
∆t = 1/120
∆t = 1/300
∆t = 1/600

(a) Dense factorization method

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (s)

0

10

20

30

40

50

Po
si

tio
na

le
rr

or
(c

m
)

∆t = 1/30
∆t = 1/60
∆t = 1/120
∆t = 1/300
∆t = 1/600

(b) MABA

Figure 5: SPD tracking errors measured at the right ankle of the humanoid model in a running motion. The smaller the simulation time step
is, the smaller the tracking errors are. MABA produces comparable results as the dense factorization method.

0 1 2 3 4 5
Time (s)

0

5

10

15

20

25

30

35

40

Po
si

tio
na

le
rr

or
(c

m
)

∆t = 1/30
∆t = 1/60
∆t = 1/120
∆t = 1/300
∆t = 1/600

(a) Dense factorization method

0 1 2 3 4 5
Time (s)

0

5

10

15

20

25

30

35

40

Po
si

tio
na

le
rr

or
(c

m
)

∆t = 1/30
∆t = 1/60
∆t = 1/120
∆t = 1/300
∆t = 1/600

(b) MABA

Figure 6: SPD tracking errors measured at the right front toe of the dog model in a cantering motion. The smaller the simulation time step
is, the smaller the tracking errors are. MABA produces better results than the dense factorization method.

factorization-based methods cannot achieve stable simulation when
using large time steps as shown in Figure 6.

We record the simulation FPS for different combinations of mod-
els, motions and SPD implementations (DF, SF, and MABA). Ta-
ble 2 shows that MABA is significantly more efficient than DF,
which is currently the only option in both research and industry to
the best of our knowledge. MABA is also always faster than SF. SF
achieves better performance than DF when controlling models with
low DoFs, or models with shallow tree structures. However, SF is
less efficient than DF for models with high DoFs or deep tree struc-
tures. Our snake models correspond to the worst case scenario for
SF, as their kinematic trees degenerate to chains so the time com-
plexity becomes O(n3) just as in DF. In fact, SF runs slower than
DF due to necessary overhead incurred for sparse factorization.

Iterative methods, such as Preconditioned Conjugate Gradient

(PCG), can also be used to solve this problem. However, as our ma-
trix is neither very large nor sparse, PCG does not provide any per-
formance gain over Cholesky factorization. As shown in Table 2,
PCG results in comparable speed to DF. There is a better mecha-
nism proposed in [WO82] that uses PCG to achieve O(n2) perfor-
mance. Our proposed MABA is much simpler and faster, however,
so we will not include PCG-based methods in further comparative
studies.

We also report the percentages of extra time required for SPD
computation over total simulation time for different methods. Ta-
ble 3 shows that matrix factorization-based methods can dominate
the simulation process for complex models while MABA solves
SPD with consistently negligible cost. Therefore, we recommend
MABA for SPD computation wherever possible. We note that for

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.



Z. Yin / Linear Time Stable PD Controllers

Model Motion DF PCG SF MABA

Humanoid

walk 13,752 14,108 17,083 20,224
run 14,109 14,409 17,048 20,523

cartwheel 13,729 14,436 16,962 20,213
backflip 13,827 14,537 16,943 19,387

Dog
pace 6,572 4,838 8,764 11,804
trot 6,551 4,682 8,969 11,540

canter 6,498 4,553 8,738 11,700
Snake1 slither 11,897 11,935 12,259 16,444
Snake2 slither 5,099 5,069 3,979 8,334
Snake3 slither 1,036 944 417 3,036

Table 2: Simulation FPS (frames per second) of different SPD
implementations: DF (dense factorization), PCG (preconditioned
conjugate gradient with Jacobi preconditioning), SF (sparse fac-
torization), and MABA.

Model DF(%) SF(%) MABA(%)
Humanoid 31.1 18.2 2.1

Dog 44.3 25.7 3.6
Snake1 28.0 28.3 1.7
Snake2 39.9 53.9 2.5
Snake3 64.4 86.3 3.7

Table 3: Percentage of extra time required by SPD computation
over total simulation time.

Table 3, reported performances are averaged values across all avail-
able motions for the humanoid and dog models.

4.3. DRL Training Performance

The motion tracking task that we have used for testing and com-
parison so far is only a quasi physics-based method, as it tracks
the root joint with a hand-of-God type control. In order to see the
effect of different solvers in true physics-based learning and con-
trol systems, where only internal joint actuation and ground reac-
tion forces are used for control of the full body, we employ these
SPD solvers within a state-of-the-art Deep Reinforcement Learning
(DRL) framework named DeepMimic [PALvdP18]. DeepMimic
employs both an imitation reward and a task reward to encourage
physics-based characters to learn high-quality motor skills. We re-
implement DeepMimic on NVIDIA PhysX and train several skills
on our machine with 12 CPU threads in parallel and one GPU. We
use exactly the same network architecture and training parameters
as those given in the original implementation [PALvdP18]. Fig-
ure 7 reports the learning curves in wall-clock time. Our results
show that for both the humanoid and the dog model, MABA not
only improves the learning speed, but also helps DeepMimic con-
verge to better solutions. This is because first MABA saves training
time by directly reducing the SPD computational cost; and second
DeepMimic requires less training samples when using MABA as
its greater stability helps reduce the learning difficulty.

0 100 200 300 400 500
Wall clock time (minutes)

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

re
tu

rn

MABA
DF
SF

(a) Humanoid run

0 100 200 300 400 500 600 700
Wall clock time (minutes)

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

re
tu

rn

MABA
DF
SF

(b) Dog canter

Figure 7: DRL learning curves measured in wall-clock time
using different SPD implementations. As DeepMimic is non-
deterministic, the curves we show are the average of five training
runs. The shaded region indicates the standard deviation.

5. Conclusion and Discussion

We have presented the Modified Articulated-Body Algorithm for
SPD computation of articulated rigid body systems parameterized
in generalized coordinates. We show that MABA runs in linear
time, which is the theoretical minimum under the presented SPD
formulation. We demonstrate the performance and stability advan-
tages of MABA for physics-based character animation. Since SPD
controllers are fundamental components in many time-critical or
time-consuming systems, such as computer games and DRL-based
algorithms, our proposed algorithm could potentially benefit a wide
range of applications and research.

Our current MABA implementation is embedded into an ABA
forward dynamics solver by directly modifying the ABA code in
the PhysX simulation engine. A standalone implementation is nec-
essary when the SPD control forces need to be computed explicitly.
For example, when the SPD control forces need to be monitored
and tailored before being sent to the forward dynamics simulation.

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.



Z. Yin / Linear Time Stable PD Controllers

The standalone implementation is roughly equivalent to running a
linear time forward dynamics solver at each simulation time step.
So it still incurs O(n) cost and is faster than a cubic time SPD
implementation. The forward dynamics solver needs to be called
separately after the standalone MABA, so the resultant speed and
accuracy of the standalone MABA implementation will be inferior
to the embedded MABA, due to the two passes of the ABA-type
solver and error accumulations during this process.

In the future, we plan to investigate linear time SPD controllers
for articulations parameterized in full coordinates. Such an algo-
rithm should be developed on top of a linear forward dynamics
algorithm in full coordinates, such as [Bar96], to maximize the po-
tential performance gain. It is also interesting to explore parallel
algorithms for solving SPD, so that GPU acceleration can be uti-
lized.

Acknowledgements We would like to thank Jie Tan and Michiel
van de Panne for their suggestions on an early draft of this pa-
per. We also thank the anonymous reviewers for their constructive
feedback. This project is partially supported by NSERC Discovery
Grants Program RGPIN-06797 and RGPAS-522723.

References

[Bar96] BARAFF D.: Linear-time dynamics using lagrange multipliers.
In SIGGRAPH (1996), pp. 137–146. 3, 9

[BCHF19] BERGAMIN K., CLAVET S., HOLDEN D., FORBES J. R.:
DReCon: data-driven responsive control of physics-based characters.
ACM Transactions on Graphics (TOG) 38, 6 (2019), 1–11. 1

[Cou15] COUMANS E.: Bullet physics simulation. p. 1. 1, 3, 5

[Fea10a] FEATHERSTONE R.: A beginner’s guide to 6-D vectors (part 1).
IEEE Robotics Automation 17, 3 (2010), 83–94. 3

[Fea10b] FEATHERSTONE R.: A beginner’s guide to 6-D vectors (part 2).
IEEE Robotics Automation 17, 4 (2010), 88–99. 3

[Fea14] FEATHERSTONE R.: Rigid body dynamics algorithms. Springer,
2014. 1, 2, 3, 4, 6, 9

[GJ∗10] GUENNEBAUD G., JACOB B., ET AL.: Eigen v3, 2010. 6

[Kok04] KOKKEVIS E.: Practical physics for articulated characters. In
Game Developers Conference (2004), vol. 2004. 3, 6

[LGH∗18] LEE J., GREY M., HA S., KUNZ T., JAIN S., YE Y., SRINI-
VASA S., STILMAN M., LIU C.: Dart: Dynamic animation and robotics
toolkit. Journal of Open Source Software 3, 22 (2018), 500. 1, 3, 5

[LH17] LIU L., HODGINS J.: Learning to schedule control fragments for
physics-based characters using deep q-learning. ACM Transactions on
Graphics (TOG) 36, 3 (2017), 1–14. 2

[LPLL19] LEE S., PARK M., LEE K., LEE J.: Scalable muscle-actuated
human simulation and control. ACM Transactions on Graphics (TOG)
38, 4 (2019), 1–13. 3

[LPY16] LIU L., PANNE M. V. D., YIN K.: Guided learning of control
graphs for physics-based characters. ACM Transactions on Graphics
(TOG) 35, 3 (2016), 1–14. 2

[LYWG13] LIU L., YIN K., WANG B., GUO B.: Simulation and control
of skeleton-driven soft body characters. ACM Transactions on Graphics
(TOG) 32, 6 (2013), 1–8. 2

[Mir96] MIRTICH B. V.: Impulse-based dynamic simulation of rigid body
systems. University of California, Berkeley, 1996. 3

[NVI19] NVIDIA: PhysX 4.1, 2019. URL: https://developer.
nvidia.com/physx-sdk. 5, 6

[PALvdP18] PENG X. B., ABBEEL P., LEVINE S., VAN DE PANNE M.:
DeepMimic: Example-guided deep reinforcement learning of physics-
based character skills. ACM Transactions on Graphics (TOG) 37, 4
(2018), 1–14. 1, 3, 6, 8

[PBVdP16] PENG X. B., BERSETH G., VAN DE PANNE M.: Terrain-
adaptive locomotion skills using deep reinforcement learning. ACM
Transactions on Graphics (TOG) 35, 4 (2016), 1–12. 3

[PBYVDP17] PENG X. B., BERSETH G., YIN K., VAN DE PANNE M.:
DeepLoco: Dynamic locomotion skills using hierarchical deep reinforce-
ment learning. ACM Transactions on Graphics (TOG) 36, 4 (2017), 1–
13. 3

[PRL∗19] PARK S., RYU H., LEE S., LEE S., LEE J.: Learning predict-
and-simulate policies from unorganized human motion data. ACM Trans.
Graph. 38, 6 (2019). 1, 3

[TLT11] TAN J., LIU K., TURK G.: Stable proportional-derivative con-
trollers. IEEE Computer Graphics and Applications 31, 4 (2011), 34–44.
1, 2

[WO82] WALKER M. W., ORIN D. E.: Efficient dynamic computer sim-
ulation of robotic mechanisms. 7

[YK19] YUAN Y., KITANI K.: Ego-pose estimation and forecasting as
real-time PD control. In Proceedings of the IEEE International Confer-
ence on Computer Vision (2019), pp. 10082–10092. 3

[YLvdP07] YIN K., LOKEN K., VAN DE PANNE M.: SIMBICON: Sim-
ple biped locomotion control. ACM Transctions on Graphics 26, 3
(2007), Article 105. 1

[YTL18] YU W., TURK G., LIU C. K.: Learning symmetric and low-
energy locomotion. ACM Transactions on Graphics (TOG) 37, 4 (2018),
144. 1

[ZH02] ZORDAN V. B., HODGINS J. K.: Motion capture driven simula-
tions that hit and react. In SCA (2002), pp. 89–96. 1

[ZSKS18] ZHANG H., STARKE S., KOMURA T., SAITO J.: Mode-
adaptive neural networks for quadruped motion control. ACM Trans-
actions on Graphics (TOG) 37, 4 (2018), 1–11. 6

Appendix A: MABA Full Algorithm

Here we list the complete set of equations for re-implementing
MABA. MABA can be implemented by a small set of simple and
clean modifications to the original ABA. More specifically, if we
set Ki = 0 in Equation 38, and Qi = τi the input joint actuation
torques in Equation 40, we get the original ABA.

Extra Notations

Following Featherstone’s notation system, we use × and ×∗ to de-
note spatial cross products, and iX j and i

X∗j to denote coordinate
transformation matrices from frame j to frame i. iX j applies to
spatial motion vectors, while i

X∗j applies to spatial force vectors.
All other variables have been defined in Section 3, except for Hi
and Di which are solely used for removing repeated expressions.
We refer interested readers to [Fea14] for more detailed explana-
tions.

Pass 1

v0 = 0 (30)

vi =
iXλ(i)vλ(i)+Siq̇i (31)

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

https://developer.nvidia.com/physx-sdk
https://developer.nvidia.com/physx-sdk


Z. Yin / Linear Time Stable PD Controllers

ci = vi×Siq̇i (32)

pi = vi×∗ Iivi (33)

Pass 2

IA
i = Ii + ∑

j∈µ(i)

i
X∗j I

a
j

jXi (34)

pA
i = pi + ∑

j∈µ(i)

i
X∗j p

a
j (35)

Hi = I
A
i Si (36)

Di = S
T
i Hi +Ki (37)

Ki =Kdi∆t (38)

ui =Qi−ST
i p

A
i (39)

Qi =−Kpi(qi +∆tq̇i− q̄i)−Kdiq̇i (40)

Ia
i = IA

i −HiD
−1
i HT

i (41)

pa
i = p

A
i +I

a
i ci +HiD

−1
i ui (42)

Pass 3

a0 = 0 (43)

a′i =
iXλ(i)aλ(i)+ci (44)

q̈i =D
−1
i (ui−HT

i a
′
i) (45)

ai = a
′
i +Siq̈i (46)

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.


